Qianwen
Liu†
,
Jianhan
Sun†
,
Kun
Gao
,
Nan
Chen
*,
Xiaotong
Sun
,
Dan
Ti
,
Congcong
Bai
,
Ranran
Cui
and
Liangti
Qu
*
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: gabechain@bit.edu.cn; lqu@bit.edu.cn
First published on 4th November 2019
As a new kind of zero-dimensional (0D) material, graphene quantum dots (GQDs) have broad prospects in energy storage and conversion due to their unique physical and chemical properties. In addition to the excellent properties of graphene, GQDs also have quantum confinement effects and edge effects. The size of GQDs and types of their edges determine their excellent properties. In this paper, the progress in the synthesis, doping and modification methods of GQDs in recent years is reviewed, and the significant advances of GQDs in energy conversion devices such as supercapacitors/microsupercapacitors, solar cells, batteries and LEDs are summarized. In addition, we rationally analysed the shortcomings of GQDs for energy storage and conversion, and predicted the future development trend of GQD research and its challenges and opportunities.
As shown in Fig. 1a, a simple method for synthesizing GQDs is to cut carbon materials with bases such as sodium hydroxide (NaOH) and ammonia. Gong et al. obtained biocompatible GQDs with up-conversion properties by using graphene oxide as a raw material, dimethylformamide as a solvent and a nitrogen source through a simple solvothermal method.24 On the other hand, the electrochemical method is beneficial to obtaining superior GQDs by precise control of their size and shape. After that, high quality GQDs prepared by chemical vapour deposition (CVD) combined with the electrochemical method using 3D graphene were reported (Fig. 1b).25 GQDs have a narrow particle size distribution, a low molecular weight and an average thickness greater than 1.25 nm. Subsequently, many efforts have been devoted to controlling and regulating the size of GQDs. Using multi-walled carbon nanotubes (MWCNTs) as a carbon source, Pillai et al. prepared GQDs via electrochemical oxidation by using a solution of LiClO4 dissolved propylene carbonate as an electrolyte (Fig. 1c).26 The size of GQDs can be adjusted by controlling the conditions of the electrolysis reaction, such as the temperature and time. Acid oxidation is a method of destroying carbon–carbon bonds and decomposing graphene sheets into small-sized GQDs of less than 100 nm by strong oxidation with a strong acid such as concentrated sulfuric acid, concentrated nitric acid or a mixed acid composed of concentrated sulfuric acid and concentrated nitric acid. The acid oxidation method requires very simple and inexpensive raw materials, which provides a new strategy for the preparation of GQDs. For instance, Ajayan et al. synthesized bitumen carbon fiber-based micrometer-GQDs through chemical oxidation and cleavage, and the results show that most of the GQDs obtained have zigzag edge structures with semiconductor characteristics, and their particle size distribution ranges between 1 nm and 4 nm (Fig. 1d).14 Furthermore, in 2019, Tour et al. reported a general method for preparing GQDs by placing various coal sources in sulfuric and nitric acid and sonicating and heating them (Fig. 1e).27 The GQDs obtained by the improved synthesis method have high crystallinity and good solubility in both water and organic solvents. In 2016, Zhang et al. prepared GQDs with a grain diameter of 4–10 nm by using an ultrasonic-assisted chemical stripping method and using O3 and H2O2 to conduct oxidation cutting of GO.28
Fig. 1 Top-down synthesis of GQDs. (a) The solvothermal method to prepare GQDs. (Reproduced with permission from ref. 24, copyright 2013 American Chemical Society.) (b) The electrochemical method to prepare GQDs. (Reproduced with permission from ref. 25, copyright 2014 Wiley-VCH.) (c) The preparation of photoluminescent GQDs from MWCNTs. (Reproduced with permission from ref. 26, copyright 2012 Wiley-VCH.) (d) The oxidation cutting of carbon fibers (CFs) to prepare GQDs. (Reproduced with permission from ref. 14, copyright 2012 American Chemical Society.) (e) The oxidation cutting of coal to prepare GQDs. (Reproduced with permission from ref. 27, copyright 2019 American Chemical Society.) (f) Large-scale synthesis of GQDs by ultrasonic-assisted liquid-phase exfoliation. (Reproduced with permission from ref. 29, copyright 2016 Elsevier B.V.) (g) GQDs synthesized via pulsed laser ablation. (Reproduced with permission from ref. 33, copyright 2016 the Royal Society of Chemistry.) |
Recently, various synthesis methods of GQDs have been reported. However, several limitations such as complicated synthesis procedures, low production yields, expensive equipment, extreme conditions and high cost have hampered their industrial application progress. The Pei group developed a method of ultrasonic-assisted exfoliation of raw graphitic carbon materials in the liquid-phase for the synthesis of GQDs (Fig. 1f),29 which enables rapid processing, is environmentally friendly, is low-cost, and can be effectively used for mass production of GQDs in industry. Moreover, the adjustable size and density of GQD defects provide a new strategy for large-scale synthesis of controllable GQDs. Pulsed laser ablation (PLA) is a top-down method with one-step reaction, a short synthesis time, good reproducibility, and a minimal experimental set-up, which has attracted great attention from researchers.30–32 Thus, the understanding of the photoluminescence (PL) mechanism for GQDs with different wavelengths is expected to be essential for their possible applications in biomedicine, photocatalysis, and optical devices. The Shen group synthesized a series of GQDs with tunable PL by controlling the PLA time.33 The GQDs implemented using PLA with carboxyl-functionalized MWCNTs exhibit emission colour change from green to blue (Fig. 1g).
Fig. 2 Bottom-up synthesis of GQDs. (a) Preparation of N-doped GQDs and N,S-doped GQDs by a microwave-assisted method. (Reproduced with permission from ref. 34, copyright 2016 Wiley-VCH.) (b) Ultraviolet irradiation induces free-radical polymerization to prepare GQDs. (Reproduced with permission from ref. 35, copyright 2017 American Chemical Society.) (c) Preparation of GQDs with citric acid as a monomer. (Reproduced with permission from ref. 36, copyright 2012 Elsevier B.V.) (d) Preparation of N-doped GQDs and N,S-doped GQDs from graphene and urea or thiourea. (Reproduced with permission from ref. 37, copyright 2013 the Royal Society of Chemistry.) (e) Hybrids of GQDs and carbon nanoribbons were synthesized from toluene and hexabromobenzene. (Reproduced with permission from ref. 39, copyright 2015 American Chemical Society.) (f) GQDs cut from graphitized fine carbon powder obtained by deciduous roasting. (Reproduced with permission from ref. 40, copyright 2014 the Royal Society of Chemistry.) (g) GQDs obtained by ultrasonically assisted cutting of graphitized fine carbon powder. (Reproduced with permission from ref. 41, copyright 2016 American Chemical Society.) |
In recent years, synthesis methods combining top-down and bottom-up methods have been studied in depth. For example, a graphitized carbon fine powder is obtained by calcining organic molecules in an inert gas atmosphere, which is a typical bottom-up synthesis concept. The graphitized fine carbon powder is then sheared to form GQDs, which is a typical top-down synthesis concept. After burning neem leaves in an inert gas atmosphere to obtain fine carbon powder, Ogale et al. converted the above carbon powder into GQDs using sulfuric acid and nitric acid. The GQDs prepared in this manner were used as a photoluminescence switch on-off-on probe for Ag+ ions (Fig. 2f).40 GQDs can also be prepared by mixing carbon powder with sulfuric acid in ultrasound and then reacting the mixture with nitric acid. At this time, the fine carbon powder in the synthesis method is obtained by baking rice husks (Fig. 2g).41
In summary, top-down and bottom-up methods are typical common methods of fabricating GQDs. Consequently, we briefly compared these two methods in terms of the differences in fabrication methods, sizes, quantum yields and applications in recent years. As can be seen in Table 1, the main advantages of the top-down method are the availability of raw materials, low price, and simple technological processes, with a high quantum yield, which can be used for large-scale production. The commonly used raw materials are mainly large molecular substances such as graphite. However, it is noticed that the size of GQDs is not adjustable based on top-down methods. Among the several top-down methods, the hydrothermal and solvothermal synthesis methods are relatively widely used, while the sizes of GQDs prepared by the molecular fusion method and the acid vapor cutting strategy are relatively small.
Product type | Raw material(s) | Subclassification method | Lateral size of GQDs (nm) | Quantum yield (%) | Application(s) |
---|---|---|---|---|---|
N-GQDs42 | As-synthesized graphene oxide (GO) sheets | Hydrothermal cutting | 5–10 | — | Catalytic activity |
Amino-N-GQDs43 | GO sheets | Ultrasonic shearing | 7.31 ± 0.50 | 33 | — |
GQDs44 | XC-72 carbon black | Chemical oxidation | 4.1 ± 0.8 | — | Electrochemilu-minescence biosensors |
GQDs45 | Graphite rods | Electrochemical method | 20 | 18.95 | Ion sensors and bioimaging |
NP-GQDs46 | Citric acid and titanium butoxide | Solvothermal treatment | 3.03 ± 1.01 | 8.45 | Photocatalytic degradation of dyes |
GQDs47 | Graphite | Acid vapor cutting | 3–5 | — | Electron transport layers for PSEs |
N-O-GQDs48 | Pyrene | Molecular fusion | 2.4–4.8 | — | Micro-supercapacitors |
N-GQDs49 | Glucosamine | Microwave-assisted hydrothermal method | 6 | 32 | Solar cells |
The bottom-up method is the second largest technique for preparing GQDs. In Table 2, it is worth noting that this method requires that appropriate carbon-containing precursors be selected, such as aromatic structural molecules, and the operation process is complex. Moreover, some carbon precursors are also difficult to obtain, which presents some obstacles to the preparation of GQDs. Furthermore, the quantum yield of GQDs is relatively low in most bottom-up synthesis methods. Since each coin has two sides, the advantage of the bottom-up method is that the precision of the product can be accurately controlled.
Product type | Raw material(s) | Subclassification method | Lateral size of GQDs (nm) | Quantum yield (%) | Application |
---|---|---|---|---|---|
NS-GQDs34 | Norepinephrine | Microwave assisted solvothermal treatment | 4.1 | 17 | Photocatalysts |
N-GQDs35 | Norepinephrine | Microwave assisted solvothermal treatment | 3.4 | 7 | Photocatalysts |
GQDs36 | Salicylic acid | Stepwise organic synthesis | 1–5 | 81 | Fluorescence bioimaging |
GQDs37 | Citric acid | Pyrolysis | 15 | 9.0 | Photoluminescence/photocatalytic |
NS-GQDs39 | Citric acid and L-cysteine | Intermolecular condensation | 2.56–3.64 | 71 | Photocatalysts |
GQDs40 | Hexabromobenzene | Stepwise organic synthesis | 5 | — | Oxygen reduction reaction |
GQDs41 | Dead neem leaves | Carbonization of organic precursors | 5–6 | 1% taking quinine sulphate as a reference | Photoluminescence switch on-off-on probe for Ag+ ions |
In 2012, the Qu group successfully integrated N-doping and quantum effects, and obtained N-doped GQDs (N-GQDs) for the first time.57 N-GQDs with excellent luminescent properties and high efficiency oxygen reduction catalysis were prepared by introducing the N atom into the central position of acetone triol sing tetrabutylammonium perchlorate as electrolyte. Currently, functional materials are of important scientific and technological significance due to their valuable applications in photodetectors, solar cells, and bioimaging. However, GQDs with NIR emission have not been reported. In 2014, Lau reported a facile one-step synthesis of polyacrylonitrile (PAN)-based CFs to obtain N-doped GQDs.58 Noteworthily, the N/C and O/C atomic ratios and N bond configurations in the prepared GQDs can be easily adjusted by changing the heat treatment temperature of CFs. As shown in Fig. 3a, monodisperse N-GQDs having different particle sizes can be prepared by the microwave-assisted hydrothermal method (MAH) using glucose and ammonia as starting materials. Due to the hierarchical structure of N-GQDs, a wide π-conjugated system is generated, resulting in an optical response range of 365 to 980 nm for N-GQDs and a response rate of 325 V W−1 at 405 nm.
Fig. 3 Heteroatom doping of GQDs. (a) N-GQDs synthesized by a microwave-assisted method and their photoresponses (Φ = 4.0 nm) when irradiated with 405 nm. (Reproduced with permission from ref. 58, copyright 2014 American Chemical Society.) (b) One-pot synthesis procedure for GH-BGQDs using glucose. (Reproduced with permission from ref. 60, copyright 2017 Wiley-VCH.) (c) The synthesis procedure for B-GQDs with glucose. (Reproduced with permission from ref. 61, copyright 2017 the Royal Society of Chemistry.) (d) The formation of co-doped GQDs; the inset shows a comparison of the same concentration of co-doped GQDs in DMF under visible light and UV light respectively. (Reproduced with permission from ref. 63, copyright 2018 the Royal Society of Chemistry.) (e) The growth mechanism of N-GQDs and NS-GQDs with microwaves. (Reproduced with permission from ref. 62, copyright 2015 Wiley-VCH.) |
In the periodic table, B and C are adjacent to each other and have similar atomic radii. Compared to the C atom, the B atom has one less electron in its outermost shell. People are very interested in exploring the properties of B-doped GQDs (B-GQDs), because if some C atoms in graphene are replaced with B atoms, some electronic defects will appear in the products which exhibit some unique properties.59 Metal-free B-GQDs were prepared by introducing vacancies and elemental boron molecules as substitutional defects. For example, Zhang et al. demonstrated in 2017 that defects of GQDs provide several active sites by decomposition of 4-vinylphenylboronic acid (VPBA) and boric acid, thereby triggering the formation of B-GQDs (Fig. 3b).60 The B-GQDs were synthesized from VPBA using boric acid as a precursor at 200 °C. Additionally, in the presence of boric acid, B-GQDs can be synthesized by a one-step method with simple operation, low temperature and hydrothermal treatment of glucose (Fig. 3c).61 B-GQDs possess relatively uniform nano-size and a high B-doping level, the content of which is about 4.25%. In addition to monoatomic doping, many GQDs are modified by diatomic or triatomic doping. Doping atoms can change the energy band gap and surface properties of GQDs, resulting in enhancement of the photoelectric properties and an increase in the quantum yield of GQDs. Assembled N and S co-doped GQDs (NS-GQDs) obtained by microwave treatment of glucosamine show great potential in organic light-emitting devices as optoelectronic devices.62 In 2015, also by microwave treatment of CNTs in ionic liquids, S, N and F co-doped GQDs (NFS-GQDs) were successfully obtained (Fig. 3d).63 Further, Pillai et al. modified a TiO2 mesoporous network with NSF-GQDs, which improved the light capture efficiency of the product. As the band gap of TiO2 was reduced by N doping, the PCE value reached 11.7%. In addition, S was used to promote the electron transfer process, and F played an effective role in binding to the surface of TiO2.64 N or O doping is beneficial to increase the interface wettability of the carbon electrode to the aqueous electrolyte, thereby enhancing the faradaic reaction dynamics.48 Inspired by this, the Wu group reported the first application of heavily GQDs co-doped with N and O in MSCs, with improved molecular melting methods, where the N and O contents were as high as 17.8 at% and 21.3 at%, respectively (Fig. 3e).62
Fig. 4 Functionalization of GQDs. (a) Modification of (a) carbonyl, (b) hydroxy and (c) carboxyl groups on oxidized GQDs. (Reproduced with permission from ref. 65, copyright 2015 Wiley-VCH.) (b) Preparation of carboxylic acid functionalized GQDs. (Reproduced with permission from ref. 66, copyright 2015 the Royal Society of Chemistry.) (c) Preparation of sulfonated GQDs. (Reproduced with permission from ref. 67, copyright 2018 Elsevier B.V.) (d) Preparation of amino-functionalized GQDs. (Reproduced with permission from ref. 68, copyright 2012 Wiley-VCH.) (e) Preparation of amino-functionalized GQDs from graphene oxide sheets. (Reproduced with permission from ref. 69, copyright 2015 the Royal Society of Chemistry.) (f) Synthesis of chemically functionalized GQDs using aniline derivatives and GQDs. (Reproduced with permission from ref. 70, copyright 2016 Nature.) (g) Synthesis of N-functionalized GQDs. (Reproduced with permission from ref. 71, copyright 2016 Wiley-VCH.) (h) Adding a large conjugated functional group to expand the conjugated structure of GQDs. (Reproduced with permission from ref. 72, copyright 2018 American Chemical Society.) |
Okamoto et al. synthesized amino-functionalized GQDs by hydrothermally mixing ammonia solution and graphene oxide sheets at 70–150 °C for 5 h,68 the amino groups of which are mainly located at the edge of the sheet, which facilitates precise control of the optical properties of GQDs (Fig. 4d). Pang et al. produced amino-functionalized GQDs by acid-catalyzed dehydration of 1,2-diamine and graphene oxide sheets (Fig. 4e).69 Rhee et al. also chemically functionalized GQDs using a variety of aniline derivatives that can be used as light sources to produce high purity red-green and orange LEDs (Fig. 4f).70 A study by Matsui et al. showed that the N-containing groups in N-functionalized GQDs can systematically modify the electronic structure to cause effective orbital resonance of the HOMO and LUMO levels of the GQDs.71 Further, the prepared N-functionalized GQDs exerted an excellent effect in the field of perovskite solar cells and phototransistors (Fig. 4g). Chen et al. found that the band gap of GQDs can be narrowed by extending the π-conjugated system or functionalizing the electron-donating groups of GQDs,72 so that the narrow band gap GQDs can be applied to photocatalytic water splitting and high performance CO2 reduction (Fig. 4h).
Fig. 5 GQDs as SC/MSC electrodes. (a) GQD interdigitated MSC. (Reproduced with permission from ref. 73, copyright 2013 Wiley-VCH.) (b) Flexible transparent MSC using chelated graphene and GQDs. (Reproduced with permission from ref. 74, copyright 2016 Elsevier B.V.) (c) SC developed with N-GQD@cZIF-8/CNT electrodes. (Reproduced with permission from ref. 75, copyright 2018 Wiley-VCH.) (d) GQD/PANI asymmetric MSC. (Reproduced with permission from ref. 76, copyright 2013 the Royal Society of Chemistry.) |
The capacitive mechanism of pseudocapacitors is the reversible faradaic reactions occurring on the electrodes. SCs/MSCs made of carbon quantum dots doped with elements such as N and S are typical pseudocapacitors. Wu et al. used carbonized ZIF-8 as a self-sacrificing template, CNTs as a conductive network, and N-doped GQDs as a highly pseudocapacitive material to fabricate SCs. Their SCs have a high specific capacitance of 540 F g−1 at 0.5 A g−1 in 1 M H2SO4 electrolyte and have excellent cycle stability (approximately 90.9% retention of its initial specific capacitance after 8000 continuous cycles). The assembled SC has an energy density of 18.75 W h kg−1 and a power density of 108.7 W kg−1 (Fig. 5c).75 Asymmetric SCs/MSCs are also a large class of pseudocapacitors. Among them, GQD/polymer material asymmetric SCs are extremely representative. For example, Xue et al. developed a GQD/PANI asymmetric MSC, which has a specific capacity of 667.5 μF cm−2, a rate capability of up to 1000 V s−1, a very short relaxation time (τ0 = 115.9 μs in aqueous electrolyte), and great cycle stability (67.8% of its initial value after 1500 cycles).76 Moreover, the energy density of the SC was 0.093 μW h cm−2 and the power density was as high as 7.52 μW cm−2 (Fig. 5d). In addition, due to their excellent conductivity, GQDs can also be used as an auxiliary in SCs to enhance the properties of the electrode. Fan et al. embedded GQDs into an electrode made of high specific surface area carbon material to improve the conductivity of the electrode.77 The electrical double layer SC has a specific capacitance of 388 F g−1 at 1 A g−1 with excellent rate performance (τ0 = 0.68 s) and cycle stability in a two-electrode system (100% of its initial value after 10000 cycles). At a high current density of 100 A g−1, the SC has a capacitance retention of 60% (Fig. 6a). Transition metal compounds are a class of materials with high pseudocapacitance, but it is difficult to use them alone as electrodes because of their poor electrical conductivity, structural stability, rate performance, and cycle stability. However, the addition of GQDs will effectively enhance the above performance. Wang et al. synthesized a multi-layer NiO@Co3O4 hollow sphere decorated with GQDs as the cathode of SCs, and activated carbon as the anode to form asymmetric SCs.78 The asymmetric SCs have a specific capacitance of 1361 F g−1 and an energy density of 38.44 W h kg−1 and high cycle stability (76.4% retention after 3000 cycles) (Fig. 6b). In conclusion, Tables 3 and 4 display different properties and performances of GQDs in MSCs (Table 3) and SCs (Table 4).
Fig. 6 GQDs as supercapacitor additives. (a) GQDs as a conductive agent added to ultra-high specific surface area activated carbon SCs. (Reproduced with permission from ref. 77, copyright 2019 the Royal Society of Chemistry.) (b) GQDs as a conductive agent added to transition metal oxide pseudocapacitive SCs. (Reproduced with permission from ref. 78, copyright 2019 the Royal Society of Chemistry.) |
Electrode material | Electrolyte | Specific capacity (μF cm−2) | Rate performance (V s−1) | Energy density (μW h cm−2) | Power density (μW cm−2) | Operating voltage (V) | Cycle stability |
---|---|---|---|---|---|---|---|
GQD//GQD73 | 0.5 M Na2SO4 | 534.7 | 1000 | 0.074 | 7.5 | 1 | 97.8%, 5000 cycles |
GQD//GQD73 | 2 M EMIMBF4/AN | 468.1 | — | 0.474 | 56.7 | 2.7 | 94%, 5000 cycles |
GQD//MnO273 | 0.5 M Na2SO4 | 1107.4 | — | 0.154 | 7.51 | 1 | 93.3%, 5000 cycles |
N-O-GQD//N-O-GQD48 | 1 M H2SO4 | 5790 | — | 8.0 | 75 | 1 | 82.6%, 5000 cycles |
GQD//MnO279 | 0.5 M Na2SO4 | 2980 | — | 0.414 | 15.01 | 1 | — |
GQD//PANI76 | 0.5 M Na2SO4 | 667.5 | 1000 | 0.093 | 7.52 | 0.9 | 97.3%, 1500 cycles |
Electrode material | Electrolyte | Specific capacity (F g−1) | Rate performance (V s−1) | Energy density (W h kg−2) | Power density (W kg−2) | Operating voltage (V) | Cycle stability |
---|---|---|---|---|---|---|---|
N-GQD@cZIF-8/CNT//N-GQD@cZIF-8/CNT75 | H2SO4/PVA | 400 | 1000 | 14 | 89.5 | 1 | 82%, 5000 cycles |
GEAC//GEAC77 | Alkaline electrolyte | 388 | — | 13.47 | 12500 | 1 | 100%, 10000 cycles |
NiO@Co3O4@GQD//AC78 | KOH/PVA | 123 | — | 38.44 | 11251 | 1.6 | 84.3%, 10000 cycles |
CoDC-0.5//CoDC-0.580 | 6 M KOH | 240 | — | 9.38 | 1250 | 1 | 90%, 10000 cycles |
Amine-GQD-TNA//amine-GQD-TNA81 | 1 M H2SO4 | 595 | — | 21.8 | 25000 | 1 | 90%, 10000 cycles |
N-GQD@Fe3O4-HNT electrode (three-electrode test system)82 | 1 M Na2SO4 | 418 | 1000 | 29 | 5200 | 1 | 82%, 3000 cycles |
GQD/NiCo2S4 electrode (three-electrode test system)83 | 3 M KOH | 678.22 | — | — | — | 0.46 | 92%, 5000 cycles |
GQD-3DG//GQD-3DG84 | 1 M H2SO4 | 268 | — | — | — | 0.8 | 90%, 5000 cycles |
Fig. 7 GQDs for perovskite solar cell devices. (a) GQD modified TiO2 layer for efficient planar perovskite solar cells. (Reproduced with permission from ref. 94, copyright 2013 the Royal Society of Chemistry.) (b) NN-GQDs for inorganic γ-CsPbI3 perovskite solar cells. (Reproduced with permission from ref. 97, copyright 2019 the Royal Society of Chemistry.) (c) GQD/SnO2 composites for flexible perovskite photovoltaics. (Reproduced with permission from ref. 102, copyright 2019 the Royal Society of Chemistry.) (d) The perovskite solar cells with the structure of SnO2:GQD PSCs. (Reprinted with permission from ref. 108, copyright 2017 American Chemical Society.) (e) Perovskite solar cells with a GQD doped PCBM electron transport layer. (Reproduced with permission from ref. 112, copyright 2017 Elsevier B.V.) |
It has been reported that significant electron accumulation caused by the charge barrier at the TiO2/perovskite interface always exists, resulting in increased hysteresis and reduced efficiency.98,99 Moreover, TiO2 suffers from low electron mobility (ca. 10−4 cm2 V−1 s−1), and requires sintering at a high temperature (ca. 400 °C), which limits the establishment of flexible PSCs.100,101 Inspired by this, in 2018, the Lin group designed a facile way to prepare GQD and SnO2 nanoparticle composites as electron transport layers (ETLs) for highly efficient rigid and flexible PSCs (Fig. 7c).102 As is known to all, low temperature SnO2 films can be processed via various methods such as spin-coating solution,103–105 chemical-bath deposition,106 and atomic layer deposition (ALD).107 However, several devices based on low-temperature solution suffer from serious hysteresis, making it difficult to determine their real PCEs.103–105 Consequently, the Yang group exploited high performance and very little hysteresis N–I–P planar PSCs with SnO2:GQDs as ETLs.108 In Fig. 7d, the Fermi level (EF) of the SnO2:GQDs decreases from 4.35 to 4.01 eV because the electron concentration increased through illumination. Moreover, the electron mobility of the SnO2:GQDs has improved from 6.72 × 10−4 to 1.01 × 10−3 cm2 V−1 s after illumination. Conclusively, the planar PSCs based on SnO2:GQDs ETLs achieve a maximum steady-state efficiency of 20.23% with very little hysteresis. This research provides a simple and valid method to increase device efficiency by enhancing the electronic properties of the ETLs. Similarly, organic transport layers such as [6,6]-phenyl C61 butyric acid methyl ester PCBM109 and PCBDAN110 have attracted considerable attention due to their simple and low-temperature production process. Unfortunately, the intrinsic low electrical conductivity and electron mobility of PCBM still hinder the promotion of PSCs.111 In 2017, the Yang group reported a powerful method to enhance planar PSCs’ performance by using GQDs as a planar PCBM ETL with additional forward PSCs not only to dramatically increase the PCE of PSCs, but also to increase the light stability of the devices.112 Their PCE increased from 14.68 to 17.56, while the PCBM:GQD device maintained an original maximum of approximately 80% over a continuous full-spectrum sunshine time of more than 300 h (Fig. 7e). Then, in order to better verify the impact of GQD doping on PCBM performance, the authors used PCBM and PCBM:GQDs as ETLs to obtain sandwich structure devices. The results show that the conductivity is one order of magnitude higher than that of pure PCBM under GQD doping conditions. In summary, the introduction of GQDs into the perovskite thin film not only effectively passivates large chunks of grain boundaries and eliminates electron traps, thereby reducing charge recombination, but also promotes electron transfer in the perovskite layer.
Due to its advantages of large capacity, low cost, and abundant sources, VOx is considered to be a promising lithium ion battery electrode material.122,123 So far, various forms of VO2 nanostructures have been prepared for use as lithium-ion battery (LIB) cathode materials. However, most of these materials show rapid capacity decay and poor high-speed performance, and the resistance tends to increase rapidly during cycling. In 2015, the Fan group first reported the application of GQDs in batteries (VO2@GQD) as an efficient surface “sensitizer” and “stabilizer” to coat the VO2 surface by electrophoresis.124 It is well known that GQDs can improve electrochemical performance and separate VO2 nanomaterials from each other, thereby avoiding agglomeration and minimizing the dissolution of active substances.122 As shown in Fig. 8a, after 1500 cycles at 18 A g−1, the GVG electrode has a capacity exceeding 420 mA h g−1 and a capacity retention rate of 94%. Moreover, VO2@GQD exhibits a high capacity of 306 mA h g−1 and superior rate tolerance and a lower capacity decay (12% after 1500 cycles at 18 A g−1) with a power density of 42 kW kg−1 at an energy density of more than 100 W h kg−1. Recently, great efforts have been made towards exploring new applications for high-performance LIBs.125–127 The existing LIBs have short cycle lives and low power density, which cannot meet the efficient storage requirements of renewable energy and/or electric vehicles or HEVs.128 Therefore, the current work is to improve the energy density, power density and cycle life of electrode materials. In 2019, the Kim group reported a fresh LTO/N-GQD/super-hierarchical anode material for LIBs.129 Compared to pure LTO (Li4Ti5O12), the LTO with N-GQDs increases the specific capacity by 23% and exhibits better electrical properties, such as discharge capacity maintained at about 170 mA h g−1 at 20 °C for over 200 cycles as shown in Fig. 8b. The development and utilization of porous materials have received extensive attention in energy storage and conversion.130,131 Among them, metal organic frameworks (MOFs) have the advantages of colossal surface area, anisotropic structure, multifunctional pores and high carbon content of organic ligands, which are beneficial for preparing porous materials.132,133 However, the poor conductivity and instability of porous materials still limit their widespread use in batteries. In order to solve these shortcomings, the Yuan group synthesized porous carbon derived from ZIF-8@GQDs and the electrode material showed excellent electrochemical performance.134 The electrode material of lithium battery has a long cycle stability on account of that GQDs were loaded onto the surface of the MOF derivative ZIF-8 to form a cathode material of LIBs.
Fig. 8 Electrochemical characterization for batteries with GQDs. (a) The GVG electrode with GQDs in Li+ and Na+ batteries and the electrochemical performance. (Reproduced with permission from ref. 124, copyright 2015 American Chemical Society.) (b) The electrochemical performance of LTO-NGQ20 with rate capability from 0.2C to 50C and long cycling performance electrodes. (Reproduced with permission from ref. 129, copyright 2019 Elsevier B.V.) (c) The electrochemical reaction process of TiO2−x/GQDs. (Reproduced with permission from ref. 137, copyright 2018 the Royal Society of Chemistry.) (d) The preparation of Co3O4@CuO@GQDs and the long-term cycling performance. (Reproduced with permission from ref. 141, copyright 2019 Elsevier B.V.) |
Among the various anode candidates, TiO2 is widely used because of its environmental friendliness, safety, low cost, and good chemical stability.135,136 It is regrettable that the poor capacity and low rate performance of a TiO2 anode limit its practical application. Thus, increasing the electrochemical performance of the TiO2 anode is the key problem. In 2018, the Wei group successfully designed and fabricated a TiO2−x/GQD hybrid.137 TiO2 embedded with GQDs has higher electronic conductivity and higher specific surface area. Moreover, as displayed in Fig. 8c, the TiO2−x/GQD anode exhibited an excellent Li-storage capacity of 168.5 mA h g−1 at 5 °C and a long-term cycling performance of 160.1 mA h g−1 over 500 cycles at 10 °C.
Recently, transition metal oxides (TMO) or sulfides (TMS) appeared as potential competitors for the next generation of electrode materials in LIBs due to their large theoretical capacities (500–1000 mA h g−1) and abundant reserves and low cost.138–140 Taking this into account, the Wang group prepared yolk–shell Co3O4@CuO microspheres, which was followed by surface modification of carboxyl functionalized GQDs.141 The results are shown in Fig. 8d; as an anode material in LIBs, NiO@Co3O4@GQDs provide a relatively large reversible capacity of about 1158 mA h g−1 after 250 cycles and a current density of 0.1 A g−1, while the reversible capacity of NiO@Co3O4 is only about 1327 mA h g−1. In addition, the GQDs wrapped on the outer surfaces of the Co3O4@CuO microspheres effectively maintain the durability of anodes, making the anode material GQDs@Co3O4@CuO have better cycle capacity and exhibit superior lithium storage performance, yielding a high initial specific capacity (816 mA h g−1) and a high reversible charging capacity of 1054 mA g−1 after 200 cycles and 0.1 mA g−1 (Fig. 8d). On the other hand, transition metal disulfides have become the focus of research and application owing to their specific 2D layered feature, electronic structure, and unique physical and chemical properties.142,143 Among them, molybdenum disulfide (MoS2) exhibits excellent performance in energy storage and conversion. It is a pity that the practical application of a MoS2 anode is hindered by its intrinsic pulverization, which in turn induces rapid capacity degradation and poor cycling performance. In order to overcome this obstacle, the Zhang group first reported a facile synthesis of GQD doped MoS2 nanosheets via a solvothermal process.116 The obtained GQD/MoS2 material manifests remarkably improved electrochemical lithium storage performance compared to the original MoS2, such as high reversible capacity (1099 mA h g−1 at 100 mA g−1), good cycle stability, and excellent rate performance (660 mA h g−1 at 5000 mA g−1). Silicon is well known as the most promising anode material for high-capacity lithium ion batteries.144 To date, several methods have been successfully used for improving the electrochemical properties of silicon anodes.145,146 However, the development of silicon particles is limited by their size and electrical conductivity. With this in mind, the Li group reported the use of GQDs in a silicon anode.119 The effect of the coating layer on the diffusion of lithium ions between the silicon surface and the electrolyte will be reduced to a very low level. This work provides an easy method to design and prepare silicon-based anode materials for next-generation high performance lithium ion batteries.
Fig. 9 GQDs for light-emitting diode applications. (a) Current efficiency–luminance for LEDs with PVK, PVK:ODA NPs, PVK:GQDs and PVK:ODA-GQDs. (Reproduced with permission from ref. 156, copyright 2017 Elsevier B.V.) (b) The CIE color coordinates, CRI values, and CCT values for white LED lamps fabricated by integrating a 450 nm blue chip with GQD@ZIF-8. (Reproduced with permission from ref. 157, copyright 2018 the Royal Society of Chemistry.) (c) Electroluminescence spectra of an OLED using GQDs as a light emitter at a bias of 13 V. (Reproduced with permission from ref. 151, copyright 2014 American Chemical Society.) (d) LED structure, energy levels, electroluminescence spectra, photographs of blue, green, orange and red LEDs using aniline derivative functionalized GQDs as band gap tuners. (Reproduced with permission from ref. 148, copyright 2014 Nature.) |
In addition, a new luminescent material (GQD@ZIF-8) was synthesized by incorporating edge-sulfonated GQDs as active fluorescent species into a zeolitic imidazolate framework (ZIF-8) as a stabilizer and carrier.157 In white LEDs, GQD@ZIF-8 was used as a novel yellow phosphor based on a blue-light LED chip with proximate CIE coordinates of (0.33, 0.33) of highly pure white light and a larger color-rendering index (Fig. 9b). In the field of dopants, Rhee et al. first reported the electroluminescence of GQDs and organic LEDs with GQDs, which exhibited white light emission with an external quantum efficiency of ∼0.1%.151 They demonstrated OLEDs employing 4,4′-bis(carbazol-9-yl)biphenyl (CBP) as a host and a series of GQDs which have advantages such as appropriate energy-band structures and excellent organic solubility as dopants. As shown in Fig. 9c, with the increasing size of the GQDs, the electroluminescence (EL) intensity is also increased at a fixed bias. This is because the lower band-gaps of large size GQDs facilitate energy transfer from the host to the GQDs, which is the most important process for achieving bright electroluminescence. In addition, as the size of the GQDs increases from 2 nm to 10 nm, the Commission Internationale de l’Éclairage chromaticity diagram indicates that the EL color shifts from red to blue. When GQDs are used as a band gap tuner in the active layer, the problems of poor color purity and color tunability of the LEDs are perfectly solved. An aniline derivative is used by Rhee et al. to chemically functionalize GQDs, which causes GQDs to generate new extrinsic energy levels and very narrow linewidths of light, resulting in a red-shifted electroluminescence effect and improved color purity.70 The maximum current efficiency of the LED is 3.47 cd A−1 and the external quantum efficiency is 1.28%, which is the highest value for carbon nanoparticle phosphor-based LEDs. Lau and his co-workers synthesized a GQD–agar composite, as a color converter, which works in color conversion materials in blue LEDs to achieve white light emission (Fig. 9d). It also exhibits excellent optical stability and no observable luminescence quenching. The white LED has a luminous efficiency of 42.2 lm W−1, and its light conversion efficiency (61.1%) for continuous operation over 100 h is very stable.
Taking advantage of the fact that GQD fillers can improve the charge capture effect at the material phase interface, the Bakar group established a nanogenerator that achieves a higher output voltage and produces a positive polarity output signal of 4.6 V wide and 48 ms wide.159 The results show that the nanogenerator could successfully light up an LED when connected to an external circuit, and work steadily for up to 60 h (Fig. 10a). These superior properties are primarily dependent on the ability of GQDs to increase sensitivity to mechanical stimulations. In the Kim group, researchers applied GQDs on Ag nanowires to increase the sensitivity of external mechanical stimulation of the material.160 As shown in Fig. 10b, GQDs significantly increase the output current of the as-prepared product. Normally, when the electronic skin is under a pressure of 10 N, the GQDs (G-Ag-NWs) can output a short-circuit current density of ∼10 mA cm−2, which is 20 times that without GQDs. On the other hand, GQDs as an active material can produce a high-performance moisture-triggered nanogenerator. Ion concentration gradient induced electricity is a new form of energy conversion.161,162 Here, GQDs act as an effective additive to improve the performance of moisture production and power generation. The Berry group established the first GQD-based electronic humidity sensor that produces approximately 60 nA at 0.4 V when the atmosphere changes from humid air to helium.163 The results showed that due to the GQD additive, the tunnel barrier width can be reduced by 0.36 nm and the conductivity of the device can be increased by 43 times (Fig. 10c). The Qu group demonstrated a GQD-based electricity nanogenerator, in which electrochemical polarization treatment could generate a high voltage of up to 0.27 V under 70% change in relative humidity.164 After optimizing the load resistance, the power density is 1.86 mW cm−2 (Fig. 10d). Therefore, by self-assembling GQDs onto polymer microfibers to form a permeable network, it is possible to construct a humidity and pressure sensor that operates by electronic tunnel modulation using the hygroscopic nature of the polymer. In 2017, the Pan group proposed a novel recipe to fabricate Bi2Te3/GQD hybrid nanosheets, in which GQDs can be uniformly embedded in a Bi2Te3 nanosheet matrix, revealing that GQDs may affect carrier transport behavior. Importantly, the thermoelectric performance of Bi2Te3/GQD hybrid nanostructures could be further enhanced by the optimization of the density and dispersion manner of GQDs in the Bi2Te3 matrix.165 Recently, the entry of GQDs in the field of photocatalysis for solar energy harvesting and conversion attracted increasing attention. In 2017, highly-ordered metal/GQD nanocomposites with fine structural control were fabricated by the Xiao group.166 These (M/GQDs)n (M = Au, Ag, Pt) multilayer thin films exhibited highly-efficient and versatile catalytic performance under ambient conditions. Most importantly, the authors found that the catalytic performances of the (M/GQDs)n multilayer thin films can be optimized by tuning the assembly cycle and sequence, as well as by selecting different types of metal NPs. After that, some prominent photoelectrochemical works based on GQDs and nanoclusters have been reported.167,168 These studies open new technical methods for high-efficiency solar energy harvesting and conversion.
Fig. 10 GQDs for other energy conversion applications. (a) GQDs mixed with barium titanate for a nanogenerator device. (Reproduced with permission from ref. 159, copyright 2018 Elsevier B.V.) (b) Triboelectric electronic skin based on GQDs. (Reproduced with permission from ref. 160, copyright 2018 Elsevier B.V.) (c) The device with a GQD network and humidity/pressure sensors. (Reproduced with permission from ref. 163, copyright 2013 American Chemical Society.) (d) Moisture-triggered nanogenerator based on GQDs. (Reproduced with permission from ref. 164, copyright 2017 American Chemical Society.) |
Although GQDs and their applications have made great progress in recent years, there are still many problems to be solved. In general, the first problem is that there is no clear definition of the actual size of GQDs, which has a great impact on the subsequent research of GQDs. For small-scale research, tiny differences will be amplified, even if the difference is only a few nanometers. The lack of size definition results in a very broad size range of graphene quantum dots. This problem also makes the physical and chemical properties of graphene quantum dots unclear. The industrial production and green synthesis of GQDs is another problem that needs to be addressed urgently. The inability to industrialize production has made it difficult to reduce the manufacturing cost of GQDs, which seriously affects the practical application of GQDs. Fortunately, the production of GQDs by green chemistry has received more attention in recent years. The synthesis of GQDs is progressing towards low pollution, low toxicity and low energy consumption, and there is still room for further improvement in these methods. In particular, there is still great room for development in the combination of green chemical synthesis and low-cost industrial production. We believe that GQD-based research will show great potential in these directions.
Footnote |
† Qianwen Liu and Jianhan Sun contributed equally to this work. |
This journal is © the Partner Organisations 2020 |