Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries

Author affiliations

Abstract

Uniform TiO2 nanospheres from hollow, core–shell and mesoporous structures have been synthesized using quasi-nano-sized carbonaceous spheres as templates. The TiO2 nanospheres formed after calcination at 400 °C are composed of ∼7 nm nanoparticles and the shells of the hollow TiO2 nanospheres are as thin as a single layer of nanoparticles. The ultrafine nanoparticles endow the hollow and mesoporous TiO2 nanospheres with short lithium ion diffusion paths leading to high discharge specific capacities of 211.9 and 196.0 mA h g−1 at a current rate of 1 C (167.5 mA g−1) after 100 cycles, and especially superior discharge specific capacities of 125.9 and 113.4 mA h g−1 at a high current rate of up to 20 C. The hollow and mesoporous TiO2 nanospheres also show superior cycling stability with long-term discharge capacities of 103.0 and 110.2 mA h g−1, respectively, even after 3000 cycles at a current rate of 20 C.

Graphical abstract: Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 27 Aug 2015, accepted on 23 Oct 2015 and first published on 26 Oct 2015


Article type: Edge Article
DOI: 10.1039/C5SC03203B
Citation: Chem. Sci., 2016,7, 793-798
  • Open access: Creative Commons BY license
  •   Request permissions

    Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries

    H. Ren, J. Sun, R. Yu, M. Yang, L. Gu, P. Liu, H. Zhao, D. Kisailus and D. Wang, Chem. Sci., 2016, 7, 793
    DOI: 10.1039/C5SC03203B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author