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Metal- and base-free tandem sulfonylation/
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A metal- and base-free 5-endo-trig sulfonylative cyclization between 1,5-dienes, aryldiazonium salts and

SO, (from SOgen) is presented. This method could successfully produce sulfonylated pyrrolin-2-ones in
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one pot with excellent regioselectivity and good-to-excellent yields. This strategy features mild reaction

conditions and broad substrate scope. Moreover, a scale-up reaction and three synthetic applications
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Introduction

Pyrrolin-2-ones and their N-heterocyclic compound derivatives,
widely exist in natural plants,’ pharmaceuticals® and bioactive
molecules.® Similarly, sulfonyl groups are frequently found in
pharmaceuticals* and photoelectric materials® due to their
unique chemical properties. Numerous studies have indicated
that the incorporation of sulfonyl groups into heterocycles
could enhance their pharmacological activity.® Therefore, great
efforts have been devoted to explore efficient and straightfor-
ward methods to build sulfone-containing N-heterocyclic
frameworks.

Radical cascade cyclization reactions represent a powerful
strategy for the synthesis of functionalized cyclic structure,
characterized by multiple C-C/C-X bond-forming in one step.”
The incorporation of sulfonyl group into heterocycles by radical
cascade cyclization reactions has aroused extensive interest
among scientists.® In recent years, many sulfone-containing
heterocyclic frameworks have been constructed by radical
cascade cyclization reactions, such as sulfonylindoles,® sulfo-
nylindolins,* sulfonylated pyrrolidines,"” sulfonylated phe-
nanthridines,"””  sulfonylated benzofurans,” sulfonated
oxazolines," sulfonylated spirocycles' and others.'® In 2021,
sulfonylated pyrrolinones were synthesized via sulfonylation/
cyclization of 1,5-dienes with sulfonyl chlorides or sodium
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demonstrate the practicality of this method. Lastly, control experiments indicate that the 5-endo-trig
sulfonylative cyclization may proceed in a radical pathway.

sulfinates by Wang and co-workers (Fig. 1a and b).”” However,
due to the limited accessibility of sulfonyl chlorides and sodium
sulfinates, these two methods suffered from a narrow range of
substrates. Besides, transition metal (Cu and Ag), base and
elevated temperature were essential in these transformations.
On the other hand, direct insertion of sulfur dioxide (SO,)
provides an alternative and efficient approach to introduce
sulfonyl moiety into molecules.'®* Recently, a cheap and
bench-stable SO, surrogate (SOgen) has been developed by our
group, which has been successfully applied in several sulfony-
lation reactions.*” Inspired by Wang's work and our continuous
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Fig. 1 Overview of tandem sulfonylative cyclization of 1,5-dienes: (a)
sulfonyl chlorides as sulfonylation reagents; (b) sodium sulfinates as
sulfonylation reagents; (c) SOgen as sulfonylation reagents (this work).
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interests in SO, chemistry, we herein attempt to construct sul-
fonylated pyrrolinones using SOgen as SO, surrogate (Fig. 1c).
This transformation features metal- and base-free conditions
and could proceed smoothly at room temperature to form sul-
fonylated pyrrolinones with excellent regioselectivity and good
to excellent yields.

Results and discussion

We started the studies by evaluating the reaction between 1,5-
diene (1a), 4-methylbenzenediazonium tetrafluoroborate (2a)
and SO, gas (from SOgen) under metal- and base-free condi-
tions. Pleasingly, when the reaction was carried out in NMP at
room temperature for 24 h, desired product 3a was successfully
obtained in 91% yield with excellent regioselectivity (Table 1,
entry 1).

Then we explored the influence of other solvents on this
reaction, the target product (3a) was not obtained in most
solvents, such as THF, MeCN, DCM, toluene and MeOH (Table
1, entries 2-6). When the solvent was DMA, DMF and DMSO, 3a
was formed in only poor yields (Table 1, entries 7-9). Next, the
amount of SO, (from 2.5 equiv. to 4.0 equiv.) was investigated,
and the results indicated that 4.0 equiv. was the best choice
(Table 1, entries 10-12). Although this reaction could work
under an air atmosphere, argon atmosphere proved to be more
beneficial for the transformation (Table 1, entry 13). Finally,

Table 1 Optimization of reaction conditions®

o
Ac \NJ\H/ME
Ph&

1a 2a 3a

o

N,BF, M
/@ B 50, (4.0 equiv) Ac\% /@/Me
- . -
o Me 0=S,

NMP, rt, 24 h PH E

Entry Variation from std conditions Yield of 3a” (%)
1 None 91 (87)°
2 THF instead of NMP 0

3 MeCN instead of NMP 0

4 DCM instead of NMP 0

5 Toluene instead of NMP 0

6 MeOH instead of NMP 0

7 DMSO instead of NMP 21

8 DMF instead of NMP 20

9 DMA instead of NMP 56

10 3.5 equiv. of SO, 86

11 3.0 equiv. of SO, 80

12 2.5 equiv. of SO, 74

13 Air instead of Ar 54

147 DABSO as SO, surrogate 71

159 Na,S,0s5 as SO, surrogate 53

164 K,S,05 as SO, surrogate 52

174 HOCH,SO,Na-H,0 as SO, surrogate 0

% Standard conditions: chamber A, SOgen (0.80 mmol), 1-methyl-4-
vinylbenzene (0.81 mmol), tetradecane (1.0 mL), at 100 °C for 10 min;
chamber B, 1a (0.2 mmol, 1.0 equiv.), 2a (0.44 mmol, 2.2 equiv.), NMP
21.0 mL), at room temperature for 24 h under argon atmosphere.

Yields were determined by 'H-NMR analysis using 1,3,5-
trimethoxybenzene as an internal standard. ‘ Isolated yield in the
parentheses. ¢ The reaction was set up in a 4 mL vial.
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other sulfur dioxide surrogates were examined. The use of
DABSO and inorganic SO, surrogates (Na,S,05 and K,S,0s)
could both lead to the formation of product 3a but with lower
yields (Table 1, entries 14-16). Unfortunately, rongalite reagent
(HOCH,SO,Na-H,0) would hamper the reaction (Table 1,
entry 17).

After determining the optimal reaction conditions, we began
to explore the substrate scope of this reaction, and the results
are summarized in Scheme 1. We first investigated the func-
tional group compatibility of aryldiazonium tetrafluoroborates
in the transformation. Alkyl substituted aryldiazonium tetra-
fluoroborates at the meta- or para-position of the phenyl ring
proceeded well and afforded corresponding products 3b-3d in
good yields (83-93%). While a methyl substituent at the ortho-
position could lead to a lower yield (67%, 3e), possibly due to
the steric hindrance. In addition, substrates with methoxy or
phenoxy group delivered desired products 3f and 3g in 83% and
86% yield, respectively. Substrates bearing a biphenyl or 2-
naphthyl group showed good reactivity, producing expected
products (3h and 3i) in excellent yields. Notably, halogen groups
were found to be well tolerated under the standard conditions
(3j-3q). Moreover, substrates with electron-withdrawing groups
such as MeCO-, PhCO-, CF;0-, MeSO,- were subject to the
reaction conditions, and gave corresponding products (3r-3v) in
good yields. In addition, heterocyclic diazonium salt was found
to be compatible in the transformation (3w). Finally, aryldia-
zonium tetrafluoroborates with complicated substituent struc-
tures could also work smoothly to afford 3x and 3y in 92% and
90% yield, respectively.

Next, the substrate scope of 1,5-dienes was investigated. The
results showed that halogen groups (-Cl, -Br and -I) on 1,5-
dienes had little effect on the reaction, and the corresponding
products 3z-3ae were formed in 80-93% yields. Notably, 1,5-
diene with a strongly electron-withdrawing group (-NO,) could
deliver desired products 3af in an excellent yield (90%). Mean-
while, the one with an electron-donating group (-Me) could also
give products 3ag in a similar yield (91%). Naphthalene ring was
well tolerated, achieving 3ah in 92% yield and the configuration
of compound 3ah was confirmed by X-ray crystallography.
Pyridine moiety was also adapted to the reaction conditions and
generated 3ai in 80% yield. In addition, it was found that ben-
zodioxole moiety (3aj) could be well tolerated under the stan-
dard conditions. When R* group was replaced by other
substituents, such as benzyl, phenyl, n-butyl and -CH,COOEt,
desired products (3ak-3ap) could still be made in good-to-
excellent yields. When R' group was alkyl, the sulfonylation
reaction could still proceed, demonstrated by two successful
examples (3aq and 3ar). It was worth noting that compound 3ar
contained two isomers (3ar-1: 3ar-1 = 1:1).

The practicality of this methodology was successfully illus-
trated by the production of 3a with 90% yield in a scale-up
reaction (Scheme 2(1)). To further demonstrate the synthetic
utility of this method, 3a was then applied in subsequent
transformations. In the presence of diethylamine, the acetyl
group on the nitrogen atom could be easily removed in
a quantitative yield (Scheme 2(2)). Then, different substituents
could be introduced on the N atom. For example, N-H could be

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Substrate scope?. ?Reaction conditions: chamber A, SOgen (0.80 mmol), 1-methyl-4-vinylbenzene (0.81 mmol), tetradecane (1.0
mL), at 100 °C for 10 min; chamber B, 1 (0.2 mmol, 1.0 equiv.), 2 (0.44 mmol, 2.2 equiv.), NMP (1.0 mL), at rt for 24 h under argon atmosphere. All

yields are isolated yields.

transferred to N-Me (5) in 90% yield in a mixture of sodium In order to understand the mechanism of this reaction, three
hydride and iodomethane (Scheme 2(3)). In addition, the amide  control experiments with radical scavengers were carried out.
moiety of 3a could be reduced to hydroxy amine (6) via ring- Firstly, in the presence of radical scavenger (TEMPO), the

opening by NaBH, in excellent yield (Scheme 2(4)).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 (a) Control experiments and (b) proposed mechanism.

was identified by LC-MS (Scheme 3a(1)). Secondly, when 1,1-
diphenylethylene or BHT was added, the reaction showed
similar result and corresponding aryl radicals adduct (8 or 10)
sulfonyl radicals adduct (9 or 11) were identified, respectively
(Scheme 3(2) and (3)). These results indicated that this trans-
formation might proceed through a radical pathway.

Base on the control experiments and literature,** a plausible
reaction mechanism is proposed herein (Scheme 3b). One of
lone-pair electrons on the N atom of 1,5-diene is transferred to
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aryldiazonium tetrafluoroborate, which leads to the formation
of nitrogen radical cation species (A) and aryl radical. Then aryl
radical is trapped by sulfur dioxide and gives aryl sulfone radical
(B). Sulfonyl radical B selectively adds to the double bond of 1,5-
diene and produces alkyl radical species C. Subsequently,
intramolecular 5-endo-trig cyclization produces intermediate D,
which has an equilibrium with E. Finally, the desired product
(3) is produced via tautomerization from E.

Conclusions

In conclusion, a metal- and base-free sulfonylative cyclization of
1,5-dienes with aryldiazonium salts via the insertion of SO,
(from SOgen) has been developed. This method can work under
mild conditions and provide the desired products in good yields
with excellent regioselectivity. In addition, this approach greatly
expands the substrates scope compared with previous reported
work. Preliminary mechanism studies indicate that this 5-endo-
trig sulfonylative cyclization may proceed in a radical pathway.
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