Issue 18, 2017

Dissection of the neocarazostatin: a C4 alkyl side chain biosynthesis by in vitro reconstitution

Abstract

Neocarazostatin A (1) is a potent free radical scavenger possessing an intriguing tricyclic carbazole nucleus with a C4 alkyl side chain attached to ring “A”. Although the biosynthetic gene cluster of 1 (nzs) has been identified, and several key steps of the pathway have been well characterized, the enzyme(s) involved in the biosynthesis of the C4 unit still remains obscure. In this work, we demonstrate that three enzymes, including one (MA37-FabG) from primary fatty acid metabolism and two pathway-specific ones (NzsE and NzsF), are responsible for the formation of the side chain precursor. We show that NzsE is a free-standing acyl carrier protein (ACP), and NzsF, which is a homolog of β-ketoacyl-acyl carrier protein synthase III (KAS III, also called FabH), catalyzes a decarboxylative condensation between an acetyl-CoA and the NzsE bound malonyl thioester to generate acetoacetyl-NzsE. We also show that NzsF can only accept NzsE as its cognate ACP substrate, suggesting that NzsE and NzsF constitute pathway-specific KAS III enzyme pairs for the assembly line of 1. Furthermore, we have identified two FabG (the NADPH-dependent reductase) homologs from the fatty acid biosynthesis pathway that can reduce the 3-keto group of acetoacetyl-NzsE to generate a 3-hydroxybutyl-NzsE product, which is the putative intermediate for the following incorporation into 1. Therefore, our work successfully reconstitutes the biosynthetic pathway of the C4 alkyl side chain of 1in vitro, and sheds light on the potential of engineering NzsE/F for producing novel neocarazostatin analogues in the host strain.

Graphical abstract: Dissection of the neocarazostatin: a C4 alkyl side chain biosynthesis by in vitro reconstitution

Supplementary files

Article information

Article type
Communication
Submitted
13 Mar 2017
Accepted
07 Apr 2017
First published
07 Apr 2017

Org. Biomol. Chem., 2017,15, 3843-3848

Dissection of the neocarazostatin: a C4 alkyl side chain biosynthesis by in vitro reconstitution

L. Su, R. Zhang, K. Kyeremeh, Z. Deng, H. Deng and Y. Yu, Org. Biomol. Chem., 2017, 15, 3843 DOI: 10.1039/C7OB00617A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements