Jump to main content
Jump to site search

Issue 3, 2016
Previous Article Next Article

Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF

Author affiliations

Abstract

Metal–Organic Frameworks (MOFs) are porous crystalline materials that have emerged as promising hosts for the heterogenization of homogeneous organometallic catalysts, forming hybrid materials which combine the benefits of both classes of catalysts. Herein, we report the encapsulation of the organometallic cationic Lewis acidic catalyst [CpFe(CO)2(L)]+ ([Fp–L]+, Cp = η5-C5H5, L = weakly bound solvent) inside the pores of the anionic [Et4N]3[In3(BTC)4] MOF (H3BTC = benzenetricarboxylic acid) via a direct one-step cation exchange process. To conclusively validate this methodology, initially [Cp2Co]+ was used as an inert spatial probe to (i) test the stability of the selected host; (ii) monitor the stoichiometry of the cation exchange process and (iii) assess pore dimensions, spatial location of the cationic species and guest-accessible space by single crystal X-ray crystallography. Subsequently, the quasi-isosteric [Fp–L]+ was encapsulated inside the pores via partial cation exchange to form [(Fp–L)0.6(Et4N)2.4][In3(BTC)4]. The latter was rigorously characterized and benchmarked as a heterogeneous catalyst in a simple Diels–Alder reaction, thus verifying the integrity and reactivity of the encapsulated molecular catalyst. These results provide a platform for the development of heterogeneous catalysts with chemically and spatially well-defined catalytic sites by direct exchange of cationic catalysts into anionic MOFs.

Graphical abstract: Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Sep 2015, accepted on 01 Dec 2015 and first published on 08 Dec 2015


Article type: Edge Article
DOI: 10.1039/C5SC03494A
Citation: Chem. Sci., 2016,7, 2037-2050
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF

    A. Grigoropoulos, G. F. S. Whitehead, N. Perret, A. P. Katsoulidis, F. M. Chadwick, R. P. Davies, A. Haynes, L. Brammer, A. S. Weller, J. Xiao and M. J. Rosseinsky, Chem. Sci., 2016, 7, 2037
    DOI: 10.1039/C5SC03494A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements