Issue 6, 2003

Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors

Abstract

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Article information

Article type
Paper
Submitted
03 Jan 2002
Accepted
11 Feb 2002
First published
26 Feb 2003

Analyst, 2003,128, 712-718

Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors

W. Yang, E. Chow, Gary. D. Willett, D. B. Hibbert and J. J. Gooding, Analyst, 2003, 128, 712 DOI: 10.1039/B212881K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements