Issue 1, 2017

On the molecular mechanisms for the H2/CO2 separation performance of zeolite imidazolate framework two-layered membranes

Abstract

Double-layered zeolitic imidazolate framework (ZIF) membranes were fabricated inside polyimide P84 hollow fibers by a step-synthesis conducted by microfluidic technology and applied to pre-combustion gas separation. Our hypothesis, based on the information provided by a combination of molecular simulation and experiments, is that a CO2 adsorption reduction on the surface of the ZIF-9 would enhance the molecular sieving effect of this ZIF-9 layer and therefore the selectivity in the H2/CO2 mixture separation of the entire membrane. This reduction would be achieved by means of a less-CO2-adsorptive methylimidazolate-based ZIF-67 or ZIF-8 layer coating the ZIF-9. ZIF-8/ZIF-9 and ZIF-67/ZIF-9 double-layered membranes were prepared and characterized by XRD, FTIR, SEM, FIB, TEM and EDS. This unprecedented strategy led to a H2/CO2 separation selectivity of 9.6 together with a 250 GPU H2 permeance at 150 °C, showing a significant improvement with respect to the pure ZIF-9 membrane. Double-layered membranes also showed higher apparent CO2 activation energies than single-layered membranes, attributable to a diminished adsorption.

Graphical abstract: On the molecular mechanisms for the H2/CO2 separation performance of zeolite imidazolate framework two-layered membranes

Supplementary files

Article information

Article type
Edge Article
Submitted
03 Mezh. 2016
Accepted
06 Eost 2016
First published
09 Eost 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2017,8, 325-333

Author version available

On the molecular mechanisms for the H2/CO2 separation performance of zeolite imidazolate framework two-layered membranes

F. Cacho-Bailo, I. Matito-Martos, J. Perez-Carbajo, M. Etxeberría-Benavides, O. Karvan, V. Sebastián, S. Calero, C. Téllez and J. Coronas, Chem. Sci., 2017, 8, 325 DOI: 10.1039/C6SC02411D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements