Prediction of ultraviolet optical materials in the K2O-B2O3 system.

Abstract

Ultraviolet (UV) birefringent crystals play a crucial role in various fields, such as laser technologies, optical telecommunications, and advanced scientific instrumentation. Alkali metal borates, with their diverse structures and remarkable ultraviolet optical properties, have garnered significant attention in recent years. In this study, employing the evolutionary crystal structure prediction algorithm USPEX, in conjunction with ionic substitutions and first-principles calculations, we systematically explored the pseudo-binary K2O-B2O3 system and predicted two stable structures (oP56-K3BO3, mC44-K4B2O5) previously unreported, and twelve metastable structures in the K2O-B2O3 system. A comprehensive analysis of their structural, electronic and optical properties is conducted. The coplanar arrangement of BO3 and B3O6 groups are found to enhance optical anisotropy, thereby increasing the birefrintgence. In the K2O-B2O3 system, six structures with wide band gaps and high birefringence (mP28-1-K3BO3, tR72-KBO2, oP112-1-KB5O8, oP112-2-KB5O8, mC220-K5B19O31 and hR21-K3BO3) are found to be possible candidates for UV optical materials. Importantly, hR21-K3BO3, the only non-centrosymmetric structure in this system, exhibits a significant frequency doubling coefficient (about 4.6 KDP) and a moderate birefringence index (0.056@1064 nm), marking it a promising UV nonlinear optical material.

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2024
Accepted
09 Sep 2024
First published
11 Sep 2024

Phys. Chem. Chem. Phys., 2024, Accepted Manuscript

Prediction of ultraviolet optical materials in the K2O-B2O3 system.

X. Guo, Y. Wang and H. Niu, Phys. Chem. Chem. Phys., 2024, Accepted Manuscript , DOI: 10.1039/D4CP02424A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements