Issue 45, 2017

Floppy molecules as candidates for achieving optoelectronic molecular devices without skeletal rearrangement or bond breaking

Abstract

Molecular species investigated as possible candidates for molecular photoswitches often toggle between two (low and high conductance) conformations implying skeletal rearrangement, bond breaking, and substantial changes of molecular length. All these represent shortcomings that impede the switching speed and straightforward incorporation in nanodevices. In the present paper we propose a mechanism wherein the photoinduced switching is from a nonplanar conformation to a planar conformation, and involves neither skeletal rearrangement nor bond breaking or significant molecular length changes. Specifically, by choosing typical floppy molecules consisting of two benzene or benzene-like rings that can easily rotate relative to each other, we present results of both ab initio and DFT quantum chemical calculations demonstrating that the lowest electronic excitation corresponds to a planar molecular conformation (φ = 0), in contrast to the nonplanar ground state characterized by φ ≠ 0. Because the low bias conductance scales as G ∝ cos2φ, the planar conformation has a higher conductance than the non-planar conformation, acting therefore as ON and OFF states of the molecular switch, respectively. We analyze recent experimental data on illuminated single-molecule junctions (E.-D. Fung et al., Nano Lett., 2017, 17, 1255) and show that the measured photoinduced conductance enhancement is consistent with the presently proposed mechanism. Furthermore, based on recent results demonstrating the substantial impact of the SAM coverage on the twisting angle (I. Bâldea, Faraday Discuss., 2017, 204, 35) we show that a photoinduced conductance enhancement can be much stronger than the rather modest enhancement obtained in the aforementioned experiment.

Graphical abstract: Floppy molecules as candidates for achieving optoelectronic molecular devices without skeletal rearrangement or bond breaking

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2017
Accepted
08 Nov 2017
First published
08 Nov 2017

Phys. Chem. Chem. Phys., 2017,19, 30842-30851

Floppy molecules as candidates for achieving optoelectronic molecular devices without skeletal rearrangement or bond breaking

I. Bâldea, Phys. Chem. Chem. Phys., 2017, 19, 30842 DOI: 10.1039/C7CP06428D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements