Venkateswarlu
Annapureddy
a,
Haribabu
Palneedi
a,
Geon-Tae
Hwang
a,
Mahesh
Peddigari
a,
Dae-Yong
Jeong
b,
Woon-Ha
Yoon
a,
Kwang-Ho
Kim
c and
Jungho
Ryu
*a
aFunctional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea. E-mail: jhryu@kims.re.kr
bDepartment of Materials Science & Engineering, Inha University, Incheon 22212, Republic of Korea
cSchool of Materials Science and Engineering, Pusan National University, Busan 609735, Republic of Korea
First published on 3rd October 2017
The deployment of wireless sensor networks (WSNs) for the internet of things (IoT) and remote monitoring devices has made tremendous progress in the last few years. At the same time, energy harvesters are also being developed to satisfy the power requirement of WSNs and other low power consumption electronics, to increase the device operating time and overcome the limitations of conventional electric power supplies, including batteries. Among various resources for energy harvesting, the magnetic noise produced by power transmission infrastructures and associated mechanical vibrations are ubiquitous energy sources that could be converted into electricity by high efficiency energy conversion materials or devices. Electromagnetic energy conversion systems that operate on the principle of Faraday's induction law can provide sufficient power from strong magnetic fields. However, under weak magnetic fields with low frequency such as 50/60 Hz, the power generated from an electromagnetic device is disappointingly small. Alternative energy harvesting technologies with high power density and small device volume/dimensions are obviously necessary for WSNs of IoT. In this review article, the current status and prospects of an emerging magnetic energy harvesting technology, the so-called magneto-mechano-electric (MME) generators, are reviewed. MME generators utilize the magnetoelectric (ME) coupling in composites of piezoelectric and magnetostrictive materials and interaction between the proof magnet mass and magnetic field. Since the piezoelectric phase in the composite also responds to mechanical vibration directly, an ME-based energy harvester can harness energy from both mechanical vibrations and magnetic fields simultaneously. This combination is expected to enhance the total power output and conversion efficiency. The MME generator can be a ubiquitous power source for WSNs, low power electronic devices, and wireless charging systems by harvesting energy from the tiny magnetic fields present as parasitic magnetic noise in an ambient environment.
In addition to large-scale energy harvesting, small-scale energy scavenging on a level that is sufficient to operate low-power electronic devices, has also attracted the research community. The emerging industrial revolution so called industry 4.0 involves the internet of things (IoT), which will allow all the information related to public safety, human healthcare, environmental changes, and industrial automation to be scrutinized and monitored. This concept assumes the very wide implementation of distributed electronic devices, such as sensors. By continuously harvesting energy, much of which is otherwise wasted, from ambient energy sources such as sunlight, mechanical vibrations, wind, tides/waves, thermal-heat/radiation and magnetic fields, it will be possible to develop an array of self-powered autonomous systems. Energy harvesting will also make it possible to minimize the dependence of wireless sensor networks (WSNs) on external power sources such as batteries.4–8
Powering WSNs with energy harvested from ambient sources can provide several benefits. First, as noted above, it can reduce the dependence on battery power. With the ongoing advancements in nano-/micro-electronics technology, the power consumption of the sensor nodes is becoming smaller and smaller, and in that case the harvested energy may be sufficient to eliminate batteries completely, provided the harvestable energy sources are stable and continuous. Second, the development will reduce installation and maintenance costs. Integrating energy harvesters with the sensor nodes will allow them to function unattended once deployed and eliminates service visits to replace batteries. Next, energy harvesting can make site sensing and actuation capabilities in hard-to-access hazardous locations on a continuous basis possible, provide long-term applications for decades of monitoring, and reduce environmental impacts, such as those associated with the disposal or recycling of batteries.9
In the last decade or so, research groups have been actively developing a range of energy harvesters that can convert tiny mechanical or magnetic energy to usable electricity to power stand-alone electronic systems.5,10–15 This review focuses especially on the methods of harvesting energy from low frequency mechanical vibrations and weak magnetic fields, based on the piezoelectric effect and the magneto-mechano-electric (MME) effect. The fundamentals of piezoelectric-based energy generators and the progress in their development can be found in the literature.16–20 This review article presents a summary of the magnetoelectric phenomena and materials, the design and development of MME generators, and demonstrations of the utilization of the MME generators in some practical applications. Perspectives on the challenges to magnetic energy harvesting, possible ways of improving the energy efficiency of MME generators, and the hybridization of MME generators with harvesters based on other mechanisms are provided.
Fig. 2 Magnetic energy harvesting techniques: electromagnetic devices using Faraday's induction principle, and multiferroic magnetoelectric composites based on the magneto-mechano-electric process. |
Besides the current transformer, another popular system for magnetic field harvesting is the electric field based energy harvester. A 55 cm long tube shaped electric field based energy harvester (weight = 0.7 kg) was reported, which produced a maximum power of 980 mW (corresponding to a power density of 88.6 μW cm−3) on a 63.5 kV power cable.29 This output power was limited due to the loading effect caused by the large impedance of the capacitor.
The literature reported results suggest that the traditional electromagnetic generators have limitations related to size, weight, efficiency, power density, and installation. Besides these limitations, the current transformer type electromagnetic generators are, strictly speaking, outside the concept of energy harvesting. Electromagnetic generators always act as an electrical load to current flowing cables, and thus when electromagnetic generators are deployed in an electrical system, the electric current flows in the system become larger than those in normal operation and affect the quality of the power transmission when the generated power is large. In this regard, such methods can be considered to be ‘stealing electricity from the system’, not harvesting waste energy. For these reasons, researchers have been attempting to create novel approaches to harvest clean energy from magnetic noise fields, with the goal of developing harvesters that not only have smaller size and high efficiency, but also flexibility in where and how they are installed.
A piezoelectric fiber composite bimorph composed of two piezoelectric PZT-5A fiber layers, which were electrically connected in parallel on a stainless steel layer, was used as the piezoelectric cantilever. A magnet NdFeB N38 (30.5 g) was used as the permanent magnet tip mass and was bonded at the free end of the piezoelectric cantilever. The device was operated in the d33 mode by employing interdigitated electrodes. The piezoelectric fiber showed an improved piezoelectric coefficient d33 of 380 pC N−1 and an electro-mechanical coupling factor k33 of 0.72. The harvester was able to generate a maximum power density of 421 μW cm−3 at 50 Hz and 2 mT.35 However, under low magnetic fields, the harvested output power density from these devices is disappointingly low. An alternative effective technique to harvest magnetic energy is to utilize a multifunctional ME composite. The ME effect is the result of multiple energy transductions, starting from magnetic energy to mechanical energy and finally to electric energy.
It has been determined that the ME coupling in composites is mediated through strain, or charge carriers, or spin exchange between the constituent phases. Among these mechanisms, the strain-mediated ME coupling is well established, while the other two mechanisms are still being investigated.46,47 The strain-mediated ME coupling in composites results from the elastic coupling between the piezoelectric and magnetostrictive components as illustrated in Fig. 3,44,48 and their detailed operation principles are described below.
Fig. 3 (a) Schematic representation of the direct ME effect in a 2-2 configuration ferroelectric (FE)/ferromagnetic (FM) composite system (the numbers 2-2 refer to the connectivity of the phases in free space);48 (b) illustration of strain-mediated coupling between magnetostriction and piezoelectric effects in an ME composite and its equivalent-circuit expression.44 |
In the ME effect, an applied magnetic field generates mechanical deformation/strain in the magnetic layer via the magnetostriction effect, and this strain is transferred to the piezoelectric layer, resulting in an electric displacement or a dielectric polarization through the piezoelectric effect. The ME response is quantified in terms of the ME voltage coefficient αME= δEac/δHac (expressed in V cm−1·Oe−1) (where E is the electric field and H is the magnetic field), which represents the energy conversion ratio between applied Hac and induced Eac under a bias field Hdc.
The strength of the intrinsic ME coupling in the composites depends mainly on the properties of the piezoelectric and magnetostrictive components, the fabrication method, and interfacial coupling and phase connectivity (i.e., the connectivity of the magnetic-piezoelectric phases represented by the numbers 0-3, 1-3, and 2-2, respectively). In recent years, a variety of ME composites have attracted extensive attention, and tremendous progress has been made after the introduction of the 2-2 layered structure by Ryu et al. in 2001.49,50 The results have shown that the 2-2 laminate composites operating in various modes exhibit a higher ME response and are comparatively simpler to fabricate.51 Furthermore, these composites can be electrically or/and magnetically poled to a higher degree since the piezoelectric and magnetic phases are spatially separated, thereby providing higher ME coupling in the layered composite system. Table 1 provides a summary of the progress made in the last decade in the enhancement of ME coefficient αME obtained for different combinations of materials, in off- and on-resonance modes.
Year | ME Composition | DC Bias field (Oe) | Resonance frequency (Hz) | α ME (V cm−1 Oe−1) | ||
---|---|---|---|---|---|---|
Piezoelectric | Magnetostrictive | Off-resonance | Resonance | |||
2004 (ref. 58) | PMN–PT | Terfenol-D | 450 | 82.1k | 0.43 | 18.5 |
2006 (ref. 59) | PVDF | Metglas | 8 | 50k | 7.2 | 238 |
2007 (ref. 60) | PZT–PT | Metglas | 2 | 20k | 10.5 | 400 |
2007 (ref. 61) | PZT | Terfenol-D | 1500 | 84k | 0.5 | 18.2 |
2011 (ref. 62) | PMN–PT | Metglas | 8 | 27.8k | 45 | 1100 |
2012 (ref. 55) | PZT | Metglas | Zero | 60 | — | 274 |
2013 (ref. 63) | PZT (MFC) | Nickel | Zero | 507 | 3 | 49.2 |
2014 (ref. 64) | PMN–PZT | Nickel | Zero | 23 | 1.4 | 82.9 |
2015 (ref. 65) | PMN–PZT | Nickel | Zero | 60 | — | 160 |
2016 (ref. 66) | PMN–PZT | Nickel | Zero | 60 | 11.3 | 135.5 |
2017 (ref. 67) | KNN | Metglas | 130 | 750 | 9.5 | 1321 |
2017 (ref. 44) | PMN–PT | Metglas | 2 | 23k | 29.3 | 7000 |
An important concern when developing an ME energy harvesting device is size miniaturization. Due to the quadratic dependence of magnetostrictive strain (λij) on the applied magnetic field (Hbias), a DC bias magnetic field is usually required, in addition to an AC magnetic field, to enhance the ME coupling of the composites. The need for a DC magnetic source around the ME composites leads to bulky devices which have problems with electromagnetic interference. To overcome these issues, recent efforts have been focused on the development of self-biased magnetoelectric (SME) composites which exhibit an appreciable αME at zero magnetic bias. In these composites, SME coupling can be realized by inducing a built-in magnetic bias in the magnetostrictive layer. Feasible approaches to achieve an SME response include the integration of hard magnetic layers with a permanent moment, the use of remanence magnetization or a field-dependent resonant frequency in a hysteretic magnetostrictive material, and the use of stresses by means of the inverse magnetostriction and exchange biasing of the magnetostrictive material.52,53
Fig. 4 Schematic diagrams showing (a) an asymmetric magnetoelectric laminate structure and (b) magnetic energy harvesting of the induced magnetic signals from the magnetic field noise generated by shaking a magnetic bar. (c) Harvested output voltage signals using asymmetric and symmetric structured devices. The asymmetric structured energy harvester with d31 mode showed superior output performance to those with a symmetric structure.57 |
Li et al. developed a magnetic energy harvester using piezoelectric PZT plates, a magnetostrictive Terfenol-D plate and an ultrasonic horn bronze substrate.68 The configuration had a significantly enhanced ME voltage coefficient, related to the commonly used sandwiched laminate composite structure. The energy of the magnetostrictive strain vibration from the magnetostrictive plate is converted using the ultrasonic horn, and additional vibration energy can be converted into electricity through the direct piezoelectric effect, using multiple PZT plates at the resonance frequency of the device. This design can decrease energy losses owing to its high-Q value, and gathers electricity at resonance, producing a maximum output power of 20 μW at 27 kHz. Since the resonance frequency, i.e., driving frequency, of the device is much higher than the general frequency of electric transmission infrastructures, this device cannot be used without a nearby high frequency magnetic field generator. Alternatively, Onuta et al. designed a miniaturized energy harvester using all-thin-film ME structures consisting of PZT and galfenol (Fe0.7Ga0.3) layers.69 The device was fabricated on a micro-machined Si based-cantilever (3.8 μm thick). The Fe0.7Ga0.3 layer (500 nm thick) was sputtered on a Pt-buffered PZT layer (500 nm thick) deposited on a Si based-cantilever. A photo-lithographic process was employed to make an unbent, free-standing cantilever beam structure (950 μm × 200 μm). The device (6.6 mm × 6.6 mm) containing six cantilevers, was mounted in a vacuum chamber placed between a pair of Helmholtz coils, and was aligned parallel to the magnetic fields. The voltage and power outputs showed saturation plateaus with respect to increasing magnetic field. The harvested voltage and peak power were 3.5 mV and 1.05 μW at resonant frequency (3.8 kHz) and 700 μT, respectively.
In 2015, Ryu et al. demonstrated a highly enhanced energy harvesting technique for capturing stray magnetic noise fields, following the MME conversion mechanism.65 The device consisted of one end-clamped cantilever-structured ME composite (anisotropically oriented piezoelectric single crystal fibers and a magnetostrictive Ni plate composite) working in resonance mode with a permanent magnetic proof mass, which interacts (attraction and repulsion) with the surrounding magnetic field to synergistically amplify the bending vibration amplitude. The bending resonance frequency of the device could be adjusted by changing the position and weight of the proof mass.
The fundamental principle of electricity generation in this MME generator is the combined effect of three mechanisms. In the first case, by capturing the parasitic magnetic field noise, the magnetic proof mass will generate a magnetic force moment (FM = 2 × Jr × HAC, Jr is the remanent magnetization polarization density and HAC is the waste magnetic field) applied to the ME composite structure. This results in a bending vibration of the MME generator. Then the piezoelectric layer converts the acquired vibrational energy into the piezoelectric potential by breaking the central symmetry in the crystal structure (i.e., the direct piezoelectric effect). The second mechanism is based on ME coupling, which is related to the magnetostrictive behavior (strain is proportional to the square of the applied magnetic field) which induces interfacial coupling between the piezoelectric layer and magnetostrictive layer, thereby creating a piezoelectric potential through the direct piezoelectric effect. In the third case, an additional magnetic force is generated by the magnetostrictive layer due to the magnetostrictive strain vibrations, which further excite the vibrational deflection amplitudes of the generator. All three of these individual energy conversion mechanisms are simultaneously cross-linked for energy harvesting.32,65,70 The sequential harvesting mechanism is schematically presented in Fig. 5. For these mechanisms, the strain transfer between the two layers plays a vital role in energy harvesting performance.
Fig. 5 Operating principle and schematic diagram of the energy-transfer processes in a magnetic energy harvesting device with multiferroic magnetoelectric composites.65 |
Based on the above design concept, Ryu et al. designed high performance MME generators that effectively invoke the k32 mode.65 Piezoelectric PMN–PZT single crystals with a rhombohedral structure have different types of crystallographic orientations. Because of their intrinsic rigidity and brittleness, single crystal sheets have not been practical for application in MME generators for low frequency flexural operation. To enhance their structural flexibility and reliability, high-performance flexible single-crystal macro-fiber composites (SFCs; 28 (L) × 0.35 (W) × 0.2 (T) mm3) were designed and used for MME generators as shown in Fig. 6. The device consists of an anisotropic piezoelectric SFC and a magnetostrictive Ni plate in the form of a one end clamped cantilever structure. The harvesting performance of the MME generator was tested, without applying an external magnetic DC field, using a Helmholtz coil, which can generate a magnetic noise field similar to that of a fixed frequency of 60 Hz found in an ambient environment. The generated peak-to-peak voltages under open circuit conditions were 6.5, 3.5, and 9.5 V respectively, for 〈001〉-d31, 〈011〉-d31, and 〈011〉-d32 SFC embedded MME generators when they were operated under the condition of HAC = 160 μT at a bending anti-resonance frequency of 60 Hz. These results demonstrated that the anisotropic 〈011〉 SFC in the k32 mode had a much large energy generation performance compared to other modes. In particular, the value of d32 = −1850 pC N−1 for the anisotropic 〈011〉 SFC represents a three-fold improvement over similar values for 〈011〉-d31 SFC (599 pC N−1). The harvesting performance of the piezoelectric-based energy harvester at off-resonance is directly related to the product of the piezoelectric strain coefficient, and the piezoelectric voltage coefficient (figure of merit, FOM = dij × gij). The FOM factors for 〈001〉-d31, 〈011〉-d31, and 〈011〉-d32 SFC were 38.4, 9.1, and 309.2 pm2 N−1, respectively.
Fig. 6 Schematic illustrations showing the crystallographic orientations of piezoelectric single crystal fibers, which are used in ME composites (a) and fabrication procedure for the ME composite (b). (c) A photograph of a flexible SFC for the device. (d) The harvested output voltages from the MME generators working in different modes. Here the device was operated at the 1st bending mode anti-resonance frequency (60 Hz) and a magnetic noise field of 160 μT.65 |
Furthermore, when the 〈011〉-d32 SFC embedded MME generator was tested with HAC ∼ 500 μT field, it was able to turn on/off 35 high-intensity LEDs at a frequency of ∼1 Hz (Fig. 7), clearly demonstrating its feasibility as a power source for WSNs, portable electronics, and wireless charging systems. A wireless sensor network module composed of a power management circuit, rechargeable capacitors, a microcontroller, and a wireless transceiver was successfully driven by the generator working under a magnetic noise field of ∼700 μT at 60 Hz (Fig. 7).
Fig. 7 (a) Measured output voltage signal harvested from the MME generator embedded with the anisotropic 〈011〉 SFC in d32 mode under a magnetic noise level of 500 μT. The maximum generated peak-to-peak voltage is 34 V. (b) The charge curve of a capacitor (capacity 220 μF) using the MME generator rectified by using a full-wave-bridge rectifier. (c) A photograph of 35 LEDs lit up using the power harvested by the generator. (d) Self-powered autonomous electronic device with a power management circuit, rechargeable batteries, an RF communication circuit, temperature sensor mode and a MME generator and captured WSNs software driven by the generator.65 |
Fig. 8 (a) Structure and fabrication process of the MME generator. (b) Harvested open-circuit output voltage signals (magnetic noise field = 700 μT) and (c) measured resonance spectra of the induced magnetoelectric coupling coefficient from various MME generators. A clear resonance peak was obtained at 60 Hz and better performance was obtained from the low-loss embedded MME generator. Even though there was no bias field, a maximum ME coefficient of 135.5 V cm−1 Oe−1 was obtained from the low-loss MME generator. (d) The rectified DC current and DC voltage measured at various external load values. The open-circuit voltage and short-circuit current values were 24 V and 120 μA (corresponding to a current density of 35 μA cm−2). The power output was calculated by multiplying the current and voltage outputs obtained at a specific external resistance.66 |
For the MME generator to be effectively utilized as an energy source for various low-power-consumption electronics, it should be able to extract the maximum possible electricity from the stray magnetic field. Fig. 8 shows the output voltage and current from generators using various integrated piezoelectric SFCs, described above. The MME generator using the low-loss SFC exhibited a maximum output of 94 V (peak-to-peak voltage) and ∼120 μA (short-circuit current), while the high-loss SFC based MME generator showed an open-circuit voltage of 30 V with a short-circuit current output of ∼115 μA, when subjected to a maximum magnetic noise field of 700 μT at 60 Hz. Because the ME response of the device is directly related to the harvesting voltage, the low-loss PMN–PZT integrated MME generator had a much higher harvesting output performance compared to the other two generators.
The individually harvested AC signals of the generators must be converted into DC signals and subsequently accumulated in a rechargeable battery or a capacitor to provide a constant power source to the external electronics using a power management circuit. The characterized output measured at various external load resistance values is presented in Fig. 8. The generated maximum power was about 0.73 mW (corresponding to an output power density of 2.1 mW cm−3). Furthermore, maintaining the performance of the device under a continuous magnetic field is an important issue for practical applications. The low-loss MME generator continuously generated highly stable output voltage over as many as 108 fatigue cycles.
A self-powered electronic system for charging a mobile phone battery was constructed based on an MME generator integrated with a rectifier circuit, a supercapacitor used as a storage capacitor, and a commercially available DC–DC power-management circuit (see Fig. 9). The generated electric power was used to charge a supercapacitor (over 1 F capacity = 2.5 J) to operate the electronic devices. The stored electricity was utilized to charge a mobile phone battery and also to drive a small DC-motor fan.
Fig. 9 (a) A schematic circuit diagram of the self-powered electronic circuit system for charging a mobile phone battery. (b) Charge curve of a super-capacitor (capacity 1 F) for energy storage by the low-loss MME generator. (c) and (d) Snapshot images of a mobile phone battery in battery charging mode and a small DC-motor fan.66 |
Various shapes of ME composites have been designed using piezoelectric PMN–PZT single crystal macro-filers and a magnetostrictive Ni layer (Fig. 10).70 The strain distribution in each structure was estimated using finite element analysis (FEA), with ATILA++ software, which allows the identification of the shape with optimum strain distribution in the device. The in-plane strain value at the free-end of the piezoelectric region was 26% higher than that at its clamped-end for a rectangular shaped structure (b/a = 1), and was increased to 62% for a taper-shaped structure (b/a = 0.22). The harvested voltage waveforms of the MME generators at a resonance frequency of 40 Hz with a magnetic noise field of 200 μT are presented in Fig. 10. The MME generators with b/a ratios of 1, 0.68, 0.45, and 0.22 generated open-circuit peak-to-peak voltages of 11.6, 13.0, 16.0, and 24.5, respectively.
Fig. 10 (a) The in-plane interfacial strain distribution using finite element analysis (FEA) software (ATILA++). The rectangular yellow color represents an active piezoelectric layer region. (b) The harvested output voltage signals and (c) output power density measured after a full wave rectifier bridge under a magnetic field of 200 μT at a resonance frequency of 40 Hz. (d) Image of commercial LEDs, which are incorporated into the circuit, and an image of the LEDs in a dim background at the moment when they were lit up by the energy generated from the MME generator. (e) Charge and discharge curve of the storage capacitor (20 μF) for storing electricity produced by the generator, and the subsequent operation of LEDs.70 |
The harvester waveforms were converted into direct-current signals using a full bridge rectifier, a smoothing capacitor, and a variable load resistor. For electric impedance matching, the internal impedance of the generator should be similar to the load resistance of the storage capacitor network. A maximum output power was generated using the tapered shape structured MME generator, of about 108 μW cm−3. By tailoring the geometry of the generator, the maximum power was improved by 680%, compared to the regular rectangular structured MME generator. To demonstrate the capacity of the newly designed structure of MME generators as a direct power source, a total of 30 commercial LEDs were utilized as an operating load (Fig. 10). The emitted light lasted 1–2 s and was clearly captured on a dim background. Therefore, with a tailored device structure, not only can the MME generator benefit from substantial enhancements in voltage and power, but also can enable the full bridge rectifier to continuously operate electronic devices without using any other external battery sources.
Fig. 11 Schematic diagrams depicting ME energy harvesters using (a) AC magnetic field, (b) mechanical vibration, and (c) dual-phase excitation. (d) Comparison of the power densities of the Ni/SFC cantilever ME energy harvesters, for single excitations and dual phase excitations.63,64,86 |
Dong et al. fabricated a hybrid harvesting device consisting of a cantilever beam with a tip mass and a magnetoelectric laminate of FeBSiC alloy ribbons and PZT fibers attached to the center of the beam.54 The device was shown to generate an open circuit voltage of 8 Vp-p under a mechanical vibration amplitude of 50 mg and an AC magnetic field of 2 Oe. Using the dual energy source, the output voltages were found to be doubled as compared to those of a single source. Kambale et al. designed ME unimorph bender type cantilevers by incorporating 〈001〉− and 〈011〉-oriented PMN–PZT single crystals into a Ni plate.87 Under an excitation of 0.7 Oe and a 3 g proof mass, the hybrid system with 〈011〉-oriented PMN–PZT in the k32 mode demonstrated a power output of 17.06 mW cm−3, better than other orientations of PMN–PZT. Zhou et al. reported a self-biased dual-phase ME energy harvester structure consisting of a PZT ceramic based macro-fiber composite bonded to a Ni cantilever.63 At zero magnetic bias, an additive effect was realized when the harvester was operated in dual-phase mode (with 1 Oe magnetic field and 1 g acceleration) resulting in a power density of 4.5 mW cm−3, which is better than that obtained in the vibration or magnetic field mode alone.
Recently, Patil et al. reported an anisotropic self-biased dual-phase ME energy harvester using magnetostrictive nickel (Ni) metal shims laminated with single crystal fiber composites (SFCs) with anisotropic transverse piezoelectric properties.64 A hybrid system with a Ni/〈011〉-d32 SFC cantilever showed better performance, with an open circuit output voltage of 20 Vp-p and a power density of 59.78 mW Oe−2 g−2 cm−3 (with 1 Oe field and 30 mg acceleration). For all three ME energy harvesters, prepared with a Ni/〈011〉-d32 SFC cantilever, a Ni/〈011〉-d31 SFC cantilever, and a Ni/〈001〉 d31-SFC cantilever, the power densities were enhanced under dual phase excitation (Fig. 11). The above results demonstrate that the combination of AC magnetic field and mechanical vibration can greatly enhance the power densities of the MME generators even under zero-bias conditions. These are significant advances towards developing high performance hybrid MME generator systems.
(1) |
The input power (Pin) is related to the incident magnetic noise energy spread through the volume of the device. The magnetic energy collected by the MME generator is33,68,88
(2) |
To summarize the progress that has been made, in the last few years, in the performance of the MME generator, a three order of magnitude enhancement in output power as well as a significant improvement in conversion efficiency has been achieved. The volume power density reached 6.6 mW cm−3 and greater than 30% conversion efficiency was obtained. We anticipate that further enhancements in the output power density will be demonstrated in the near future.
Like the MME, the TENG is also operated by mechanical vibration; which makes it reasonable to structurally combine the TENG with MME generator devices. The triboelectric effect is a contact electrification process, in which a certain material becomes electrically charged by mechanical contact with a different material.90 The sign of the charges for the contacted materials is determined by the relative polarity of a material compared to the other material. Normally, a strong triboelectric effect is produced by insulators or less conductive materials, and they can capture the transferred charges and keep them for a prolonged time. Recent TENG devices provide a new approach to generate electric energy from mechanical energy to operate small consumer electronics. They offer several benefits, with many material options, outstanding output, cost-effectiveness, and facile mass production.91 Since the MME generators harvest mechanical vibration under an ambient magnetic field, the active materials and electrodes for TENG can be attached to the piezoelectric component to convert mechanical energy into electricity and further enhance the total power output of MME generators.
One of the promising applications of the MME generator is the structural health monitoring (SHM) of outdoor power cables, which offers a continuous magnetic field for the MME generator. In an open-air environment electric output could be obtained from solar energy by utilizing solar cell devices as well. Sunlight is considered the most important and sustainable renewable energy source because of its properties of universal presence, cleanness, and infinite quantity.92–94 In solar cells, the photovoltaic effect can convert the light source directly into electricity, through a sequence of light absorption on a semiconductor layer, excitation of electrons, electron–hole separation, and charge transport to electrodes. Because, the solar cell generates a DC current, unlike the AC current output of the MME, the current from the solar harvesting device needs rectification to be hybridized electrically with a MME generator. The solar cells generate a relatively high DC output current (e.g., tens of mA) which could complement the relatively low output current (e.g., a few hundred μA) of the MME generator. Furthermore, the relatively high voltage output (e.g., scores of V) of the MME generator could synergistically increase the output voltage of the solar cell in the hybrid energy harvester.
In some situations, a magnetic field and thermal gradient coexist, as occurs in an operating computer, the engine compartment of a car, and an electrical distribution board. Under these conditions, both an MME generator and a TEG can simultaneously generate electricity by hybridization. The TEG device is based on the Seebeck effect, which exploits the difference in temperature between two ends of the TEG to drive charge carrier diffusion, and consequently the TEG can convert a temperature gradient into electric energy.95 Moreover, the TEG has the advantages of being compact, simple, reliable, and robust, since it does not include any mechanical moving parts. Like the solar cell, the TEG device generates a relatively large output current (e.g., a few hundred mA) and low output voltage (e.g., a few hundred mV) in DC form.96 Therefore, the MME generator could be relatively easily connected with the TEG to reinforce their electric output for appropriate applications.
In a magnetic material with very high permeability such as Metglas, however, the magnetic field inside the material is more concentrated than in the ambient magnetic field, which is not what many researchers assume. This effect is known as magnetic flux concentration, and some research groups have tried to adapt this phenomenon to develop high sensitivity magnetic field sensors using ME composites.98Fig. 14 shows the finite element simulation result for a high permeability Metglas sheet as reported by Fang et al.99 The results clearly demonstrate that the magnetic flux density inside the Metglas is much higher than that in free space. This magnetic flux concentration effect not only remarkably enhanced the ME coupling coefficient, but also the magnetic field sensitivity of the ME based sensors. The magnetic flux concentration effect of a high permeability magnetic material can be directly applied to further enhance the performance of the MME generator. It might be possible to amplify a tiny ambient magnetic noise into a high magnetic flux inside the MME generator, which can enlarge the resulting vibration amplitude, by locating high permeability magnetic materials near the MME generator, so that the magnetic field can be focused inside the MME generator. Using this magnetic flux concentration effect provided by the high permeability magnetic material, the harvesting energy density of MME generators could be drastically enhanced.
Fig. 14 Magnetic flux density distribution of high permeability magnetic material in free space along the x-axis.99 |
This journal is © The Royal Society of Chemistry 2017 |