Issue 20, 2021

Determining intrinsic stark tuning rates of adsorbed CO on copper surfaces

Abstract

The abrupt change in potential between the electrode and the electrolyte, and the resulting interfacial electric field, is the driving force in electrochemical reactions. For surface mediated electrocatalytic reactions, the interfacial electric field is believed to have a key impact on the stability and reactivity of adsorbed intermediates. However, the exact mechanisms remain a topic of discussion. In this context, reliable measurements of the interfacial electric field are a prerequisite in understanding how it influences the rate and product distribution in electrochemical reactions. The vibrational Stark effect of adsorbates, such as CO, offers an accessible means to assess the interfacial electric field strength by determining the shift of vibrational peaks of the adsorbates with potential, i.e., the Stark tuning rate. However, the vibrational Stark effect could be convoluted with the dynamical dipole coupling effect of the adsorbates on weak binding surfaces such as Cu, thus complicating the determination of the intrinsic Stark tuning rate. In this work, we report a general and effective strategy of determining the intrinsic Stark tuning rate by removing the impact of the dynamical coupling of adsorbed CO on the Cu surface with surface enhanced infrared absorption spectroscopy. A similar intrinsic Stark tuning rate of ∼33 cm V−1 was obtained on oxide-derived Cu in different electrolyte pH of 7.2, 10.9 and 12.9, indicating the pH independence of the interfacial electric field. Investigations on different Cu electrodes show that the intrinsic Stark tuning rates on (electro)chemically deposited films are close to 33 cm V−1, while particulate Cu catalysts show a similar value of ∼68 cm V−1. These observations indicate that aggregate morphology, rather than the size and shape of individual catalyst particles, has a more prominent impact on the interfacial electric field.

Graphical abstract: Determining intrinsic stark tuning rates of adsorbed CO on copper surfaces

Supplementary files

Article information

Article type
Paper
Submitted
19 iyn 2021
Accepted
08 sen 2021
First published
08 sen 2021

Catal. Sci. Technol., 2021,11, 6825-6831

Author version available

Determining intrinsic stark tuning rates of adsorbed CO on copper surfaces

X. Chang, H. Xiong, Y. Xu, Y. Zhao, Q. Lu and B. Xu, Catal. Sci. Technol., 2021, 11, 6825 DOI: 10.1039/D1CY01090E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements