Issue 29, 2015

A biocatalytic approach towards sustainable furanic–aliphatic polyesters

Abstract

An eco-friendly approach towards furanic–aliphatic polyesters as sustainable alternatives to aromatic–aliphatic polyesters is presented. In this approach, biobased dimethyl 2,5-furandicarboxylate (DMFDCA) is polymerized with various (potentially) renewable aliphatic diols via Candida antarctica Lipase B (CALB)-catalyzed polymerization using a two-stage method in diphenyl ether. A series of furanic–aliphatic polyesters and oligoesters is successfully produced via enzymatic polymerization. Some products reach very high Image ID:c5py00629e-t1.gif (weight average molecular weight) values of around 100 000 g mol−1. Studies on the effect of the diol structure on the enzymatic polymerization indicate that CALB prefers long-chain alkane-α,ω-aliphatic linear diols containing more than 3 carbons. We also found that the molecular weights of the obtained furanic–aliphatic polyesters increase steadily with the increase of reaction temperature from 80 to 140 °C. MALDI-ToF MS analysis reveals that five polyester species may be present in the final products. They were terminated with the ester/–OH, ester/ester, –OH/–OH, no end groups (cyclic), and ester/aldehyde groups, respectively. Furthermore, the structure–property relationships were studied by comparing the crystalline/thermal properties of a series of relevant furanic–aliphatic polyesters.

Graphical abstract: A biocatalytic approach towards sustainable furanic–aliphatic polyesters

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2015
Accepted
20 May 2015
First published
20 May 2015
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2015,6, 5198-5211

Author version available

A biocatalytic approach towards sustainable furanic–aliphatic polyesters

Y. Jiang, A. J. J. Woortman, G. O. R. Alberda van Ekenstein and K. Loos, Polym. Chem., 2015, 6, 5198 DOI: 10.1039/C5PY00629E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements