A hampered oxidative addition of pre-coordinated pincer ligands can favour alternative pathways of activation†
Abstract
Pre-coordination to a transition metal by the terminal donor groups of a tri-dentate ligand is a common strategy to stabilise elusive groups, to achieve unprecedented bond activation and to develop novel modes of metal–ligand-cooperation for catalysis. In the current manuscript, we demonstrate that the oxidative addition of a central E–H-bond after pre-coordination to the metal centre is disfavoured for metals with d10 electron configuration. For exemplary pincer ligands and metals with d10 electron configuration, quantum chemical calculations suggest a second barrier, which is associated with the rearrangement of the saw-horse structure, obtained after oxidative addition, to the expected square planar geometry for the resulting d8 electron configuration. In the case of PBP-type ligands with a central L2BH2-group (L = R3P) the reaction with Pt0 precursors proceeds via an alternative pathway of activation, which involves the backside attack of a nucleophile to the boron atom, which facilitates the nucleophilic attack of the Pt0 centre and formation of a boryl complex (LBH2). As the corresponding reaction with a PtII precursor leads to B–H- instead of B–L-activation and formation of complex 2 with a L2BH donor, our results show that ligand-stabilized borylenes (L2BH) can in principle be converted to boryls (LBH2) via boronium salts (L2BH2+).
- This article is part of the themed collection: 2023 Pioneering Investigators