Issue 5, 2017

Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla

Abstract

Here, we present an integrated experimental and theoretical study of 1H dynamic nuclear polarization (DNP) of a frozen aqueous glass containing free radicals at 7 T, under static conditions and at temperatures ranging between 4 and 20 K. The DNP studies were performed with a home-built 200 GHz quasi-optics microwave bridge, powered by a tunable solid-state diode source. DNP using monochromatic and continuous wave (cw) irradiation applied to the electron paramagnetic resonance (EPR) spectrum of the radicals induces the transfer of polarization from the electron spins to the surrounding nuclei of the solvent and solutes in the frozen aqueous glass. In our systematic experimental study, the DNP enhanced 1H signals are monitored as a function of microwave frequency, microwave power, radical concentration, and temperature, and are interpreted with the help of electron spin–lattice relaxation times, experimental MW irradiation parameters, and the electron spectral diffusion (eSD) model introduced previously. This comprehensive experimental DNP study with mono-nitroxide radical spin probes was accompanied with theoretical calculations. Our results consistently demonstrate that eSD effects can be significant at 7 T under static DNP conditions, and can be systematically modulated by experimental conditions.

Graphical abstract: Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2016
Accepted
03 Jan 2017
First published
03 Jan 2017

Phys. Chem. Chem. Phys., 2017,19, 3596-3605

Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla

A. Leavesley, D. Shimon, T. A. Siaw, A. Feintuch, D. Goldfarb, S. Vega, I. Kaminker and S. Han, Phys. Chem. Chem. Phys., 2017, 19, 3596 DOI: 10.1039/C6CP06893F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements