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Pd-catalyzed synthesis of a,b-unsaturated ketones
by carbonylation of vinyl triflates and nonaflates†

Shaoke Zhang, Helfried Neumann and Matthias Beller *

A general and highly chemoselective Pd-catalyzed protocol for the

synthesis of a,b-unsaturated ketones by carbonylation of vinyl

triflates and nonaflates is presented. Applying the specific mono-

phosphine ligand cataCXiumss A, the synthesis of various vinyl ketones

as well as carbonylated natural product derivatives proceeds in

good yields.

a,b-Unsaturated ketones represent a class of highly valuable
intermediates in organic synthesis, which continue to attract the
interest of academic and industrial researchers for various
applications.1 As illustrated in Scheme 1, a wide range of diverse
compounds including pharmaceuticals,2 polymers,3 flavors,4 and
biologically5 or optically6 important molecules can be conveniently
synthesized from such starting materials.

Traditionally, a,b-unsaturated ketones are synthesized via
multistep reactions, e.g. sulfide or sulfoxide dehydrogenation,16

enamine transformations,17 Aldol18 or Knoevenagel condensation,19

as well as the so-called Saegusa oxidation.20 More recently, protocols
based on the dehydrogenation of ketones,21 alcohols22 and
alkenes,23 or the carbonylation of alkynes24 and vinyl iodides,25

etc.26 became popular, too. Despite all these achievements, the
search for alternative procedures for this class of building blocks
remains a challenging but rewarding task.

Based on our long standing interest in reductive carbonylations
and alkoxycarbonylations,27 we envisioned the synthesis of
a,b-unsaturated ketones via carbonylative coupling reactions
of phenylboronic acids and CO with vinyl triflates or nonaflates
easily derived from ketones. Herein, we report a general and selective
palladium catalyst system which allows for such transformations.

In our initial experiments, we investigated the carbonylation
of cyclohexenyl triflate (1) in the presence of phenylboronic acid
using previously optimized carbonylative coupling reaction
conditions (1 mol% Pd(OAc)2, 1.5 mol% ligand, 0.75 eq. TMEDA
in 2 mL toluene with 5 bar CO).28 As shown in Scheme 2,
standard mono- and bidentate phosphines, focusing especially
on bulky ligands, were tested for this benchmark reaction.
Ligands L1 and L2 with integrated basic sites (pyridine), which
recently have been proven to be highly efficient in various
carbonylation reactions,29 as well as commercially available
ligands L3–L6 were not suitable for this transformation giving
in general low or no yield of the desired product 3. Here, in most
cases decomposition of the substrate was observed. In contrast,
when applying cataCXiumss A (BuPAd2, L7), the reaction pro-
ceeded extremely well to give the desired product in quantitative
yield (99%). Based on this result of cataCXiumss A, we also
tested other sterically hindered adamantyl-substituted ligands
(L8–L11), however, 3 was obtained in only 48% or lower yield.30

Next, critical reaction parameters including [Pd] and ligand
concentration, temperature, and solvent were investigated. As
shown in Table 1, control experiments without Pd(OAc)2 and/or
ligand revealed no formation of the desired product (Table 1,
entries 2–4). Notably, the catalyst loading can be decreased to
only 0.1 mol% resulting in a slight decrease of the yield from
99% to 82% (Table 1, entries 5–7), which indicated the efficiency

Scheme 1 Selected transformation of a,b-unsaturated ketones.

Leibniz-Institut für Katalyse an der Universität Rostock e.V, Albert-Einstein-Strasse

29a, 18059 Rostock, Germany. E-mail: matthias.beller@catalysis.de

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9cc02210d

Received 20th March 2019,
Accepted 24th April 2019

DOI: 10.1039/c9cc02210d

rsc.li/chemcomm

ChemComm

COMMUNICATION

Pu
bl

is
he

d 
on

 2
4 

E
ph

re
li 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
18

/2
02

4 
2:

10
:5

6 
A

M
. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-5343-8896
http://orcid.org/0000-0002-4441-9474
http://orcid.org/0000-0001-5709-0965
http://crossmark.crossref.org/dialog/?doi=10.1039/c9cc02210d&domain=pdf&date_stamp=2019-05-03
http://rsc.li/chemcomm
https://doi.org/10.1039/c9cc02210d
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC055042


This journal is©The Royal Society of Chemistry 2019 Chem. Commun., 2019, 55, 5938--5941 | 5939

of this catalytic system. Best results for the benchmark reaction
at low catalyst loading were obtained at 60 1C and experiments

at R.T. or 40 1C showed a significant decrease of the yield of 3 to
12 and 46%, respectively (Table 1, entries 9 and 10).

With the optimized reaction conditions in hand, carbonylations
of 1 with CO and structurally diverse boronic acids were performed
(Scheme 3). Besides phenylboronic acid, eleven other substrates
were converted to the corresponding products 5a–5f in moderate
to excellent yields (52–91%). Here, various arylboronic acids
substituted by –F, –COOMe, –NO2, –COMe, –CHQCH2, and –CF3

in either ortho-, meta-, or para-position gave the desired ketones. In
addition, heterocyclic substrates including furan, pyridine, and
thiophene derivatives are converted smoothly to the corresponding
vinyl heteroaryl ketones in 71–89% yields (5g–5i). Notably, vinyl
boronic acid was tested too, yielding 98% of the desired divinyl
ketone 5j, which provides possibilities for interesting cyclization
reactions.31

Apart from aromatic and vinyl boronic acids, also methyl boronic
acid can be employed in this transformation to access methyl vinyl
ketones, e.g. 5k, which constitute key synthetic intermediates.32

Next, we studied the carbonylation of structurally diverse
triflates with CO and phenylboronic acid. As shown in Scheme 4,
vinyl triflates with seven- and eight-membered rings were carbony-
lated successfully under optimized conditions to give 7a and 7b.
Similarly, 7c was isolated in 75%. Obviously, this procedure is not
limited to cyclic substrates. As an example, the linear vinyl ketone
7d was obtained in 72% yield. Furthermore, functionalization
of naturally occurring terpenes can be easily achieved. Hence,
derivatives of camphor, ketoisophorone, verbenone, and pulegone

Scheme 2 Pd-catalyzed synthesis of 1-cyclohexenyl phenyl ketone in the
presence of different ligands. Reaction conditions: 0.5 mmol 1, 1.2 eq. of 2,
1.5 mol% for diphosphines, 3 mol% for monophophines, in argon. Yields
and conversions were determined by GC with n-hexadecane as standard,
the values given within parentheses refer to the yields of 3 while the other
values refer to the conversions of 1.

Table 1 Pd-catalyzed synthesis of 1-cyclohexenyl phenyl ketone under
various conditions

Entry
Pd(OAc)2/
mol%

cataCXiumss

A/mol% Solvent T/1C
Conv.
(yield)/%

1 1 3 Toluene 60 100 (99)
2 1 0 Toluene 60 20 (0)
3 0 3 Toluene 60 0 (0)
4 0 0 Toluene 60 11 (0)
5 0.5 1.5 Toluene 60 100 (99)
6 0.1 0.3 Toluene 60 98 (82)
7 0.05 0.15 Toluene 60 72 (40)
8 0.1 0.3 THF 60 96 (56)
9 0.5 1.5 Toluene 40 75 (46)
10 0.5 1.5 Toluene 25 29 (12)

Reaction conditions: 0.5 mmol 1, argon atmosphere. Yields and con-
versions were determined by GC with n-hexadecane as standard.

Scheme 3 Pd-catalyzed synthesis of 1-cyclohexenyl aryl ketones. Reaction
conditions: 0.5 mmol 1, 1.2 eq. of 4, in argon. Isolated yields.
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are smoothly converted to the corresponding vinyl ketones
under standard conditions in good isolated yields (7e–7h).

From a synthetic point of view, the use of more stable triflate
analogues is interesting due to the easier handling and the
avoidance of unwanted side reactions. In this respect, the use of
vinyl nonafluorobutanesulfonates (vinyl nonaflates) for the
carbonylative synthesis of a,b-unsaturated ketones is appealing.
As exemplified in Scheme 5, several nonaflates underwent
smooth transformations in up to 89% yield of the desired
products 3, 7e and 7f.

Furthermore, our catalytic system was tested on 1 g scale. As
showed in Scheme 6, cyclohexenyl triflate 1 was successfully con-
verted to the corresponding carbonylated product 3 in 499% yield.

In conclusion, we present a convenient and general procedure
for the synthesis of a,b-unsaturated ketones under mild conditions.
Using the palladium acetate in combination with the monophos-
phine ligand cataCXiumss A a variety of such products including
aliphatic, (hetero)aromatic and divinyl ketones can be efficiently
accessed. For the first time, in this procedure we adapted vinyl
triflates for the synthesis of a,b-unsaturated ketones with CO as
carbonylation partner. The synthetic utility of the protocol is
demonstrated in the carbonylation of vinyl triflates including
derivatives of camphor, ketoisophorone, verbenone, and pulegone.
Furthermore this catalyst system is applicable for the carbonylation
of more stable nonaflates.
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Chem., 2015, 4, 929–935; (b) S. Wu, N. Yang, Y. Liu, J. Cao, H. Hu, Y. Sun
and J. Liu, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 293–299.

7 (a) J.-S. Li, H.-F. Cui, K.-F. Zhang, J. Nie and J.-A. Ma, Eur. J. Org.
Chem., 2017, 2545–2552; (b) H. Pellissier, Adv. Synth. Catal., 2015,
357, 2745–2780.

8 M. S. Taylor, D. N. Zalatan, A. M. Lerchner and E. N. Jacobsen, J. Am.
Chem. Soc., 2005, 127, 1313–1317.

9 (a) V. Eschenbrenner-Lux, K. Kumar and H. Waldmann, Angew. Chem.,
Int. Ed., 2014, 53, 11146–11157; (b) W. Lin, L. Yuan, Z. Cao, Y. Feng and
L. Long, Chem. – Eur. J., 2009, 15, 5096–5103; (c) A. B. Northrup and
D. W. MacMillan, J. Am. Chem. Soc., 2002, 124, 2458–2460.

10 Y. Wei and M. Shi, Chem. Rev., 2013, 113, 6659–6690.

Scheme 4 Pd-catalyzed synthesis of vinyl phenyl ketones. Reaction
conditions: 0.5 mmol 6, 1.2 eq. of 2, in argon. Isolated yields.

Scheme 5 Pd-catalyzed synthesis of vinyl phenyl ketones from vinyl
nonaflates. Reaction conditions: 0.5 mmol 8, 1.2 eq. of 2, in argon. GC
yields with n-hexadecane as internal standard.

Scheme 6 Gram scale synthesis of 1-cyclohexenyl phenyl ketone. Yield
was determined by GC with n-hexadecane as standard.

ChemComm Communication

Pu
bl

is
he

d 
on

 2
4 

E
ph

re
li 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
18

/2
02

4 
2:

10
:5

6 
A

M
. 

View Article Online

https://doi.org/10.1039/c9cc02210d


This journal is©The Royal Society of Chemistry 2019 Chem. Commun., 2019, 55, 5938--5941 | 5941

11 S. Crotti, G. Belletti, N. Di Iorio, E. Marotta, A. Mazzanti, P. Righi
and G. Bencivenni, RSC Adv., 2018, 8, 33451–33458.

12 N. J. Martin and B. List, J. Am. Chem. Soc., 2006, 128, 13368–13369.
13 T. Sakamoto, J. Itoh, K. Mori and T. Akiyama, Org. Biomol. Chem.,

2010, 8, 5448–5454.
14 J.-J. Yun, M.-L. Zhi, W.-X. Shi, X.-Q. Chu, Z.-L. Shen and T.-P. Loh,

Adv. Synth. Catal., 2018, 360, 2632–2637.
15 M. Bougauchi, S. Watanabe, T. Arai, H. Sasai and M. Shibasaki,

J. Am. Chem. Soc., 1997, 119, 2329–2330.
16 (a) B. M. Trost, Chem. Rev., 1978, 78, 363–382; (b) P. Tuchinda,

V. Prapansiri, W. Naengchomnong and V. Reutrakul, Chem. Lett.,
1984, 1427–1430.

17 P. Zhang and L.-C. Li, Synth. Commun., 1986, 16, 957–965.
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A. Zapf, D. Strübing, S. Hübner, J. Almena, T. Riermeier, P. Groß,
M. Sarich, W. R. Krahnert, K. Rossen and M. Beller, Angew. Chem., Int.
Ed., 2006, 45, 154–158.

28 (a) K. M. Driller, S. Prateeptongkum, R. Jackstell and M. Beller, Angew.
Chem., 2011, 123, 558–562; (b) H. Neumann, A. Sergeev and M. Beller,
Angew. Chem., Int. Ed., 2008, 47, 4887–4891; (c) J. Schranck, X. F. Wu,
H. Neumann and M. Beller, Chem. – Eur. J., 2012, 18, 4827–4831.

29 (a) J. Liu, K. Dong, R. Franke, H. Neumann, R. Jackstell and
M. Beller, J. Am. Chem. Soc., 2018, 140, 10282–10288; (b) L. Wang,
H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2018, 57,
6910–6914; (c) S. Zhang, H. Neumann and M. Beller, Org. Lett.,
2019, DOI: 10.1021/acs.orglett.9b00765.

30 For the application of L10 in catalysis, see: (a) S. Zhang, H. Neumann and
M. Beller, Chem. – Eur. J., 2018, 24, 67–70; For reviews demonstrating the
improved performance of bulky monodentate ligands in Pd-catalyzed
coupling reactions, see: (b) R. B. Bedford, C. S. J. Cazin and D. Holder,
Coord. Chem. Rev., 2004, 248, 2283–2321; (c) F. Bellina, A. Carpita and
R. Rossi, Synthesis, 2004, 2419–2440.

31 For an example of using divinyl ketones for cyclization reactions,
see: A. J. Frontier and C. Collison, Tetrahedron, 2005, 61, 7577–7606.

32 Methyl vinyl ketones have been a class of key synthetic intermediates
for decades, for details, see: N. C. Ross and R. Levine, J. Org. Chem.,
1964, 29, 2341–2346.

Communication ChemComm

Pu
bl

is
he

d 
on

 2
4 

E
ph

re
li 

20
19

. D
ow

nl
oa

de
d 

on
 1

1/
18

/2
02

4 
2:

10
:5

6 
A

M
. 

View Article Online

https://doi.org/10.1039/c9cc02210d



