Faraday Discussions

Template Assisted Lithium Superoxide Growth for Lithium-Oxygen Batteries

Template Assisted Lithium Superoxide Growth for Lithium-Oxygen Batteries

Hsien-Hau Wang,¹ Chengji Zhang,^{1,2} Jing Gao,^{1,2} Kah Chun Lau,^{1,3} Samuel T. Plunkett,^{1,2} Moon Park,¹ Rachid Amine, 1 and Larry A. Curtiss 1

¹Materials Science Division, Argonne National Laboratory, Lemont, IL, USA

²Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA

³Department of Physics and Astronomy, California State University, Northridge, CA, USA

hauwang@anl.gov, (630) 252-3461

Abstract

Developing batteries with energy densities comparable to internal combustion technology is essential for a worldwide transition to electrified transportation. Li-O₂ batteries are seen as the 'holy grail' of battery technologies since they have the highest theoretical energy density of all battery technologies. Current lithium-oxygen (Li-O₂) batteries suffer from large charge overpotentials related to electronic resistivity of the insulating lithium peroxide ($Li₂O₂$) discharge product. One potential solution is the formation and stabilization of a lithium superoxide (LiO₂) discharge intermediate that exhibits good electronic conductivity. However, LiO₂ is reported to be unstable at ambient temperature despite its favorable formation energy at -1.0 eV/atom. In this paper, based on our recent work on the development of cathode materials for aprotic lithium oxygen batteries including two intermetallic compounds, LiIr₃ and LiIr, that are found to form good template interfaces with LiO₂, a simple goodness of fit R factor to gauge how well a template surface structure can support LiO₂ growth is developed. The R factor is a quantitative measurement to calculate the geometric difference in the unit cells of specific Miller Index 2D planes of the template surface and LiO₂. Using this as a guide, the R factors for LiIr₃, LiIr, and La₂NiO_{4+ δ}, are found to be good. This guide is attested by simple extension to other noble metal intermetallics with electrochemical cycling data including LiRh₃, LiRh, and Li₂Pd. Finally, the template concept is extended to main group elements and the R factors for LiO₂ (111) and Li₂Ca suggest that Li₂Ca is a possible candidate for the template assisted $LiO₂$ growth strategy.

Introduction

Due to global warming, increasing extreme weather and non-sustainable fossil fuel, society is moving toward renewable energy sources and new energy storage systems. Lithium-oxygen/air batteries have a very high theoretical energy capacity approaching 3500 Wh/Kg that is close to gasoline and has attracted much research interest.[1] Despite the promising goal, some hurdles toward applications include: 1) High over-potential during charge and the resulting large over-potential gap; 2) Poor electrochemical cycling; and 3) Low charging/discharging rates. These hurdles are not entirely independent. The high overpotential is one of the main reasons for reduced long term cycling stability. The high overpotential is largely caused by the lithium peroxide ($Li₂O₂$) discharge product. Due to the insulating nature of $Li₂O₂$, it is difficult for current to pass through upon accumulation on the cathode. To avoid this problem, some research has been on developing new catalysts that lead to lithium superoxide (LiO₂) as the discharge product. LiO₂ has been reported as lithium deficient Li₂O₂ (i.e., Li_{2-x}O₂) and early calculations suggested its conductive nature as a semi-metal. [2-4] The theoretical calculations turned out to be very challenging to verify since LiO₂ is not stable at ambient temperatures.[3, 5] To date, to our knowledge, there is no reported experimental single crystal structure, no four-probe conductivity measurement, nor other physical property measurements on isolated pure LiO₂ crystallites. Recent calculations indicate crystalline LiO₂ is still a wide band gap insulator. However, the calculated Li ionic conductivity (4 × 10−9 S/cm at room temperature) and electronic conductivity (9 × 10−12 S/cm at 300 K) are 10 and 8 orders of magnitude larger than that of the Li₂O₂ (4 × 10⁻¹⁹ S/cm and 5 × 10⁻²⁰ S/cm), respectively. The high ionic and electronic conductivities of $LiO₂$ are due to a polaron hopping mechanism whereby the induced polarization by the charge in the crystal lattice facilitates the conduction passage.[6] Since the ionic and electronic conductivity of LiO₂ are significantly higher than that of the Li_2O_2 , LiO₂ could be a beneficial discharge product for a Li-O₂ cell.

In 2016 a Li-O₂ battery was reported based on Ir nanoparticles prepared through a hydrothermal route for a Ir-rGO/GDL cathode where rGO is reduced graphene oxide and GDL stands for gas diffusion layer. The selection of Ir was because it is one of the best-known fuel cell ORR catalysts. Indeed, the Li-O₂ cell ran well with a low polarization gap of 0.9 V. It was found that Lilr₃ formed on the surface of Ir nanoparticles. The discharge product was exclusively $LiO₂$ based on various experimental techniques.[7] Density functional calculations indicated a lattice match of LiO₂ on LiIr₃ surfaces suggesting epitaxial-like growth.

Following these findings, a cathode based on 1.5 nm Ir nanoparticles on rGO was used.[8] Upon use in a Li-O₂ cell the nanoparticles evolved into larger ones of about 5 nm. The formation of an LiIr₃ outer shell on the Ir nanoparticles was observed *ex-situ* after operation of the Li-O₂ cell. In addition, a very thin layer (\approx nm) of LiO₂ over LiIr₃ was observed with use of TEM after discharge. DFT calculations indicated the following reaction could occur on the surface of Ir nanoparticles that explains the formation of the Lilr $_3$ outer shell:

 $LiO₂(s) + 3$ Ir(s) \rightarrow LiIr₃(s) + O₂(g) (1) Interestingly, the formation energy for Equation (1) is -5.90 eV, a very favorable and exothermic condition.[8]

In another study a Li-O₂ battery was based on LiIr₃ that had been synthesized in bulk quantity. In contrast to the formation of LiIr₃ in-situ under electrochemical condition at ambient temperature,[8] the bulk synthesis of LiIr₃ requires 800°C over eight days.[9] Initially the dramatically different synthesis conditions of thermal heating vs. electrochemical room temperature formation were puzzling. However, the LiO₂ apparently plays a crucial role in assisting the formation of LiIr₃ as indicated in Eq 1 in the case of Ir nanoparticles. The strategy of using LiIr₃-rGO/GDL as a cathode leads to large LiO₂ nanoparticles with diameters larger than 200 nm. In addition, this is the first time that a TEM image of a LiO₂ aggregate was successfully captured under 80 KV scanning electron beam irradiation while 200 KV irradiation led to decomposition from LiO₂ to Li₂O.[10] Also another LiIr alloy, LiIr-rGO/GDL, was explored as a cathode in a Li-O₂ cell. The cell ran well with a low over-potential gap of 0.8 V (3.50 – 2.75 V) and reached 100 cycles at 1000 mAh/g capacity with replacement of the Li anode. In addition, DFT calculations revealed that the LiO₂ (111) has a lattice match with LiIr (111) and LiO₂ (101) with LiIr (110). [11]

In this paper a simple goodness of fit R factor to gauge how well a template surface structure can support LiO₂ growth such as found for IrLi and Ir₃Li is developed. The R factor is a quantitative measurement to calculate the geometric difference in the unit cells of specific Miller Index 2D planes of the matching template molecule and LiO₂. Using this as a guide, the R factors for LiIr₃, LiIr, and La₂NiO_{4+ δ i} are found to be good. The guide is attested by simple extension to other noble metal intermetallics with initial electrochemical cycling data including LiRh $_3$, LiRh, and Li₂Pd. Finally, the template concept is further extended to main group elements.

Experimental

The following ICSD standard/reported structures are used for visualization and epitaxy analysis with VESTA software. The LiO₂ (ICSD-180561) that is from calculations, all structures are reported experimental data: Lilr₃ ICSD-104488, Lilr ICSD-104487, La₂NiO₄₊₈ ICSD-69172, LiRh₃ ICSD-642290, LiRh ICSD-150551, Li₂Pd ICSD-104773, and Li₂Ca ICSD-413207. VESTA (Visualization for Electronic and STructural Analysis) Ver. 3.5.8 is used for visualization of the template and lithium superoxide epitaxial interfaces.[16]

Raman spectroscopy (Renishaw inVia) was performed using a HeNe laser with a wavelength of 633 nm. 10% of the maximum 13 mW laser power was used, and spectrum collection was set up in a 180 ° reflective mode with a time constant of 200 s. Scanning electron microscopy (SEM; Hitachi S-4700) coupled with EDAX (energy dispersive X-ray analysis) is used throughout. Sample SPPd6 (Fig. 6) is Pd-Super P carbon/GDL cathode that is prepared with thermally evaporated (Edwards Auto 360) Pd film with 6 nm thickness over Super P carbon that is coated over a porous Gas Diffusion Layer.

A Swagelok cell in a glass chamber was used for $Li-O₂$ battery testing. A 1 M Li triflate salt in tetraethyleneglycol dimethyl ether (TEGDME) was used as the Li-O₂ cell electrolyte with 100 mA/g current density and 500 mAh/g capacity. Electrochemical cycling was carried out using a MACCOR® S4000 cycler at 24 °C.

Results and Discussion

Growth of LiO2 over LiIr³

Although the formation energy of LiO₂ is predicted to be -1.04 eV/atom, LiO₂ is unstable with respect to disproportionation to Li₂O₂ at ambient conditions. [5, 12, 13] In the early literature, LiO₂ has only been reported to be isolated at 10 K with use of solid N_2 matrix.[14] Recently, we demonstrated the presence of LiO₂ in a Li-O₂ battery by matching its electron diffraction with the calculated structure.[15] This battery was based on Ir nanoparticles as the cathode and it was discovered that LiIr₃ formed in the cell supported the growth of LiO₂.[7] Since LiIr₃ favors the formation of LiO₂, in another paper we prepared Lilr₃ in bulk through high temperature solid state synthesis.[10] The most intense XRD peak of the high temperature synthesized LiIr₃ is the (121) peak. In the presence of the LiIr₃ cathode, LiO₂ apparently forms exclusively as the discharge product through a "template assisted LiO₂ growth process". The LiO₂ (111) plane is believed to be stabilized through a lattice matching interface with LiIr₃ (121).[7] Here VESTA (Visualization for Electronic and STructural Analysis) software [16] was used to visualize a LiO₂ (111) plane together with a LiIr₃ (121) plane (Figures 1a and 1b, respectively) to show the matching interfacial layers. The templated LiO₂ growth suppresses self-disproportionation to form Li₂O₂ and O₂. A kinetics study has shown that $LiO₂$ can undergo a first order disproportionation reaction during the discharge process without a template support.[13]

Fig. 1a LiO₂ (111) plane shown in pink with an in-plane rhombus unit cell marked in yellow. Li: green and O: red. (LiO₂ ICSD-180561) Fig. 1b LiIr₃ (121) plane with a similar in-plane rhombus unit cell marked in yellow. Li: green and Ir: gold. (LiIr₃ ICSD-104488)

We speculate that the intermetallic LiIr₃ may act as a template for growth of the crystalline LiO₂, as has been found in template-controlled nucleation and growth of other crystalline materials.[17] DFT calculations on the interface between LiO₂ and Ir₃Li, found that some crystalline faces had good lattice matches (Ref [7], Supplementary Fig. S13), as would be required for stabilization of crystalline LiO₂.

For another Ir containing catalyst, LiIr, the LiIr-rGO/GDL cathode also cycled well.[11] Both LiO₂ (101) over LiIr (110) (Figure 2a and 2b, respectively) and LiO₂ (111) (as shown in Figure 1a) over LiIr (111) (Figure 3) were shown to have good lattice matches through DFT calculations.[11] Since good lattice matching interfaces between LiO₂ and LiM_x play a crucial role in supporting LiO₂ deposition and lower the charging over-potential, we decided to develop a way to estimate how well a potential cathode material matches the lattices of the LiO₂ surfaces, which is described in this paper.

Goodness of Fit R factor

A simple model is developed to quantitatively estimate how well the lattice of a LiM_x layer matches that of LiO₂. A rhombus unit cell is chosen for the 2D LiO₂ (111) plane as indicated in Figure 1a. The individual R_n (n = 1 - 3) factors (Equation 3) measure the difference of each unit cell length in \hat{A} over the unit cell length of LiO₂. The goodness of the fit R factor (Equation 4) combines the contribution from all three sides and represents how well the LiM_x layer fits that of LiO₂. For example, the two sides and short diagonal lengths (dash line) of the unit cell for LiO₂ (111) plane are: I_1 6.302 Å, I_2 5.705 Å, and I_3 4.970 Å, based on ICSD-180561 of a calculated LiO₂ structure. The equivalent experimental lengths for LiIr₃ (121) plane are: I_1' 6.358 Å, I_2' 5.381 Å, and I_3' 5.113 Å, respectively, (ICSD-104488, Figure 1b).

$$
R_n = \frac{l_n - l'_n}{l_n}, \ n = 1 - 3
$$
\n
$$
R = \sqrt{(R_1^2 + R_2^2 + R_3^2)} = 6.43\%
$$
\n(3)

The lower the value of the goodness of fit (R) the better and the R value for LiO₂ (111) plane over the LiIr₃ (121) plane is 6.4%. We also estimate the R factor for the LiO₂ (101) plane over LiIr (110) plane to be 15.2% and LiO₂ (111) over Lilr (111) to be 22.4%, respectively. A non-lithium containing metal oxide ternary compound, La₂NiO_{4+ δ}, has been reported that stabilizes growth of LiO₂ layer on the terminating surface of the Ni oxide (001) layer.[18] The La₂NiO_{4+ δ} (001) plane (pink) is shown in Figure 4. The four corners of the yellow box in Figure 4 indicate lithium sites reported in reference 18 through a DFT calculation. Since experimental evidence based on a Raman peak at 1123 cm⁻¹ together with a low charge overpotential ~3.8 V were observed [18] that are indicative of the presence of LiO₂, its R factor can be estimated with use of the La₂NiO_{4+ δ} unit cell length (a = b = 3.869 Å). The calculation details are in Table 1. The goodness of fit R for LiO₂ (101) (Figure 2a) over La₂NiO_{4+ δ} (001) through a "Li-rich surface" is estimated to be 37.1%.

Fig. 2a LiO₂ (101) plane shown in pink with a nearly square unit cell marked in yellow. Li: green and O: red. (LiO₂ ICSD-180561) Fig. 2b Lilr (110) plane also with a nearly square unit cell marked in yellow. Li: green and Ir: gold. (LiIr ICSD-104487)

Fig. 3 (Left) LiIr (111) plane in pink with an in-plane rhombus unit cell that supports epitaxial growth of LiO2 (111) Fig. 1a.

Fig. 4 (Right) La₂NiO₄₊ $_{6}$ (001) plane in pink showing four unit cells. Ni is the small gray atom and O is red. The four corners of the yellow box indicate proposed Li atom deposition sites that leads to LiO₂ layer growth. [18] (La₂NiO_{4+ δ} from ICSD-69172, I4/mmm a = b = 3.869Å)

Application of R Factor and Search for New Templates

A simple application of the R factor is to check/verify LiM_x surface with other elements in the same column of the periodic table for LiO₂ stabilization. Since both LiRh₃ and LiRh are isostructural to LiIr₃ and Lilr, respectively, [19] their R factors were calculated. For LiO₂ (111) over LiRh₃ (121), LiO₂ (101) over LiRh (110), and LiO₂ (111) over LiRh (111), they are 6.3%, 16.0%, and 23.1%, respectively. (Table 1) These

values are very similar to that of the corresponding LiIr_x intermetallics. In an experimental study we treated RhCl₃ with hydrazine and prepared Rh-rGO/GDL cathode for a Li-O₂ cell. The characterization of the cathode reveals a Rh peak in EDAX. The discharge product has Raman scattering peaks at 1125 and 1500 cm⁻¹, and a low charging plateau \sim 3.6 V between the 5th and 30th electrochemical cycles.[20] These results indicate that LiRh₃ and LiRh are very likely to have the same template assisted LiO₂ stabilization effect.

Among the noble metal catalysts, Pd on a carbon support is of interest since Pd is among the best fuel cell catalysts for ORR. The potential for Li intercalation into Pd like that of Lilr₃ formation (Equation 1) during cycling led us to explore the Li-Pd binary system. Based on the Li-Pd phase diagram, there is only one congruent line compound, Li₂Pd. [21] A line compound is a preferred candidate for template assisted LiO₂ growth due to its well-defined stoichiometry and well-ordered structure. The thermal formation condition for Li₂Pd is reported to be 800 °C for 1 hr. [22] Potential lattice matching between

LiO₂ and different facets of Li₂Pd was investigated. Shown in Figure 5a is the Li₂Pd (100) facet in pink that is associated with the strongest XRD peak and LiO₂ (011) and (110) planes are shown in Figure 5b and 5c, respectively. The calculated R factors for LiO₂ (011) over Li₂Pd (100), LiO₂ (110) over Li₂Pd (100), and LiO₂ (111) (Figure 1a) over Li₂Pd (101) (Figure 5d) are 7.39%, 7.39%, and 27.6%, respectively. These R factors are within the range of forming stable LiO₂-Li₂Pd interfacial layers compared to that of LiO₂ over LiIr₃, LiIr and La₂NiO_{4+ δ}. The first 20 cycles of electrochemical cycling of a Li-O₂ cell with a Pd/carbon/GDL cathode is shown in Figure 6a. Other than the first cycle, the low overpotential of 0.7 V (2.7–3.4 V), Pd signal from EDAX, and a Raman scattering peak at \sim 1145 cm⁻¹ (Figure 6b) indicate the presence of LiO₂.[23] The Raman peak is higher than the typical value of 1125 cm⁻¹ [15, 24] but not too far from a reported 1137 $cm⁻¹$ [12] in one study for the O-O stretch. Therefore, these results also support template assisted LiO₂ growth on Li₂Pd.

Fig. 5a Li₂Pd (100) plane in pink. The two sides of a rectangular unit cell and diagonal (dash line) are marked in yellow. (Li₂Pd ICSD-104773) Fig. 5b LiO₂ (011) plane in pink. The two sides and diagonal (dash line) of a 2D unit cell of the plane are marked in yellow. (LiO₂ ICSD-180561) Fig. 5c LiO₂ (110) plane in pink. The two sides and diagonal (dash line) of a 2D unit cell of the plane are marked in yellow. Fig. 5d The Li₂Pd (101) plane to support LiO₂ (111) (Figure 1a) in pink. A rhombus 2D unit cell for the plane is marked in yellow.

Fig. 6a Pd (6 nm thick) was thermally evaporated over carbon (Super P) to make a SPPd6/GDL cathode. The EC cycling for the first 20 cycles at 100 mA/g current density and 500 mAh/g capacity shows a low overpotential of 0.7 V. Fig. 6b Raman spectra of SPPd6 pristine (black), 1st discharge (red), and 1st charge (blue). LiO₂ peak at 1145 cm⁻¹ is shown after the first discharge.

Main Group LiM^x Template

Since one consideration as to whether template assisted $LiO₂$ growth is possible depends on geometric requirements, the search for desirable templates can also be extended to main group LiM_x templates. The first element in the main group we considered was magnesium. However, the Li-Mg binary phase diagram does not contain any line compounds. This can be understood through the Hume-Rothery Rule for complete miscibility since the atomic radii of Li (167 pm) and Mg (145 pm) are within 15% (or 167 \pm 25 pm). [25] The Li and Mg atoms in a solid solution will be entirely random and not suitable for our template application.

The next element is Ca (194 pm) and the Li-Ca phase diagram indicates only one line compound, Li₂Ca. [26] The XRD (x-ray diffraction) pattern of Li₂Ca (ICSD-413207 Cubic) reveals three prominent peaks for (111), (220 and 20 $\overline{2}$), and (311 and 31 $\overline{1}$). A potential lattice match with LiO₂ for all five different facets was explored and all five matches at different R values. Since the (311) and (3 $\overline{1}$ $\overline{1}$) as well as (220) and (20 $\overline{2}$) are in the same family of planes, respectively, only Li₂Ca (111), (311), and (20 $\overline{2}$) are shown in Figures 7a-c. The calculated R factors for LiO₂ (111) over Li₂Ca (111), Li₂Ca (311) and Li₂Ca (202) are 25.7%, 14.7%, and 10.1%, respectively. All three R values are within a possible LiO₂/Li₂Ca lattice match range and suggest that Li₂Ca (cubic) would be a good candidate for template assisted LiO₂ growth.

Fig. 7a Li₂Ca (111) plane in pink with a rhombus unit cell formed by two equilateral triangles marked in yellow. ($Li₂Ca$ ICSD-413207)
7b

Fig. 7b Li₂Ca (311) plane in pink with a rhombus unit cell for the 2D (311) plane marked in yellow. Fig. 7c Li₂Ca (20^{2}) plane in pink with a rhombus unit cell consists of two isosceles triangles marked in yellow.

Conclusions

In this paper, based on our recent work on the development of cathode materials for aprotic lithium oxygen batteries including two intermetallic compounds, LiIr₃ and LiIr, that likely form epitaxy-like interfaces with LiO₂, together with a literature La₂NiO₄₊⁸ metal oxide that also triggers the growth of LiO₂ lead us to the concept that this template assisted LiO₂ growth helps to stabilize the LiO₂ discharge product in a Li-O₂ battery and contributes to a low charging overpotential. A simple goodness of fit R factor was developed to gauge how well a template can support LiO₂ growth with use of these known cathode materials as the reference points. Guidelines for developing new template assisted materials that support $LiO₂$ epitaxial growth are listed below:

- 1) A good LiM_x template where M is a transition or main group metal must be electronically conductive.
- 2) A LiM_x template with a well-defined structure and stoichiometry is preferred as disorder will likely hinder the template mechanism. The 2D unit cell of the LiM_x plane must have the same symmetry as one of the LiO₂ planes. The (110), (011), (101), and (111) planes of LiO₂ are the most predominant ones based on the ICSD calculated structure.
- 3) The goodness of fit R factor can be used as a guide to search for possible LiO₂ growth template. While the highest R factor found was for $La_2NiO_{4+\delta}$ at 37%, the R factor for new template/catalyst follows the lower the better rule. R factor less than 22% is expected to work well as demonstrated by Lilr₃ (R = 6.4%) and Lilr (R = 15.2 – 22.4%).
- 4) An R factor larger than 37% may still be considered only if the new LiM_x templates can withstand compression or tension.

Toward lowering the overpotential gap, the template assisted LiO₂ growth strategy is quite promising. Once the charging potential is lower than 4 V (vs Li/Li⁺), side reactions due to electrolyte decomposition can be reduced. To have long cycle stability, the Li metal anode needs to be protected. Choosing a compatible Li protection route together with template assisted LiO₂ growth, if successful, will help advance Li- $O₂$ energy storage development.

Author Contributions

All Authors contributed equally to this manuscript.

Conflicts of interest statement

There are no conflicts to declare.

Acknowledgements

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 from the Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy. VESTA (Visualization for Electronic and STructural Analysis) Ver. 3.5.8 is used for visualization of the template and lithium superoxide epitaxial interfaces.[16]

References

- 1. H. Kitaura and H. Zhou, Scientific Reports 2015, 5:13271, DOI: 10.1038/srep13271
- 2. J.S. Hummelshøj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K.S. Thygesen, A.C. Luntz, K.W. Jacobsen and J.K. Nørskov, J. Chem. Phys. 2010, 132, 071101.
- 3. K.C. Lau, L.A. Curtiss and J. Greeley, J. Phys. Chem. C 2011, 115, 23625–23633.
- 4. M.D. Radin, J.F. Rodriguez, F. Tian and D.J. Siegel, J. Am. Chem. Soc. 2012, 134, 1093−1103.
- 5. Materials Project LiO₂ mp-1018789, [https://next-gen.materialsproject.org/materials/mp-](https://next-gen.materialsproject.org/materials/mp-1018789?chemsys=Li-O)[1018789?chemsys=Li-O](https://next-gen.materialsproject.org/materials/mp-1018789?chemsys=Li-O)
- 6. N.R. Mathiesen, S. Yang, J.M. García-Lastra, T. Vegge and D.J. Siegel, Chem. Mater. 2019, 31, 9156−9167.
- 7. J. Lu, Y.J. Lee, X. Luo, K.C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y. S. Jeong, J.-B. Park, Z.Z. Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L.A. Curtiss and K. Amine, Nature 2016, 529, 377.
- 8. A. Halder, A.T. Ngo, X. Luo, H.-H. Wang, J.G. Wen, Pe. Abbasi, M. Asadi, C. Zhang, D. Miller, D. Zhang, J. Lu, P.C. Redfern, K.C. Lau, R. Amine, R.S. Assary, Y.J. Lee, A. Salehi-Khojin, S. Vajda, K. Amine and L.A. Curtiss, J. Phys. Chem. A 2019, 123, 10047−10056.
- 9. H.C. Donkersloot, J.H.N. Van Vucht, The Crystal Structure of IrLi, Ir₃Li and LiRh₃, J. Less-Common Met. 1976, 50, 279−282.
- 10. S.T. Plunkett, C. Zhang, K.C. Lau, M.R. Kephart, J.G. Wen, D.Y. Chung, D. Phelan, Y. Ren, K. Amine, S. Al-Hallaj, B.P. Chaplin, H.-H. Wang and L.A. Curtiss, Nano Energy 2021, 90, 106549.
- 11. S.T. Plunkett, A. Kondori, D.Y. Chung, J. Wen, M. Wolfman, S.H. Lapidus, Y. Ren, R. Amine, K. Amine, A.U. Mane, M. Asadi, S. Al-Hallaj, B.P. Chaplin, K.C. Lau, H.-H. Wang and Larry A. Curtiss, ACS Energy Lett. 2022, 7, 2619−2626.
- 12. Z. Peng, S.A. Freunberger, L.J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.- M. Tarascon, and P.G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 6351 –6355.
- 13. D. Zhai, H.-H. Wang, J. Yang, K.C. Lau, K. Li, K. Amine and L.A. Curtiss, J. Am. Chem. Soc. 2013, 135, 15364−15372.
- 14. D.M. Lindsay and D.A. Garland, J Phys. Chem. 1987, 91, 6158-6161.
- 15. D. Zhai, K.C. Lau, H.-H. Wang, J. Wen, D.J. Miller, J. Lu, F. Kang, B. Li, W. Yang, J. Gao, E. Indacochea, L.A. Curtiss and K. Amine, Nano Lett. 2015, 15, 1041−1046.
- 16. K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr., 2011, 44, 1272-1276.
- 17. E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G. de With, N.A.J.M. Sommerdijk, Science 2009, 323, 1455-1458.
- 18. S. Samira, S. Deshpande, C.A. Roberts, A.M. Nacy, J. Kubal, K. Matesić, O. Oesterling, J. Greeley and E. Nikolla, Chem. Mater. 2019, 31, 7300−7310.
- 19. J. Sangster and A.D. Pelton, Journal of Phase Equilibria 1991, 12, 6, 682-684.
- 20. C. Zhang, CME (Civil, Mater. and Enviro. Eng.), UIC Master Thesis 2017.
- 21. J. Sangster and A.D. Pelton, Journal of Phase Equilibria 1992, 13, 1, 63-66.
- 22. J.H.N. Van Vucht and K.H.J. Buschow, J. of the Less-Common Metals, 1976, 48, 345 347.
- 23. J. Gao, CME (Civil, Mater. and Enviro. Eng.), UIC PhD Thesis 2015.
- 24. D. Zhai, H.-H. Wang, K.C. Lau, J. Gao, P.C. Redfern, F. Kang, B. Li, E. Indacochea, U. Das, H.-H. Sun, H.-J. Sun, K. Amine and L.A. Curtiss, J. Phys. Chem. Lett. 2014, 5, 2705−2710.
- 25. J.F. Shackelford, Introduction to Materials Science for Engineers, 2015 Pearson plc, London, UK.
- 26. C.W. Bale and A.D. Pelton, Bulletin of Alloy Phase Diagrams 1987, 8, 2, 125-127.