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A machine learning approach for predicting the
fluorination strength of electrophilic fluorinating
reagents†

Vaneet Saini

The unusual properties of a wide range of organofluorine compounds have provided strong incentives

to the scientific community for the development of this field. In parallel to the constantly growing

number of organofluorine compounds, an unusually high number of electrophilic N–F fluorinating

reagents have emerged as potential fluorinators to achieve fluorine substitution in a simple and efficient

manner. Bench stability, crystalline nature and modular synthesis are some of the key characteristics that

make them increasingly important in synthetic transformations. In this context, it is important to under-

stand the reactive power of these N–F fluorinating reagents in a quantitative manner. Experimental and

DFT investigations to obtain a quantitative understanding of the fluorination power of these reagents are

resource intensive, laborious and expensive. Herein, we propose a machine learning approach for pre-

dicting the relative power of a wide range of N–F fluorinating reagents by utilizing a simple and fast

SMILES-based molecular encoding approach. A neural network algorithm was employed on a novel

dataset consisting of four molecular descriptors, two categorical descriptors and 260 data points and

was successful in predicting the fluorine plus detachment values for N–F fluorinating reagents belonging

to six different categories.

Introduction

The importance of fluorine was largely ignored by the pharma-
ceutical industry until the first half of the 20th century,
potentially due its absence in nature’s pool, as the majority of
drug molecules were either natural product derivatives or
inspired by them.1 Additionally, the general notion that the
high oxidation potential of fluorine would make it quite
difficult to introduce in organic molecules kept it distanced
from drug design and synthesis. However, the advent of
5-fluorouracil and fludrocortisone, which have remarkable
biological properties, in the 1950s completely transformed
the prevailing perspective regarding the inclusion of fluorine
atoms in potential drug candidates.1 The recent presence of
fluorine in over 50% of the blockbuster drugs is suggestive of
the growing prominence of organofluorine compounds in the
pharmaceutical industry.2 In fact, it has been recognized that
the replacement of hydrogen with fluorine in a potential drug
can enhance therapeutic efficiency and impart several benefi-
cial physicochemical characteristics to the molecule by

modulating its pKa, lipophilicity, binding affinity, etc.3,4 Con-
sequently, fluorine-containing drugs such as ciprofloxacin,
Prozacs, Lipitors, etc., have found widespread use in the
healthcare sector for the treatment of various ailments. Since
the introduction of fluorine imparts several unique properties
to the molecule, organofluorine compounds are also prevalent
in the agrochemical industry, as evidenced by the fact that
around 30% of all agrochemicals are fluorinated compounds.5

The widespread importance of fluorine in the pharmaceu-
tical and agrochemical industries has provided a strong incen-
tive to the synthetic community for the development of
practical and efficient methods with the aim of deploying
fluorine into molecules with greater simplicity. As a conse-
quence, a variety of fluorinating reagents have been devised for
the selective installation of fluorine in biologically relevant and
material-specific molecules.6 Amongst the various available
reagents, the development of electrophilic fluorinating
reagents, especially N–F reagents, has seen tremendous pro-
gress, potentially due to the ease with which they can be
prepared and handled compared to nucleophilic fluorinating
reagents. Additionally, their modular synthesis allows chemists
to fine-tune the electronic and steric environment of the
reagents to achieve the desired reactivity and selectivity in
organic transformations. Consequently, huge numbers of elec-
trophilic fluorinating reagents belonging to different classes
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have been developed, many of which are now commercially
available. These reagents are known to fluorinate a wide range
of nucleophiles, for example, activated enols and aromatics,
stabilized carbanions, organometallic reagents, etc. One of the
most popular N–F fluorinating reagents is Selectfluort, 25
tonnes of which are consumed each year for industrial and
laboratory-scale syntheses.6–9 Other commercially available and
widely used N–F fluorinating reagents include N-fluoropyridinium
salts and N-fluorobenzenesulfonimide (NFSI), which were devel-
oped by Umemoto10 and Differding,11 respectively.

The advent of a wide range of fluorinating reagents necessi-
tates the need to understand the relative fluorination abilities
of these reagents, which would not only assist organic chemists
in selecting the right reagents for a synthetic transformation,
but also promote the design of novel reagents. An initial
attempt aimed at quantifying the fluorination ability of N–F
fluorinating reagents was made by Gilicinski and co-workers in
the year 1992.12 Their scale was based on the experimental
determination of the one-electron reduction potential (Ered

p ) of
ten N–F fluorinating reagents, where molecules with a lower
reduction potential have higher fluorination strength. The
electrochemical scale was substantiated by correlating the
reduction potential with literature yields of the reactions of
these reagents with aromatic compounds. Several other groups
have employed experimental kinetic approaches to obtain
insight into the relative fluorination power of a handful of
N–F reagents. As an example, Togni and co-workers ranked seven
N–F reagents based on relative kinetic data for the competitive
halogenation reaction of a b-keto ester with N–F reagents and
N-chlorosuccinimide.13 Similarly, Hodgson and co-workers
developed a relative quantitative scale by studying the kinetics
of ten electrophilic N–F reagents with a 1,3-dicarbonyl
derivative.14 The major limitation associated with these methods
is the use of a limited number of reagents, since empirical
determination of the reduction potential or kinetic profile of
large number of molecules is a time-consuming and resource-
intensive approach. Therefore, several theoretical scales have
been proposed that aim to address some of the limitations
imposed by experimental procedures. For example, Sudlow and
Woolf reported a thermodynamic reactivity scale, and the com-
putationally derived enthalpies were found to agree well with the
empirical results.15 However, this approach was restricted to
only 13 closely related reagents, and a less-accurate semi-
empirical (AM1) level of theory was used. Inspired by the
quantitative scale first proposed by Christe and Dixon16 for a
few XFn

+ based fluorinating agents such as KrF+, N2F+, XeF+, etc.,
Cheng et al. extended this approach to 130 N–F reagents in two
of the most common solvents, dichloromethane (DCM) and
acetonitrile (MeCN).6,17,18 The scale is based on computed
fluorine plus detachment (FPD) values, which are representative
of the heterolytic bond dissociation energies of the N–F bond of
the fluorinators. The FPD values were obtained using DFT at the
M06-2X/6-311++G(2d,p)//M05-2X/6-31+G(d) level of theory with
the inclusion of the SMD solvation model. DFT calculations
using advanced methods, such as the one used in this study, can
easily become time-limited, as these approaches typically scale

with a computation time complexity of O(N4) depending on the
molecular size (N).19 Therefore, depending on the system hard-
ware, FPD calculations can take several hours or even days for a
medium-sized molecule at this level of theory.

Although the scale based on FPD parameter is a compre-
hensive scale for determining the relative fluorination strength
of a wide range of N–F fluorinating reagents, quantum-
chemistry-assisted FPD calculations at an advanced level of
theory using proprietary software are time-consuming and
expensive. Therefore, there is a need for alternate approaches
that would quantitatively predict the fluorination strength of
the reagents at a faster pace and lower computational cost, and
using open-source software.

Recently, machine learning (ML) methods have emerged as an
attractive tool for predicting various chemical and physical prop-
erties of organic molecules, such as polarity,20 solubility,21,22

pKa,23 electrophilicity,24 nucleophilicity,25,26 bond dissociation
energies,27,28 etc. In fact, the scientific community has started to
view them as a potential alternative to expensive quantum
chemical methods, as they can provide similar accuracy at a
much lower computational cost. These techniques have gained
popularity because of their ability to learn complex patterns and
predict trends with high accuracy and at a faster pace. For
example, a properly trained model can predict the electronic
energies of molecules in a fraction of second, which is a signifi-
cant advancement over traditional methods.29 Considering the
vast amount of data available for the dissociation energies (FPD)
of a wide variety of N–F fluorinating reagents, we sought to
introduce a ML model to predict FPD values by generating a
novel dataset based on SMILES (Simplified Molecular Input Line
Entry System) representations of molecules.30

Results and discussion
Dataset and descriptors

It should be noted that the advantages furnished by these ML
approaches comes at the price of big data production, as the
architecture requires vast amount of data in the form of
descriptors and observations in order to train. In this context,
260 FPD values corresponding to 130 N–F fluorinating reagents in
two solvents, namely, dichloromethane (DCM) and acetonitrile
(MeCN), were collected from literature sources.17,18 The N–F fluor-
inating reagents were categorized into six different categories,
namely, N-fluorosulfonimides, N-fluorosulfonamides, N-fluro-
carboxamides, N-fluoropyridiniums, N-fluoroheterocycles, and N-
fluoroammoniums, as suggested by Cheng and co-workers in their
seminal publication (Fig. 1A).17 The N-fluoropyridinium salt
category has the greatest number of unique fluorinating
reagents with 40 molecules, followed by N-fluorosulfonimides
and N-fluoroammoniums with 34 and 21 molecules, respec-
tively (Fig. 1B). The remaining classes, i.e., N-fluorosul-
fonamides, N-fluorocarboxamides, and N-fluoroheterocycles,
contributed only 20, 10 and 5 molecules, respectively. The
FPD values for these fluorinating reagents are typically in the
range of 110.9 to 278.4 for MeCN and 112.3 to 290.4 for DCM.
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Generally, N-fluoroammoniums have a wider range of FPD
values (110.9–256.2), whereas those of the other fluorinating
reagents are narrowly distributed (Fig. S1, ESI†).

Next, the essential step is to encode the molecules in the
form of features, for which molecular representation is of
utmost importance. The use of atomic coordinates (x,y,z) is
one method of molecular representation and has been
employed for predicting several molecular properties; however,
their use is often limited due to the high computational
cost.31,32 Therefore, SMILES-based molecular representation
was selected as it is a straightforward way of interpreting a
molecule, as atoms, bonds, and branches can be denoted by
their symbolic or grammatical specifications.30 Recently, it has
been used as a standard input method for calculating various
descriptors in state-of-the-art cheminformatics packages at an
encouragingly low computational cost.33,34 Additionally, it has

been employed in several ML prediction studies, including
studies related to de novo chemical design,35 molecular prop-
erty predictions,36 screening compounds for drug discovery,37

etc. Thus, in order to use a ML model for predicting the FPDs of
a wide range of N–F fluorinating reagents and identify the
various features that contribute most to the success of ML
algorithm, SMILES-based descriptors were extracted and their
quantitative relationship with the FPDs was evaluated. In this
work, an open-source Mordred script based on the Python pro-
gramming language was used for extracting 1613 descriptors.33

Mordred is integrated with the RDKit platform,34 another Python
package for converting SMILES strings to molecular representa-
tions followed by feature extraction to generate various topologi-
cal, 1D, and 2D descriptors. Therefore, a total of 1613 descriptors
were calculated solely from SMILES representations of the 130
unique molecules within a matter of seconds, and were then used

Fig. 1 (A) Representative examples of various N–F fluorinating reagents belonging to 6 categories. (B) Count plot representing the total number of N–F
fluorinating reagents belonging to each class.
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for the predictive modelling study. Both ‘‘Type of Reagent’’ (TOR)
and ‘‘Solvent’’ were added to the dataset as categorical descrip-
tors, as the advanced ML algorithm allow us to encode these
categorical descriptors into numerical ones via a process known
as one-hot encoding.

Feature preprocessing

With the raw dataset constituting 260 FPD values (130 in each
solvent), 1613 numerical descriptors calculated from SMILES
notations, and 2 categorical descriptors, feature engineering,
which aims to decrease the model complexity and increase
interpretability without eroding model efficiency and predictive
power, was performed. The first step in this direction is
eliminating descriptors with any missing values, which reduced
the number of features to 1144. The variable reduction process
was then followed, which reduces the number of noisy features,
increases accuracy and learning efficiency, and simplifies the
model. In this method, the correlation-based variable reduction
process was employed, which removes redundancy by eliminating
highly correlated features. The Pearson correlation coefficient (r)
was used to identify linearly correlated features, and one of the
features with r Z 0.80 was removed, which left us with a truncated
dataset consisting of 378 numerical descriptors. Furthermore, all
the features with constant values were removed and the dataset
constituting 175 numerical descriptors was subjected to a stan-
dardization procedure. Before model evaluation, one hot encod-
ing was performed in order to include TOR and solvent as
descriptors, which converted these categorical descriptors into
discrete values (0 or 1 depending on the absence or presence of
that category).38

Since the best algorithm cannot be found analytically, as the
accuracy depends on various factors such as the type of
problem, number of features and observations in the dataset,
quality of the dataset, etc., screening of the most common and
popular algorithms must be carried out to find the best one.39

Therefore, the most common and popular algorithms, each

with a different theoretical base, were evaluated for predicting the
FPD values of N–F fluorinating reagents. The coefficient of
determination (R2) and root mean square error (rmse) were
employed, as they are the most commonly used metrics for
ML-based regression studies.39 The dataset was split, with 85%
as the training set and 15% as the test set. For the splitting, two
things were considered: (a) the data from different types of
reagents should be proportional in both the training and test
set (Table S1, ESI†). (b) In order to avoid redundancy, the
combination of solvent pair FPD values for a particular molecule
were kept in either the training or test set. For example, the FPD
values of Selectfluor in both MeCN and DCM were kept in the
training set, as otherwise it would have been easier for the model
to predict the value in one of the solvents given another value in
the training set, leading to a biased model. For model comparison
purposes, cross-validation was performed using a five-fold cross
validation procedure, which involved splitting the training set into
five equally-sized non-overlapping sets.40 In this approach, one of
the sets is held out as a test set, while the remaining sets are used
for training purposes. After five iterations, the metrics are com-
puted for each configuration, and the average of these metrics are
used for model comparison. In the end, the model trained on the
whole training set was evaluated on the external test set (15%) to
compare the predictive power of the model. A general workflow of
the ML process followed in this study is given in Fig. 2A.

In order to visualize the data constituting 175 numeric
descriptors along with the target values, the t-distributed sto-
chastic neighbor embedding (t-SNE) technique was used which
reduces the whole dataset into two dimensions (Fig. 2B).41 It is
an unsupervised ML algorithm that is based on keeping similar
points together in a lower-dimensional space. Dimensionality
reduction of the whole dataset into two components with respect
to the TOR clearly shows clustering of data points. These
observations point towards the fact that descriptors belonging
to a particular type of fluorinating reagent are inherently
analogous.

Fig. 2 (A) General workflow of the machine learning approach used in this study. (B) Visualization of the whole dataspace constituting 175 molecular
descriptors and FPD values in a two-dimensional space using t-SNE.
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Model evaluation

The ML algorithms screened in this study were MLR (multiple
linear regression), PLS (partial least squares), KNN (k-nearest
neighbor), SVM (support vector machine), AR (AdaBoost regressor),
RF (random forest), and NN (neural network).39 Cross-validation
scores are established benchmarks for comparing model accuracy
in the initial stages.40 Therefore, the cross-validation R2 and rmse
scores were compared for model screening. The negative R2 score
observed for the MLR model clearly indicates that the model does
not follow the trend of the data (Table 1).42 PLS is an improved
version of MLR and produces better accuracy than MLR, especially
when the number of features is comparable to the number of
observations. In our case, the PLS model gave significantly
improved cross-validation R2 score of 0.719 over MLR; however,
the accuracy was lower than desired. This is an indication that the
FPD is not linearly dependent on the descriptors employed in this
study and some state-of-the-art ML algorithms must be investi-
gated. The main advantage that ML models have over classical
linear models is their ability to handle multicollinearity and a large
number of descriptors, which increases model performance at the
expense of increasing model complexity. KNN and SVM are well-
known cluster-based ML techniques and are appropriate for classi-
fication tasks; however, these were investigated in this study to test

their performance in the regression-based problem. These
techniques were found to be slightly better than the linear
approaches discussed above. In fact, SVM (R2 = 0.769) per-
formed better than KNN (R2 = 0.722) in predicting the FPD
values of N–F fluorinating reagents. Ensemble learning algo-
rithms such as AR and RF are important ML algorithms that
differ from each other in the manner in which the data is
sampled for training purposes. AR and RF clearly gave better
performance than the other ML model architectures evaluated
in this study.43 Out of the two tree-based models, RF out-
performed AR with a significant increase in the cross-
validation score (R2 = 0.829, AR; R2 = 0.932, RF).

In order to test the performance of deep learning approaches
in our study, a NN algorithm was used for predicting the
fluorination power of N–F reagents.44 A multilayer perceptron
(MLP)-based NN algorithm with three hidden layers was used.45

The NN model constitutes an input layer with neurons equiva-
lent to the number of features, followed by hidden layers with 64,
128 and 128 neurons, respectively, and finally an output layer
with a single neuron that yields the FPD values in the last step.
The hidden layers are equipped with a non-linear activation
function, ReLU (rectified linear activation function), which
allows the model to learn complex patterns in the dataset, while
the output layer is equipped with a linear activation function.
The NN algorithm trains the data using a technique known
as backpropagation. Initially, random weights are assigned,
and input data is propagated to the output layer via linear and
non-linear combinations of weights. At the end, the loss function
is calculated, which is improved over the course of various
iterations by adjusting the random weights. This technique is
known as backpropagation, and is the essence of NN training.
Excitingly, the use of the NN architecture gave high model
accuracy as suggested by the R2 cross-validation score of 0.995
(Table 1).

Table 1 Cross-validation metrics for various models screened in this
study using 85 : 15 training : test split

Entry Model R2 (cross-validation) RMSE

1 MLR �1.382 —
2 PLS 0.719 12.65
3 KNN 0.722 12.47
4 SVM 0.769 11.34
5 AR 0.829 9.99
6 RF 0.932 6.16
7 NN 0.995 1.48

Fig. 3 (A) Feature importance representing the contribution of each descriptor to the development of RF model in the decreasing order. (B) Plot
describing R2 scores for the layered approach for the NN model, where the x axis represents the total number of descriptors (3 = ‘TOR’ + solvent +
BCUTc-1h; 4 = 3 + BCUTdv-1l; 5 = 4 + GATS2c; 6 = 5 + MATS1c; 7 = 6 + AATS0Z; 8 = 7 + MATS2d).
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Machine learning models have often been criticized for
being a black box.46–48 In fact, in our case, although the state-
of-the-art NN model gave significantly enhanced performance
compared to the simplistic and interpretable linear models
such as MLR and PLS, the use of a large number of features
imparts a black-box character to the model, leading to an
inherently non-interpretable model. The question arises of
whether the model can be simplified without impacting the
performance or generalizability. This will lead to an interpre-
table and explainable model that is more acceptable in the
scientific field because of the reluctance to rely on results that
are difficult to understand via qualitative understanding.
Therefore, in order to obtain insight into the features that
contribute most to the training of the model, feature impor-
tance for the RF model was derived, which provides quantita-
tive information regarding the contribution of each descriptor
that is used for learning a specified prediction task. The top six
most-contributing descriptors were identified to be BCUTc-1h,
AATS0Z, MATS2d, MATS1c, GATS2c and BCUTdv-1l, as can be
seen in Fig. 3A.

In order to test the impact of reduction of the number of
numerical descriptors on the model performance based on the
feature importance chart (Fig. 3A), RF and NN models were
trained using the most-contributing features along with two
categorical descriptors, i.e., TOR and solvent. After model
evaluation, the data was trained on the whole dataset, followed
by estimation of the predictive power of the model on the
external 15% test set. It should be noted that the RF-based
feature importance algorithm is based on Gini impurity or
variance reduction, which only displays the magnitude of the
contribution that each descriptor makes.43 In this approach,
signs are usually ignored, i.e., information regarding the posi-
tive or negative contribution of the descriptor cannot be
obtained. Therefore, a layered approach was used in which
each feature was added sequentially to the dataset and perfor-
mance metrics were noted for the NN model. As is evident from
Fig. 3B, the use of only three descriptors, i.e., BCUTc-1h and
two categorical descriptors, gave lower cross-validation and
training R2 scores. The addition of BCUTdv-1l led to a signifi-
cant increase in the cross-validation and training R2 scores, and
a slight increase in the test R2 score, indicating the positive
influence of the descriptor on the output values. GATS2c and
MATS1c are another set of descriptors that contributed posi-
tively to the model training, as enhanced cross-validation,
training and test R2 scores were observed. However, the addi-
tion of AATS0Z and MATS2d to the dataset negatively impacted
the test scores, and the R2 scores plummeted to 0.909 and
0.927, respectively, for the NN model. A similar trend was
observed in the RF model, and complete evaluation metrics
are described in Table S2 and Fig. S5 (ESI†). Representative
metrics for the RF and NN models are shown in Table 2.
Clearly, reduction in the number of descriptors from 177 to 8
did not significantly decrease the model accuracy or predictive
power for either the RF or NN models. For example, the cross-
validation R2 score of RF for the eight-descriptor-based model is
0.933 with a rmse of 6.27 along with a high training R2 score of

0.992 and a low test R2 score of 0.787, which are comparable to
those of the 177-descriptor-based model. Similarly, the evalua-
tion of the NN model using eight descriptors gave comparable
cross-validation, training and test scores to the 177-descriptor
based model. Moreover, fine-tuning of the model with further
reduction in the number of descriptors to six led to an increase
in the predictive power and generalizability of both the models.
Overall, the six-descriptor based NN model gave better predic-
tive power compared to the RF model as suggested by their test
R2 scores of 0.967 (rmse = 3.84) and 0.915 (rmse = 6.12),
respectively (Table 2 and Fig. 4).

Predictions

A comparison of the top five and bottom five predicted test set
values with the actual FPD values using the NN model is shown
in Fig. 5. The NN model accurately predicts the fluorination
strength of N–F fluorinating reagents belonging to the different
categories, as shown in Fig. 5 and Table S3 (ESI†). As an
example, the FPD values of 1-fluoro-4-nitropyridinium and 1-
fluoroquinuclidin-1-ium in DCM (entries 1 and 2) can be
predicted with an absolute error equal to 0.1. In fact, 28
predictions out of 40 can be predicted with an absolute error
less than or equal to 3.0 (Table S3, ESI†). Out of the six
categories of N–F fluorinating reagents utilized in this study,
N-fluorosulfonimides and N-fluoropyridiniums were the hardest to
predict. For example, p-bromophenyl- and p-(t-butylphenyl)-
substituted N-fluorosulfonamide derivatives gave absolute errors
of 4.2 and 4.6, respectively, in DCM solvent (entries 7 and 8).
Similarly, N-fluoropyridinium derivatives, namely, 3-chloro-1-fluoro-
5-(trifluoromethyl)pyridinium-2-sulfonate (entry 9) and 2,6-dicyano-
1-fluoropyridinium (entry 10), gave relatively high absolute errors of
6.3 and 12.5, respectively, in DCM solvent. Out of the two solvents
used, predicted FPD values gave a slightly lower average absolute
error of 2.3 in DCM than in MeCN (absolute error = 2.6). Overall, the
NN architecture gave a strong predictive model for predicting the
FPD values of a wide range of N–F fluorinating reagents with an
average absolute error of 2.6 for all 40 test set values.

Interpretability

Out of the 175 relevant SMILES-based descriptors, the four mole-
cular descriptors used to furnish a NN model were BCUTc-1h,
BCUTdv-1l, GATS2c and MATS1c. BCUTc-1h and BCUTdv-1l are
eigenvalue-based descriptors as described by Pearlman et al.49,50

Table 2 Model evaluation metrics for RF and NN models using different
number of descriptors

Model
No. of
features

R2 (cross-
validation)

RMSE
(cross-
validation) R2 (training) R2 (test)

RMSE
(test)

RF 175 + 2 0.932 6.16 0.991 0.796 9.44
6 + 2 0.933 6.27 0.992 0.787 9.7
4 + 2 0.916 7.03 0.992 0.915 6.12

NN 175 + 2 0.995 1.48 0.998 0.892 6.87
6 + 2 0.990 2.28 0.997 0.927 5.70
4 + 2 0.963 4.04 0.983 0.967 3.84
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These descriptors take into account the connectivity and atomic
properties of the molecule, such as atomic weight, partial
charges and polarizability. As shown in Fig. 6A, the Pearson
correlation matrix of these four descriptors with the FPD values
reveals significant correlation of BCUTc-1h descriptor with the
FPD values (r = �0.74). The negative correlation between
the FPD values and BCUTc-1h descriptor is also evident from
the scatter plot (Fig. 6B). A similar trend was observed in the
feature importance chart, where BCUTc-1h was the most-
contributing feature to the RF model development. This is not
surprising, as the BCUTc-1h and BCUTdv-1l descriptors take into
account polarizability, which is strongly related to the charge
distribution of the atoms or molecules. In fact, it is an estab-
lished fact that the polarizability of molecules directly impacts
the bond dissociation energies of the participating atoms.51 In
order to derive chemical intuition from the relevant descriptors
used for this approach and to describe how changes in mole-
cular structure impact these descriptor values and hence the
reactivity, five electronically varied reagents from the N-

fluoropyridinium group were analysed. As shown in Fig. 7, the
FPD values decrease moving from electron-releasing to electron-
withdrawing substituents on the pyridine ring, leading to an
increase in the reactivity. This can be attributed to the decreased
electron density on the nitrogen atom of the pyridine ring with
the introduction of an electron-withdrawing group such as a
trifluoromethyl group, leading to a more polarized N–F bond
and hence increased reactivity. Analysis of the BCUTc-1h descrip-
tor, which is the most-contributing feature for our model, reveals
a positive correlation with the reactivity, as described before, and
can provide first-hand information regarding the reactivity of
new molecules. To substantiate this, a hypothetical fluoropyr-
idine molecule containing three trifluoromethyl groups was fed
to the model, and FPD prediction was obtained. As is evident
from the data in Fig. 7, the BCUTc-1h value is higher because of
the presence of highly electron-withdrawing groups, indicating
higher reactivity and a lower FPD value (209.6 in MeCN),
especially in comparison to the molecule containing only two
trifluoromethyl groups.

Fig. 4 (A) Regression plot for the RF model. (B) Residual plot showing actual FPD values and residual (actual – predicted) values for the RF model. (C)
Regression plot for the NN model. (D) Residual plot showing actual FPD values and residual (actual – predicted) values for the NN model.
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The other eigenvalue-based descriptor, namely, BCUTdv-1l,
does not show any notable correlation with the FPD values, as

suggested by the scatter plot between them (Fig. S2, ESI†). The
values are roughly constant for the reagents in each group of
fluorinators. The other two descriptors, namely, GATS2c and
MATS1c, which have a minor contribution to the model devel-
opment and significantly low correlation coefficient with the
FPD values, are autocorrelation descriptors.52 In these descrip-
tors, the atom pair distances are weighed by Gasteiger charges.
Since change in the charge distribution with distance impacts
the electronegativity of the atoms, their influence on the bond
dissociation energies, which are representatives of the FPD
values in this study, cannot be neglected and presumably plays
a minor role in predicting the FPD values.53 The scatter plots
shown in Fig. S3 and S4 (ESI†) also show random distribution
of values, signalling less weightage in modelling the FPD
parameter. Their values for the five N-fluoropyridinium salts
depicted in Fig. 7 also point towards their minor but complex
role, as no particular trend is observed with changes in the
groups on the molecules.

Applicability domain analysis

In order to identify the outliers in the training set and define
the reagents residing outside the applicability domain (AD) in
the test set, a universal and highly reliable basic theory of
standardization was applied.54 Outliers are generally a small
fraction of compounds in the training set whose feature values
are drastically different from those of the rest of the data
points. If the molecules in the test set are similar to these
outliers, the predictions would be below par, as the model is
unable to completely capture the features of that small fraction
of training set compounds. Therefore, their identification is
important, especially in traditional quantitative structure activity
relationship studies (QSAR) using multiple linear regression.

From careful analysis of Fig. 1B, one can easily presume that
the feature space of N-fluoroheterocycles, the class with the
smallest number of compounds (four in the training set and
one in the test set) would be different from the rest of the data
points. To substantiate this point in a statistical manner, the
‘‘Applicability Domain (using standardization approach) v1.0’’
software developed by Roy and co-workers was employed.54

This tool identifies compounds whose descriptor values lie
outside the range of mean � 3 standard deviation (SD) and
labels them as an outlier (training set) or outside AD (test set).
As is evident from Fig. 8, all the 5 N-fluoroheterocycles are
either above the threshold or at the borderline of the generally
accepted range of mean � 3SD. For example, compounds D1a
in the test set and D1b in the training set cross the threshold
value, and can be considered outside AD and an outlier,
respectively. However, it is surprising that despite being outside
AD, the NN model efficiently predicts the FPD value of D1a with
an absolute error of 1.5 in MeCN, which is quite less than the
average value of 2.6. The remarkable prediction accuracy for
this compound shows the importance of an advanced ML
algorithm such as NN, which can easily handle these anomalies
in the test set with only few analogous molecules in training.
The other three compounds belonging to the same group, D1c,
D2 and D3, are at the borderline and can be considered distinct

Fig. 5 Actual and predicted FPD values along with the absolute error
observed for various N–F fluorinating reagents for the NN model. Note:
The values are in DCM solvent, and the number in parentheses is the value
in MeCN.
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from rest of the data points in the training set. Additionally,
dinitrogen fluoride F7 with a unique structure and the lowest
FPD value also lies just below the threshold value of 3.0 and can
be considered as a borderline outlier. Surprisingly, ammonium
fluoride F8, which also has a dissimilar molecular structure
compared to the rest of the members of the group (N-
fluoroammoniums) has a SD (Snew) value of 2.64, which cate-
gorizes it as a normal member of the group.

Conclusion

In this study, we curated a novel dataset consisting of 260 FPD
values of 130 fluorinating reagents in two solvents, namely,
DCM and MeCN, and a total of 1613 descriptors generated from
SMILES notations of the molecules with the aid of RDKit-based

Mordred script. Out of the various models screened in this
study, NN was found to be the best performing model. Tree-
based model architecture such as RF also gave high accuracy;
however, slight overfitting was observed as suggested by wide
difference in the training and test R2 scores, which were 0.992
and 0.915, respectively. An RF-based feature importance algo-
rithm was used to identify the four molecular descriptors that
successfully contributed to the development of an NN-based
statistically robust model with high predictive power, as evi-
denced by the test R2 score of 0.967 and rmse of 3.84. Overall,
the work presented in this study lays an important foundation
for the rational design and development of novel N–F reagents
and would aid synthetic chemists in their efforts for future
evolution of refined, simple and safe synthetic methods for
installing fluorine atoms in organic molecules.

Fig. 6 (A) Correlation matrix representing the Pearson correlation coefficient for the four descriptors that made it to the final NN model, along with the
FPD values. (B) Scatter plot between the FPD values and BCUTc-1h, which is the most-contributing descriptor, colour coded with respect to the type of
reagents.

Fig. 7 Representative examples of differentially substituted N-fluoropyridinium salts along with the FPD values and descriptors used for model building.
Note: The BCUTc-1h and BCUTdv-1l descriptor values are multiplied by 103 for better readability. FPD values are in MeCN.
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Methods

The FPD values were obtained from literature sources.17 All the
molecular descriptors were calculated from Mordred script.33

For machine learning, the Python 3 framework equipped with
various libraries, such as Pandas, Numpy, Scikit-learn, Keras,
TensorFlow, Matplotlib, and Seaborn, was used. Applicability
domain analysis was performed using the ‘‘Applicability
Domain (using standardization approach) v1.0’’ software devel-
oped by Roy and co-workers.54

Data availability

The datasets and model algorithms can be accessed from this
link: https://github.com/v-saini/Fluorination-Power.git.
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