Issue 70, 2017

Hydrogen-bonded rosettes comprising π-conjugated systems as building blocks for functional one-dimensional assemblies

Abstract

Hydrogen-bonded supermacrocycles (rosettes) are attractive disk-shaped noncovalent synthons for extended functional columnar nanoassemblies. They can serve not only as noncovalent monomer units for supramolecular polymers and discrete oligomers in a dilute solution but also as constituent entities for soft matters such as gels and lyotropic/thermotropic liquid crystals. However, what are the merits of using supramolecular rosettes instead of using expanded π-conjugated covalent molecules? This review covers the self-assembly of photochemically and electrochemically active π-conjugated molecules through the formation of supramolecular rosettes via directional complementary multiple hydrogen-bonding interactions. These rosettes comprising π-conjugated covalent functional units stack into columnar nanoassemblies with unique structures and properties. By overviewing the design principle, characterization, and properties and functionalities of various examples, we illustrate the merits of utilizing rosette motifs. Basically, one can easily access a well-defined expanded π-surface composed of multi-chromophoric systems, which can ultimately afford stable extended nanoassemblies even in a dilute solution due to the higher association constants of supermacrocyclized π-systems. Importantly, these columnar nanoassemblies exhibit unique features in self-assembly processes, chiroptical, photophysical and electrochemical properties, nanoscale morphologies, and bulk properties. Moreover, the stimuli responsiveness of individual building blocks can be amplified to a greater extent by exploiting rosette intermediates to organize them into one-dimensional columnar structures. In the latter parts of the review, we also highlight the application of rosettes in supramolecular polymer systems, photovoltaic devices, and others.

Graphical abstract: Hydrogen-bonded rosettes comprising π-conjugated systems as building blocks for functional one-dimensional assemblies

Article information

Article type
Feature Article
Submitted
30 Mey 2017
Accepted
08 Aga 2017
First published
16 Aga 2017

Chem. Commun., 2017,53, 9663-9683

Hydrogen-bonded rosettes comprising π-conjugated systems as building blocks for functional one-dimensional assemblies

B. Adhikari, X. Lin, M. Yamauchi, H. Ouchi, K. Aratsu and S. Yagai, Chem. Commun., 2017, 53, 9663 DOI: 10.1039/C7CC04172A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements