The construction of complex multicomponent supramolecular systems via the combination of orthogonal self-assembly and the self-sorting approach†
Abstract
The realization of controllable and well-organized self-assembly within multicomponent supramolecular systems (MSSs) is still a great challenge. Herein, we present the construction of multicomponent supramolecular systems with high-level complexity through the combination of orthogonal self-assembly and the self-sorting approach. Driven by the orthogonality of metal–ligand coordination and host–guest interactions in the orthogonal self-assembly as well as directed by multiple molecular codes in the self-sorting process, five types of simple components (up to eighteen precursors) were successfully self-assembled into two novel tris[2]pseudorotaxanes in one pot through a highly selective manner, which were well-characterized by one-dimensional (1-D) and two-dimensional (2-D) multinuclear NMR as well as ESI-TOF-MS.