Jump to main content
Jump to site search

Issue 1, 2011
Previous Article Next Article

Insights into the putative catechin and epicatechin transport across blood-brain barrier

Author affiliations

Abstract

The identification of mechanisms associated with phenolic neuroprotection is delayed due to a lack of information regarding the ability of phenolic compounds to enter the central nervous system (CNS). The aim of this work was to evaluate the transmembrane transport of catechin and epicatechin across blood-brain barrier (BBB). Two BBB cell lines, RBE-4 cells (immortalized cell line of rat capillary cerebral endothelial cells) and hCMEC/D3 (immortalized human cerebral microvessel endothelial cell line), were used. HPLC-DAD/MS was used to detect these compounds and their metabolites in the studied samples. The metabolites of the tested flavan-3-ols were synthesized to be used as standards. Catechin and epicatechin could cross both cells in a time-dependent manner. This transport was stereoselective (epicatechin ≫ catechin), involving one or more stereoselective entities. Additionally, these cells were capable of metabolizing these compounds, particularly by conjugation with glucuronic acid, since this metabolite was detected in the basolateral media. Several studies suggest that blood levels of catechin and epicatechin are far below the levels used in this study and that these compounds appeared mainly as methyl, sulfate and glucuronide metabolites. Nevertheless, the information obtained by this study is valuable for the new insights about flavan-3-ols transport. In conclusion: (i) catechin and epicatechin are capable of crossing the BBB; (ii) a stereoselective process was involved in the passage of these compounds across BBB cells; (iii) these endothelial cells have enzymes capable of metabolizing these compounds.

Graphical abstract: Insights into the putative catechin and epicatechin transport across blood-brain barrier

Back to tab navigation

Publication details

The article was received on 28 Jul 2010, accepted on 26 Oct 2010 and first published on 17 Nov 2010


Article type: Paper
DOI: 10.1039/C0FO00100G
Citation: Food Funct., 2011,2, 39-44
  •   Request permissions

    Insights into the putative catechin and epicatechin transport across blood-brain barrier

    A. Faria, D. Pestana, D. Teixeira, P. Couraud, I. Romero, B. Weksler, V. de Freitas, N. Mateus and C. Calhau, Food Funct., 2011, 2, 39
    DOI: 10.1039/C0FO00100G

Search articles by author

Spotlight

Advertisements