Synthesis and characterization of rare-earth metal guanidinates stabilized by amine-bridged bis(phenolate) ligands and their application in the controlled polymerization of rac-lactide and rac-β-butyrolactone†
Abstract
Eight rare-earth metal guanidinates supported by a versatile family of chelating amine-bridged bis(phenolate) ligands were synthesized. Metathesis reactions of rare-earth metal chlorides [LnClL1(THF)] stabilized by amine-bridged bis(phenolate) ligand L1 with in situ generated lithium guanidinates in a 1 : 1 molar ratio in THF afforded ytterbium guanidinates YbL1 [R2NC(NR1)2] [R1 = –iPr, R2N = –NiPr2 (1), –N(CH2)5 (2)]. Insertion reactions of the yttrium amides bearing bridged bis(phenolate) ligands with 1 equiv of N,N′-diisopropylcarbodiimide (DIC) yielded six yttrium guanidinates YL1 [(SiHMe2)2NC(NiPr)2] (3), YL2[(SiHMe2)2NC(NiPr)2](THF) (4), YL3[(SiHMe2)2NC(NiPr)2] (5), YL4[(SiHMe2)2NC(NiPr)2] (6), YL5 [(SiHMe2)2NC(NiPr)2] (7), YL6[(SiHMe2)2NC(NiPr)2] (8), respectively. The behaviors of complexes 1–8 in the polymerization of rac-lactide (LA) and rac-β-butyrolactone (BBL) were also explored. It was found that complexes 1–8 efficiently initiated the ring-opening polymerization (ROP) of rac-LA and rac-BBL in a controlled manner, providing highly heterotactic polylactide (Pr up to 0.99) and highly syndiotactic poly(3-hydroxybutyrate) (Pr up to 0.82). The framework of the bridge played a significant role in governing the stereoselectivity, while guanidinate groups work as initiating groups.