Issue 12, 2012

Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

Abstract

Ultrastable superparamagnetic core-shell nanoparticles of average diameter 80 nm have been fabricated via a simple one-pot method involving superparamagnetic iron oxide nanoparticles (SPIONs) core (∼50 nm in diameter) and lipid bilayer shell by high energy ultrasonication. The surface charges (zeta potentials) were measured to be between −15 mV and + 16 mV depending on the batch composition. Anticancer drug mitomycin C (MMC) was loaded into four different samples of variable surface charges in aqueous solution (pH = 6.8) and released in PBS buffer (pH = 7.2) at room temperature. The kinetics of drug loading and releasing data indicated that the stable lipid bilayer coated SPIONs (LBCSPIONs) of nearly neutral surface exhibited the highest loading (10.9 μg of MMC/mg of materials), whereas uncoated or partially coated SPIONs of positive zeta potential exhibited the lowest loading (2.8 and 3.5 μg MMC/mg of materials, respectively). The release behavior of MMC was observed to be highest (5.8 μg MMC/mg of materials) from materials of negative zeta potential compared to materials of near neutral surfaces (3.68 μg MMC/mg of materials). The plausible mechanism of MMC loading and releasing behavior has been explained based on the electrostatic interaction and diffusion through the lipid bilayers. To ensure biocompatibility, the interaction of the prepared SPIONs with human cervical cancer cell line (HeLa) was also investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ROS (reactive oxygen species) production assay and the results confirmed the super-compatibility of LBCSPIONs.

Graphical abstract: Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2012
Accepted
28 Mar 2012
First published
29 Mar 2012

RSC Adv., 2012,2, 5221-5228

Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery

T. Sen, S. J. Sheppard, T. Mercer, M. Eizadi-sharifabad, M. Mahmoudi and A. Elhissi, RSC Adv., 2012, 2, 5221 DOI: 10.1039/C2RA20199B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements