Issue 1, 2012

Constructing star polymersvia modular ligation strategies

Abstract

Branched polymers result in a more compact structure in comparison to linear polymers of identical molecular weight, due to their high segment density which affects the crystalline, mechanical, and viscoelastic properties of the polymer. Star polymers constitute the simplest form of branched macromolecules where all of the chains—or arm segments—of one macromolecule are linked to a centre defined as the core. Over recent years, modular ligation reactions—some of which adhere to click criteria—have enabled the synthesis of a variety of star polymersvia efficient polymerpolymerconjugations. While the modified Huisgen [3 + 2] dipolar copper catalyzed azide and alkynecycloaddition (CuAAC) has been widely employed for macromolecular star synthesis, Diels–Alder and hetero Diels–Alder reactions offer alternative pathways which allow for similarly efficient macromolecular conjugations. Moreover, combinations of these protocols afford the synthesis of more complex star polymer structures which previously had not been achievable.

Graphical abstract: Constructing star polymersvia modular ligation strategies

Article information

Article type
Review Article
Submitted
01 Jun 2011
Accepted
22 Jun 2011
First published
10 Aug 2011

Polym. Chem., 2012,3, 34-45

Constructing star polymersvia modular ligation strategies

O. Altintas, A. P. Vogt, C. Barner-Kowollik and U. Tunca, Polym. Chem., 2012, 3, 34 DOI: 10.1039/C1PY00249J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements