Salt-bridge mediated conformational dynamics in the figure-of-eight knotted ketol acid reductoisomerase (KARI)†
Abstract
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn’t been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.