Issue 8, 2024

Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19

Abstract

More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.

Graphical abstract: Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19

Article information

Article type
Review Article
Submitted
31 Aga 2023
First published
04 Mas 2024

Chem. Soc. Rev., 2024,53, 3774-3828

Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19

Mohd. A. Sadique, S. Yadav, R. Khan and A. K. Srivastava, Chem. Soc. Rev., 2024, 53, 3774 DOI: 10.1039/D3CS00719G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements