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respond to the crisis of
transgression of planetary boundaries

Stephen A. Matlin, *ab Sarah E. Cornell, bc Alain Krief, bd Henning Hopf be

and Goverdhan Mehta bf

Recent assessments alarmingly indicate that many of the world's leading chemicals are transgressing one or

more of the nine planetary boundaries, which define safe operating spaces within which humanity can

continue to develop and thrive for generations to come. The unfolding crisis cannot be ignored and

there is a once-in-a-century opportunity for chemistry – the science of transformation of matter – to

make a critical difference to the future of people and planet. How can chemists contribute to meeting

these challenges and restore stability and strengthen resilience to the planetary system that humanity

needs for its survival? To respond to the wake-up call, three crucial steps are outlined: (1) urgently

working to understand the nature of the looming threats, from a chemistry perspective; (2) harnessing

the ingenuity and innovation that are central to the practice of chemistry to develop sustainable

solutions; and (3) transforming chemistry itself, in education, research and industry, to re-position it as

‘chemistry for sustainability’ and lead the stewardship of the world's chemical resources. This will require

conservation of material stocks in forms that remain available for use, through attention to circularity, as

well as strengthening engagement in systems-based approaches to designing chemistry research and

processes informed by convergent working with many other disciplines.
Introduction

Chemistry's extraordinary success as the science of trans-
formation of matter, bringing huge benets to humanity, has
been central to the expanding quantity and diversity of artefacts
generated by human beings. The production of anthropogenic
mass (global total dry mass of material contained in inanimate
solid objects made by humanity) doubled every 20 years since
1900, in 2020 reaching 30Gt per year and totalling c. 1.1 trillion
tonnes present on the planet.1 This accumulated amount
equalled the dry weight of total biomass on Earth for the rst
time and, on current trends, total anthropogenic mass will be
triple the dry weight of biomass by 2040. Concomitantly, the
global chemical industry's production capacity (excluding
pharmaceuticals) almost doubled between 2000 and 2017, from
about 1.2 to 2.3 billion tonnes.2
erial College London, London, SW7 2AZ,

Sciences in Development, 61 rue de

ience, Stockholm University, Stockholm,

B-5000, Namur, Belgium

Universität Braunschweig, Braunschweig,

ad, Hyderabad, 500046, India

20
However, there has been mounting environmental cost,
including degradation of global habitat quality and loss of
planetary ecosystem stability. Global atmospheric CO2 concen-
trations reached their highest historic level of 421.37 ppm in
May 2022. They are likely to drive global warming since pre-
industrial times above the 1.5 �C safe limit in the 2020s.3 At
the same time, the majority of the 500 main chemicals on the
market have been judged unsustainable in terms of their envi-
ronmental impact.4

This is a wake-up call for all humanity to attend to the
unfolding crisis. That it is not the rst alarm heightens the
urgency of now paying attention. Coining the term Anthro-
pocene recognized that a transition was in rapid progress to
a new period in which humanity has become the dominant
force shaping the planet's environment.5 Harbingers of this
transition6 were seen in writings on the vulnerability of
‘spaceship Earth’,7 the environment8 and the limits to growth.9

The 1987 World Commission on Environment and Develop-
ment10 advanced the concept of sustainable development, a key
step towards the UN Sustainable Development Goals (SDGs)
agreed in 2015.11

As well as setting the SDGs, other global responses have
included a range of efforts by the UN Environment Programme12

and Committee of the Parties (COP) negotiations of the UN
Framework Convention on Climate Change.13 In all of these,
roles for science and technology have been highlighted,14 the
need for chemistry recognised and attention drawn to the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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mapping of SDGs directly into chemistry.15 Academia and
industry have increasingly devoted attention to important
aspects of the challenges,16 marked by developments including
environmental chemistry since the 1950s and green chemistry
which started to become prominent in the 1990s, as well as
sustainable, one-world and circular chemistry. But much
greater effort is now needed17 and chemistry needs to respond
urgently and effectively across all branches of education,
research and practice, with industry having centrally important
roles.

How can chemists contribute to meeting these challenges
and restore stability and resilience to the planetary system that
humanity needs for its survival? To respond to the renewed and
intensied ringing of alarms, and to develop the concept and
apply the approach of chemistry for sustainability,18 three
crucial steps are outlined in this article: (1) urgently working to
understand the nature of the threats, from a chemistry
perspective; (2) harnessing the ingenuity and innovation that
are central to the practice of chemistry to develop sustainable
solutions; and (3) transforming chemistry itself, in education,
research and practice, to re-position it as a sustainability
science and strengthen its capacities to work, in concert with
Table 1 Planetary boundaries and their chemical control variables at 20

© 2022 The Author(s). Published by the Royal Society of Chemistry
other disciplines, on long-term approaches that will avoid
unsustainable practices in the future.
Understanding the problem

The planetary boundaries approach, developed in 2009–2015,19

identied nine aspects of anthropogenic threats to critical Earth
systems, for each of which ‘safe operating spaces’ needed to be
dened. For seven of these boundaries, control variables were
proposed and threshold levels set for the safe operating limits.
In many cases, the control variables chosen as indicators were
chemical entities (Table 1), including the biogeochemical ows
of carbon, nitrogen and phosphorus which are major contrib-
utors to currently accelerating planetary changes. The category
of novel entities (including synthetic chemicals, micro-
particulate materials and other new types of engineered mate-
rials or organisms not previously known to the Earth system) is
one of two planetary boundaries not yet officially quantied,
owing to the difficulty of choosing control variables.

The handful of chemicals initially selected as signals of the
planetary condition represent only the tip of a vast iceberg of
materials that need to be considered. Around 200 million
15

Chem. Sci., 2022, 13, 11710–11720 | 11711
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discrete chemical entities are known and the number grows at
around 10 million per year. Many of these substances have only
ever been prepared in sub-gram quantities, but over 350 000
chemicals have been registered for production and use, either
as single entities or in a vast array of combination materials.
Among ubiquitous devices, the smartphone typically contains
at least 30 elements in an individual handset and different
models of smartphones incorporate more than 70 of the peri-
odic table's members, either in the elemental form or as
compounds or mixtures.20 As well as the issue of depletion of
useable elemental reserves, the impacts on the environment of
these substances, when produced at large scale, remain largely
unknown. The United Nations Environment Programme
(UNEP) 2019 report, Global Chemicals Outlook II, showed that
the commitment countries had made in 2002 at the World
Summit on Sustainable Development, to minimize by 2020 the
adverse effects of chemicals and pollutants passing into the
environment, was not being achieved.2

Solutions to the challenges to sustainability presented by
large-scale manufacturing are evolving – but this is still work in
progress. The ‘throwaway’ society popularised in the 1950s–
1960s was countered by growing concerns about over-
consumption and environmental damage which led to a move-
ment to ‘reduce, reuse and recycle’ (the ‘3Rs’). This alternative
to the linear ‘take-make-dispose’ model has informed circular
economy, waste reduction and sustainable consumption and
production (‘living lightly’) policies in many countries.21

Two recent publications signal the urgency for chemistry to
take action. One concerns the nature of the previously ill-
dened planetary boundary related to ‘novel entities’. A
measure of the production and release of plastics has been
proposed as one possible parameter for this boundary, and the
case presented that the safe operating space of the novel entities
planetary boundary has already been transgressed.22 The other
report4 has considered what planetary metrics are of relevance
for the absolute environmental sustainability assessment of
chemicals. Nearly 500 chemicals were assessed in relation to
seven planetary boundaries and most were found to transgress
at least one of the thresholds for their safe operating limits. The
study has highlighted the need to incorporate absolute envi-
ronmental sustainability criteria into environmental assess-
ments for all chemical entities produced at large scale, to aid
researchers and industries in the quest for sustainability.

Chemistry for sustainable solutions

Sustainability science has developed a number of key insights
relevant to all disciplines that seek to contribute to sustainable
development. One principle is that sustainability is a property
that emerges from the operation of an entire system and not
simply attributable to isolated components. Thus, a product
cannot be said to be ‘sustainable’ solely because it is derived
from a renewable source, because its manufacturing process is
based on green chemistry principles, or because it is recycled in
some way aer primary use, if it continues to be used in
a manner or at a scale that transgresses planetary boundaries
and damages Earth systems. It is now imperative that chemists
11712 | Chem. Sci., 2022, 13, 11710–11720
developing new products or processes that will operate at
manufacturing scale consider the potential environmental costs
and impacts – not only for the core reactions or processes, but
also for the entire chain of events from sourcing input materials
and energy to the disposal of all by-products, wastes and the
articles themselves at the end of the primary use. The consid-
eration needs to include the entire gamut of short-to-long-term
effects on all parts of the planetary environment, and to be
concerned with the depletion of natural resources where these
may become limiting – but even for the most abundant or
renewable natural resources it needs to be concerned with how
global scale-up and turnover of biogeochemical ows and the
dispersal of materials across the planet may impact on these
diverse aspects of the environment. While riding their hobby
horses in pursuit of creative instinct or commercial interest, it is
vital that chemistry practitioners carry out due diligence with
regard to these considerations. All stages of supply,
manufacturing, application and disposal need to be regarded
using systems principles and tools. These are embedded in
green, sustainable and circular chemistry, with quantications
derived from life cycle analysis, planetary boundaries and
absolute environmental sustainability criteria. This totality of
assessment provides the basis for overall judgement about
sustainability as well as for the concept and approach encap-
sulated in ‘chemistry for sustainability’.18

New reaction processes

Among the new and re-merging innovations currently receiving
attention, those focusing on the sustainability of reaction
processes, including the use of non-hazardous materials and
conditions and applications of green solvents,23 will be of
particular interest to synthetic chemists. The search for more
environmentally benign processes for chemical reactions has
branched into a number of directions in recent years. For the
choice of reaction medium, at least three avenues have been
under development. One is the identication of novel solvents,
including ionic liquids, that offer economic and environmental
advantages as well as chemical benets.24 A second direction is
the application of ow chemistry processes.25 The traditional
approach to batch-wise chemical reactions in non-aqueous
solvents presents many challenges in relation to the fate of
solvents and the material and energy demands of synthesis,
work-up and purication processes. Third, developments are
advancing ‘solventless’ and ‘reagentless’ chemistry, including
resurgent interest in mechanochemistry, microwave processes,
sonochemistry, and visible light/sunlight redox reactions.26 In
the search for reactions that are speedy, efficient and take place
under mild conditions, with high stereo- and enantio-
specicity, much chemical ingenuity has been invested in
catalyst design.27

Benign by design

Beyond cleaner processes, sustainability requires paying much
more attention to products that are ‘benign by design’ at all
stages.28 An illustration can be seen in the case of ammonia,
traditionally manufactured by the Haber–Bosch process which
© 2022 The Author(s). Published by the Royal Society of Chemistry
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sources hydrogen by cracking CH4, as well as using energy to
drive the reaction that is usually sourced from fossil fuels,
together contributing massively to atmospheric release of CO2.
While there are nowmajor efforts29 to manufacture ‘green’ NH3,
these need to be accompanied by great reduction in the exces-
sive biogeochemical ow of nitrogen (Table 1). Other challenges
for chemists include sustainable energy production from
renewable, sustainable, non-polluting sources,30 including
design of compounds that can mediate the transformation of
solar energy to electricity;31 and capture of CO2 at the site of
production32 as well as via atmospheric sequestration,
combined with designing alternative fates for CO2,33 and
developing sustainable alternatives to traditional concrete34 and
reuse of waste concrete.35 Achieving goals for reductions in CO2

emissions requires analytical measurements and monitoring,
integrated into comprehensive life cycle assessments, while
design of alternative fates for CO2 must ensure that the carbon
remains ‘locked up’ for long time periods and is not just briey
delayed on its journey back into the atmosphere.36 As noted by
Artz et al.,37 this point requires a more nuanced approach to
taking CO2 utilization as a measure for global CO2 mitigation,
and the use of CO2 as feedstock for chemicals should be ana-
lysed as a route towards “de-fossilization”, rather than as
a technology for CO2 mitigation.
Circularity and the post-trash age

For chemists, imprints of the circular economy38 concept have
been seen in ‘green chemistry’.39 With origins based in evolving
industrial and academic movements, the term was dened and
eshed out as a set of 12 principles by Anastas and Warner.40

Green chemistry has had major impact, reorienting chemistry
education, research and practice towards sustainability objec-
tives.39a,41 Sustainable chemistry has many features in common
with green chemistry, while emphasizing broader concerns with
ecology, service and function and incorporating systems tools
and transdisciplinary approaches.42 Similar principles are also
seen in the more recent emergence of ‘circular’ chemistry43

which extended the 3Rs to 11Rs, transitioning to restorative and
regenerative design principles for resource efficiency, utility and
maintenance of high value when feasible.44 The concept of ‘one-
world’ chemistry, which recognises the interconnectedness of
the health of human beings, animals and the environment,
adopts systems thinking and cross-disciplinary working to
understand and navigate the interfaces between science, the
environment and society and underscore chemistry's central
position in providing the molecular basis of sustainability.15b,45

Embedded in all these concepts is the recognition that a new
understanding is required of what has traditionally been
termed ‘waste’ – the ‘unwanted’ materials that did not become
incorporated into the intended product, as well as the product
itself aer its primary use. The World Bank estimated46 in 2018
that global generation of solid waste exceeded 2 billion tonnes
per year and will rise by 70 per cent by 2050. The new under-
standing in the ‘post-trash’ age47 sees all the material outputs as
resources for conservation and further reuse. This is especially
critical when a process goes to scale and will determine whether
© 2022 The Author(s). Published by the Royal Society of Chemistry
it can deliver bulk and platform chemicals as well as large-
volume speciality chemicals in a sustainable manner, with
minimal environmental footprint and predictable re-uptake at
the ‘end of life’ of the product. Achieving a post-trash society47

requires48 synergies at the interface of science, society and
policy. The recent demonstration of computer-designed repur-
posing of waste to drugs49 signposts the directions of waste-to-
valuable-resource reincarnation and circularity along which
chemistry for sustainability should operate.
Leveraging the digital transformation

Increasing use of the rapidly evolving digital tools and plat-
forms, including big data handling, machine learning and
articial intelligence applications as well as robotics, is
enabling chemists to make fundamental changes in their
approach to sustainability challenges at all stages of the
chemistry enterprise, including in Industry 4.0.50 These range
from the scoping of the chemical space, which can rapidly
identify large numbers of close analogues of any molecule to
expand the chemical diversity of products under consider-
ation,51 the prediction of chemical properties and design of
optimum chemical pathways for production, including
streamlining chemical explorations by application of machine
learning to chemical reactivity,52 to the scoping of potentials for
circularity options for recovery, reuse and recycling and the
anticipation of likely environmental fates and ecological
impacts of different pathways of sourcing, production, use and
disposal. Across the spectrum, the chemist will be seeking to
apply orientations that reduce the number of reaction steps,
increase efficiency and recovery and minimise overall environ-
mental impact, including reducing biogeochemical ows.
Realigning chemistry and chemical
industry for a sustainable world

The emergence of the ‘triple bottom line’ in business in the
early 1990s added environmental and social concerns to the
perennial focus on economics. While this extended the scope of
business to include considerations of planet and people as well
as prot, it is evident that a rebalancing among this trio of
factors is now essential, with much greater priority being given
to the planet component encompassing environmental protec-
tion and sustainability.53 The vital and urgent contributions
needed from chemistry in response to the unfolding planetary
boundaries crisis cannot simply happen within a ‘business as
usual’ framework, and the present decade's worldwide political
agreement on climate and sustainable development goals
provides a narrow window of opportunity to avert catastrophic,
long-term changes to planetary systems.14b A dual-track
response is required in which industry solutions that can be
rapidly advanced and scaled up are given immediate support
while, for the longer term, fundamental, systemic changes are
progressively embedded to reorient the discipline as a leading
sustainability science. These must reshape the way chemists
approach all aspects of their work in education, research and
industry.15b,c It is essential to recognize that these three
Chem. Sci., 2022, 13, 11710–11720 | 11713
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constituents have complementary roles, as demonstrated by the
constructive ways that both academia and industry already
serve as the sources and mediators of knowledge, processes and
products and as contributors and observers in global policy
processes within international bodies.

For industry, critical areas for attention will follow principles
of decarbonising the economy and energy in general, including,
for the chemical industry, decarbonising steps in
manufacturing/synthesis, and cutting all process- and product-
related environmental emissions.54 This entails paying atten-
tion to the sustainable sourcing of materials, green chemistry
principles of manufacturing and in-built design to maximise
material circularity. As an example, a German Chemical Industry
Association study55 highlighted that achieving full greenhouse
gas neutrality by 2050 will require heavy R&D investment in new
process technologies for basic chemicals, and improved
mechanical and chemical recycling processes, backed by a suit-
able policy framework and regulations. Replacement of fossil
fuels as energy sources will necessitate developing processes to
use electrons directly or via carriers such as hydrogen.

The science–society–policy interface is of critical importance
in ensuring the real-world practicality of expectations for
industry in relation to sustainability goals. In recent decades,
there has been an increasing tendency for manufacturing and
R&D operations to move to countries where they can be con-
ducted at lower costs, where they may be subject to lower
standards of environmental regulations and less rigorous
compliance oversight. Rebalancing among the trio of factors in
the triple bottom line can only be viable economically if there is
a level playing eld of regulatory factors. This requires global
agreements on international standards for good manufacturing
practice and environmental impacts. Combined efforts from
UNEP, the World Trade Organization and the United Nations
Conference on Trade and Development will be needed, with
concerted inputs from chemistry and chemical industry
through professional bodies and industry organizations. As well
as the COP and SDG processes, the Montreal Protocol, nalised
as an international treaty in 1987 and the Political Declaration
and Implementation Plan adopted at the 2002 World Summit
on Sustainable Development provide examples where the
combined forces of science, industry, social demand and
political policy have been focused on reaching agreement to
achieve major environmental goals.2,56

Here we present three examples that are representative of
different kinds of problems, to explore the implications for the
discipline and profession of chemistry.
New platforms for organic chemicals

Since the 19th century, chemists have become accustomed to
regarding hydrocarbon-related compounds as the main source
of starting materials for synthesis. This has strongly inuenced
all aspects of chemistry: industry has come to depend on
petroleum and natural gas for its feedstocks, with simple
olens, aromatics and their derivatives being among the
largest-volume products manufactured;57 researchers have
demonstrated their skill and ingenuity by developing processes
11714 | Chem. Sci., 2022, 13, 11710–11720
for cracking, metathesising and functionalising hydrocarbons;
and chemistry curricula and textbooks have traditionally re-
ected a mindset in which syntheses generally follow pathways
of increasing functionalisation/oxidation from hydrocarbon
precursors.

Ending the use of fossil hydrocarbons as fuels will eliminate
one of the main drivers of climate change. In the short term,
this will extend the availability of hydrocarbon raw materials for
synthesis. However, in the longer term, chemistry must switch
to renewably-sourced feedstocks for the ever-expanding range
and scale of organic compounds required. The biological
products of metabolism are the most likely source – and these
are, overwhelmingly, highly oxidised compounds such as
cellulose and lignin that require depolymerisation to serve as
versatile feedstocks,58 as well as a host of other bio-molecules
incorporating important features such as chiral centres and
multiple functionalities. Implications for industry include the
need to source bio-organic materials, not only cheaply and
efficiently but in ways that do not compete with other critical
areas such as natural habitats, food production and clean water,
do not liberate environmentally-damaging wastes during
transformations into products or subsequent use and disposal,
but do offer practical avenues for material recovery, reuse or
recycling in cyclical systems. The long-standing concept of
‘chemurgy’ (use of agriculture as source of chemical feedstocks)
must now be revisited and revived, modernising the approach
and bringing it into alignment with current understanding of
sustainability principles and practices.59 A challenge for chem-
istry researchers is to switch from seeking regio- and stereo-
selective oxidative processes for hydrocarbon functionaliza-
tion to devising site-specic reduction and substitution reac-
tions of highly functionalised backbones found in many
biomolecules, while utilizing green, sustainable and circular
chemistry principles and information on environmental
requirements and impacts to guide the choices of reagents,
solvents and conditions. Future chemistry graduates will need
to be equipped with the knowledge and skills to take forward
these industry and research ambitions, implying not only
revised chemistry curricula, but also that competence is devel-
oped in systems thinking and cross-disciplinary working.
Sustainability of plastics

Due to their ease of production, versatility and low cost, plastics
emerged during the 20th century as among the most ubiquitous
and widely used materials manufactured on the planet – but
with the majority of all the plastic ever made ending up in
landll sites or scattered in the environment.60 Deep concern
about the multiple environmental impacts of plastics22 has been
reected in the passage of a historic resolution in the UN
Environment Assembly, to forge an international legally
binding agreement by 2024 that addresses the full life-cycle of
plastics, the design of reusable and recyclable products and
materials, and the need for enhanced international collabora-
tion to facilitate access to technology, capacity building and
scientic and technical cooperation.61 The challenge, “not only
multidisciplinary but also inter- and transdisciplinary research
© 2022 The Author(s). Published by the Royal Society of Chemistry
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with integrated and multifaceted approaches are needed to
produce novel eco-friendly materials with features similar to
those of traditional plastics, as well as with acceptable
economic and environmental impact”, is clearly framed in a way
that speaks to chemists. They will need to tailor their responses
in ways that take account of the multiplicity of plastics for
diverse applications, involving a broad range of chemical
structures and functional groups. Redesign of plastics will be
necessary, to supply a wide and growing range of applications
while inventing novel structures that meet the new, urgent
requirements for sustainability across the entire spectrum,
from sourcing of monomers, through synthesis and uses, to
return and further use. For short-term approaches, research has
opened promising avenues related to the sourcing of suitable
monomers from microorganisms and plants, the production of
biodegradable and recyclable polymers with useful properties
and the development of methods for the recovery of monomers
at the end of the useful life of the material. The challenge for
chemistry is a multi-faceted one, as illustrated by the case of
microplastics (particles < 5 mm in size). These are either used as
small beads in many applications in cleaning and cosmetics, or
result from physical degradation of macroplastic products.
They have become ubiquitous in the environment, even in deep-
ocean and polar regions (microplastics have now been
observed62 in fresh snow in the Antarctic), and have been
identied as a major threat to ecological niches such as coral as
well as to overall environmental stability. Chemists need to take
a comprehensive, Earth-system approach to the design,
production and fate of plastics to eliminate this environmental
hazard, including through attention to biodegradation,63

recapture and reuse/recycling of plastic materials in green
chemistry and circular processes, including strategies and
processes for depolymerization.64
Element stewardship

Every element in the periodic table with a stable isotope (as well
as some radioactive ones) nds commercial applications65 and
the number and diversity of these uses is continuously mush-
rooming. Moreover, of more than 60 elements that can be
detected in at least trace amounts in the human body, at least 28
are thought to be required for aspects of human metabolism and
most of the elements are utilized in pharmaceuticals and other
medical products.66 Situated at the conuence of these
manufacturing and health interests, chemistry's capacities to
analyse, synthesise and design materials, complemented by
increasing understanding about the interactions between chem-
icals and the environment, now dene an emerging, critical role
for chemistry: to be a leader in the stewardship of the planet's
element resources. EuChemS has made important contributions
to this objective through its work to highlight element scarcity
and to engage on this issue at the science–policy interface.67

For a number of elements, low abundance levels and/or very
restricted distribution of favourable extraction sites, combined
with high importance in large-scale uses, has led to a focus on
their ‘strategic’, ‘critical’ or ‘endangered’ character.68 Among
prominent examples, lithium is receiving increasing attention
© 2022 The Author(s). Published by the Royal Society of Chemistry
due to its importance in batteries, making it a critical element for
the global energy transition to electric-powered vehicles. With
pressure on supplies from the known main sources, which are
located in only a few countries (especially Argentina, Australia,
Bolivia, Chile, China, and USA) and with a low substitutability at
present, heightened attention is being given to new sources
(including seawater) and Li substitutes, for example, batteries
based on other metals such as Al, Au, Fe, Mg, Na, Zn.69 There is
an urgent need to solve the battery problem for storing energy
sustainably as the world moves towards decarbonised energy
supplies. This example shows how element stewardship has
multi-sectoral ramications, ranging from policies to ensure
access, as a strategic national, regional or geopolitical issue, to
science and technology challenges linked with the efficiencies of
extraction, use, recovery and recycling of available supplies and
with the continual need to identify practical alternative materials
to build resilience70 to threatened supply shortages.

For other, more highly abundant materials, elements stew-
ardship must especially focus on concerns about the overall
biogeochemical ows of anthropogenic materials and ways to
recycle materials or return them to the environment with the
least possible harm. The implications of chemistry principles
that have long been the bedrock of the discipline – including
that matter cannot be created or destroyed, but only trans-
formed; and that entropy favours the increasing dispersal of
both matter and energy – need to be understood also at
a planetary scale. The dilution and dispersal of elements at large
scale is both a waste of nite resources and a threat to the
environment that supports all life on the planet, yet the avoid-
ance of this waste also consumes energy and resources.

Messages for the chemistry community

There have been alarms in the past, alerting the world to the
growing dangers of increasing resource utilization, matter
transformation and lack of attention to waste in all its forms,
but these rarely resulted in effective action. This would have
required major disruptions to economies and uncomfortable
changes to patterns of personal, social and political behaviour.
However, the latest alarm call, signalled by transgression of
planetary boundaries and evidence that we are already at the
brink of catastrophic long-term changes to Earth systems, is
louder and more urgent. That the transgression of planetary
boundaries is, in many cases, intimately connected with
biogeochemical ows, makes the call of particular relevance to
the profession of chemistry, which needs to contribute to
practical technical solutions as well as carrying and amplifying
the message at the science/society/policy interface. Fortunately,
chemistry now has a better understanding of sustainability and
more tools than ever with which to help achieve sustainable
solutions – but it will need to undergo deep-seated changes, as
highlighted here, to make the needed contributions.

Chemistry is vitally important for understanding and
managing Earth's material and biogeochemical ows. Both
conceptual and strategic shis are needed in the design prin-
ciples and planning of chemical transformations. These shis
necessitate extending the sphere of chemistry's concern beyond
Chem. Sci., 2022, 13, 11710–11720 | 11715
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the conversion of resource to target, by adding the requirement
that all material outputs will be further utilised, either by
conversion to a new serviceable resource or by return to the
cradle. Exemplifying the principles of circularity, the shis
must aim to maintain the utilitarian value of chemical matter
for as long as possible. Beyond the issue of conservation of
useful material, the conceptual and strategic shis must also
provide the bridge between chemistry and the critical determi-
nants of sustainability and stability of Earth systems encapsu-
lated in the planetary boundaries framework.

Stewardship of the planet's chemical resources is funda-
mental to efforts to reduce and, in future, prevent the trans-
gression of planetary boundaries that presently threatens the
stability of Earth systems on which all societies depend. The
implications for chemistry involve reorientation of all aspects of
the discipline and profession. In education, this includes a redi-
rection of content towards green and sustainable chemistry,35,45a

coupled with the development of knowledge and competencies
related to systems thinking, convergence working and biogeo-
chemistry principles. In research, it includes awareness of the
planetary boundaries and planetary impacts of biogeochemical
ows, as well as the honing of skills in cross-disciplinary working
and systems-based approaches. In industry, it includes
a commitment to incorporate comprehensively the tools avail-
able, such as life-cycle assessments, circular material ow and
absolute environmental sustainability criteria, into the develop-
ment of processes and products that are benign and circular by
design and avoid transgression of planetary boundaries.
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© 2022 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1038/s41378-020-00235-w
https://doi.org/10.1007/s12274-021-4009-4
https://doi.org/10.1063/5.0069736
https://doi.org/10.1002/er.3756
https://doi.org/10.1002/er.3756
https://doi.org/10.1039/D0TA10620H
https://doi.org/10.1039/D0TA10620H
https://doi.org/10.3389/fenrg.2021.580808
https://doi.org/10.1038/s41586-022-05108-y
https://doi.org/10.1201/b1668
https://doi.org/10.1007/s11244-016-0551-9
https://doi.org/10.1007/s11244-016-0551-9
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
https://doi.org/10.1126/science.abm8566
https://doi.org/10.1126/science.abm8566
https://www.intechopen.com/chapters/68288
https://www.intechopen.com/chapters/68288
https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf
https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf
https://doi.org/10.1002/ese3.117
https://doi.org/10.3390/en15030887
https://doi.org/10.1007/s10311-020-01133-3
https://doi.org/10.1016/j.jcou.2020.101432
https://doi.org/10.1016/j.jclepro.2020.123558
https://doi.org/10.1016/j.jclepro.2020.124785
https://doi.org/10.1038/d41586-022-00807-y
https://doi.org/10.1038/d41586-022-00807-y
https://doi.org/10.1021/acs.chemrev.7b00435
https://doi.org/10.1057/9781137530707
https://doi.org/10.1057/9781137530707
https://doi.org/10.1126/science.aay3060
https://doi.org/10.1038/d41586-022-01109-z
https://www.eea.europa.eu/publications/GH-07-97-595-EN-C/Issue-report-No-6.pdf
https://www.eea.europa.eu/publications/GH-07-97-595-EN-C/Issue-report-No-6.pdf
https://doi.org/10.1016/j.jclepro.2016.06.164
https://doi.org/10.1016/j.jclepro.2016.06.164
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://www.scopus.com/record/display.uri?eid=2-s2.0-0025701217&origin=inward&txGid=7bf5ac423a6dba3205ae35566a11a257
https://doi.org/10.1016/j.jsps.2018.07.011
https://doi.org/10.13128/Substantia-894
https://doi.org/10.1039/C8GC00482J
https://doi.org/10.1007/s42452-020-2019-6
https://www.wiley-vch.de/books/sample/3527315527_c01.pdf
https://www.wiley-vch.de/books/sample/3527315527_c01.pdf
https://doi.org/10.1002/anie.201709949
https://doi.org/10.1016/j.isci.2021.103489
https://doi.org/10.1039/D0GC03313H
https://doi.org/10.1039/D0GC03313H
https://doi.org/10.1038/s41557-019-0226-9
https://doi.org/10.1126/science.aba49
https://doi.org/10.1021/acssuschemeng.1c00243
https://doi.org/10.1016/j.cogsc.2020.100434
https://doi.org/10.1038/d41586-019-00017-z
https://www.lactualitechimique.org/Pour-les-cent-ans-a-venir-reflexions-sur-l-enseignement-de-la-chimie-et-la-durabilite
https://www.lactualitechimique.org/Pour-les-cent-ans-a-venir-reflexions-sur-l-enseignement-de-la-chimie-et-la-durabilite
https://www.lactualitechimique.org/Pour-les-cent-ans-a-venir-reflexions-sur-l-enseignement-de-la-chimie-et-la-durabilite
https://www.chemistry.or.jp/opinion/ronsetsu1710-2e.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sc03603g


Perspective Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Se

pt
he

m
ba

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
/1

5/
20

26
 3

:0
8:

27
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
I. Chabay, B. de Wit, R. Langlais, D. Mills, P. Moll, I. M. Otto,
A. Petersen, C. Pohl and L. van Kerkhoff, Environ. Sci. Policy,
2013, 28, 60–70, DOI: 10.1016/j.envsci.2012.11.008.

46 S. Kaza, L. C. Yao, P. Bhada-Tata and F. Van Woerden. What
a Waste 2.0: A Global Snapshot of Solid Waste Management to
2050. World Bank, Washington DC, 2018, https://
openknowledge.worldbank.org/handle/10986/30317.

47 S. A. Matlin, G. Mehta, H. Hopf, A. Krief, L. Keßler and
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