Rethinking chemistry: a learning progression on chemical thinking
Abstract
Dominant educational approaches in chemistry focus on the learning of somewhat isolated concepts and ideas about chemical substances and reactions. Reform efforts often seek to engage students in the generation of knowledge through the investigation of chemical phenomena, with emphasis on the development and application of models to build causal explanations and predict outcomes. However, chemistry has been characterized as a technoscience that blends scientific pursuit and technological goals. Besides searching for explanations, our discipline also involves the design of substances and processes to address relevant problems, as well as the evaluation of social, economic, and environmental benefits, costs, and risks associated with chemical knowledge and products. In order to develop authentic curricula, instruction, and assessments that are better aligned with the core goals and practices of chemistry, we need to understand how students' chemical thinking progresses over time. We define chemical thinking as the development and application of chemical knowledge and practices with the main intent of analyzing, synthesizing, and transforming matter for practical purposes. In this paper we present a blueprint of a theoretically sound and evidence-based foundation for an educational framework centered on the idea of chemical thinking. Our investigations are focused on the development of a learning progression that describes likely pathways in the evolution of students' chemical thinking with training in the discipline from grade 8 (age 13–14) through 16 (undergraduate completion).