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Parameter-free continuous drift–diffusion models
of amorphous organic semiconductors

Pascal Kordt,*a Sven Stodtmann,b Alexander Badinski,b Mustapha Al Helwi,cd

Christian Lennartzb and Denis Andrienko*a

Continuous drift–diffusion models are routinely used to optimize organic semiconducting devices.

Material properties are incorporated into these models via dependencies of diffusion constants, mobilities,

and injection barriers on temperature, charge density, and external field. The respective expressions are

often provided by the generic Gaussian disorder models, parametrized on experimental data. We show

that this approach is limited by the fixed range of applicability of analytic expressions as well as approxima-

tions inherent to lattice models. To overcome these limitations we propose a scheme which first tabulates

simulation results performed on small-scale off-lattice models, corrects for finite size effects, and then

uses the tabulated mobility values to solve the drift–diffusion equations. The scheme is tested on DPBIC, a

state of the art hole conductor for organic light emitting diodes. We find a good agreement between

simulated and experimentally measured current–voltage characteristics for different film thicknesses and

temperatures.

1 Introduction

Macroscopic and mesoscopic properties of organic semiconductors,
such as charge carrier mobility or the width of the density of states,
are often extracted by fitting the solution of the drift–diffusion
equation1–5 to the experimentally measured current–voltage (I–V)
characteristics. The mobility and diffusion constant of charge
carriers, which enter these equations, depend on charge carrier
density, r, electric field, F, and temperature, T.6,7 For one-
dimensional transport and specific rate expressions these
dependencies can be obtained analytically.8,9 In three dimensions,
semi-empirical analytic expressions based on fits to lattice models
have been obtained.6,7,10–12 The extended Gaussian disorder model
(EGDM),6 for example, provides a parametrization of the mobility,
m(r,F,T), for uncorrelated, Gaussian-distributed site energies, while
the extended correlated disorder model (ECDM)11 additionally
accounts for spatial site energy correlations due to long-range
charge–dipole interactions.

The aforementioned approach has become a standard tool
for analyzing experimental data.13 It has, however, several
issues: (i) Gaussian disorder models are parametrized only for
materials with moderate energetic disorder, s o 0.15 eV at

room temperature, while many amorphous materials have a
higher s. (ii) The spatial correlation of site energies in the
ECDM is material-independent and has an (approximate) 1/r
decay, where r is the intermolecular distance, but recent studies
show that this decay may be different.14 (iii) Due to the non-
Gaussian shape of the density of states,15 the energetic disorder
and the lattice constant are different from those provided by
microscopic calculations,14 thus making them merely fitting
parameters without a comprehensive link between macroscopic
properties and the chemical composition of the material.

In this paper we propose an approach which does not have
these limitations. In a nutshell, the mobility dependence on
charge density, field, and temperature is first tabulated by
combining quantum mechanical, classical atomistic and coarse-
grained stochastic models for charge transfer and transport. These
tables, corrected for finite-size effects, are then used to solve the
drift–diffusion equations.

To illustrate the advantages of the method, we compare it to
the ECDM and the Mott–Gurney model16 as well as to experimental
measurements performed on amorphous layers of Tris[(3-phenyl-
1H-benzimidazol-1-yl-2(3H)-ylidene)-1,2-phenylene]Ir (DPBIC), a
hole-conducting material used in organic light emitting diodes
(OLEDs)17 and organic photovoltaic cells (OPVs).18

The paper is organized as follows. In the Methods section we
describe the coarse-grained, off-lattice transport model, the pro-
cedure used to tabulate the charge carrier mobility, the algorithm
used to solve drift–diffusion equations, and the parametrization
of the extended correlated Gaussian disorder model. The entire
workflow is summarized in Fig. 1. We also recapitulate the main
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results of the Mott–Gurney model and provide details of
experimental measurements. The I–V curves, electrostatic
potential, and charge density profiles are then compared in
Section 3, where we also validate the transferability of the
method by studying different layer thicknesses and temperatures.
A short summary concludes the paper.

2 Methods
2.1 Tabulated mobility

To tabulate charge carrier mobility as a function of temperature,
field, and charge density, we first simulate amorphous morphologies
of N = 4000 molecules using molecular dynamics simulations in the
NPT ensemble with a Berendsen barostat and thermostat.19 The
simulation box is equilibrated at 700 K for 1 ns, which is well above
the glass transition temperature, and then quenched to 300 K during
1.3 ns. The force-field is tailored for the DPBIC molecule as
described elsewhere20 by performing potential energy scans
using density functional theory (DFT) calculations with the
B3LYP functional and the 6-311g(d,p) basis set. The Gaussian
package21 was used for all energy calculations.

The charge transport network is then generated as follows.
A list of links is constructed from all molecules with adjacent
conjugated segments closer than 0.7 nm. For each link a charge
transfer rate is calculated using Marcus theory, i.e., in the high-
temperature limit of the non-adiabatic charge transfer theory,22

oij ¼
2p
�h

Jij
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4plijkBT
p exp �

DEij � lij
� �2
4lijkBT

" #
; (1)

where �h is the Planck constant, kB the Boltzmann constant, and
T the temperature.

Electronic couplings Jij are evaluated for each dimer by using
the dimer projection method,23 the PBE functional and the
def2-TZVP basis set. These calculations were performed using
the TURBOMOLE package.24 Note that the values of electronic
couplings can deviate by up to 50%, depending on the functional
and the basis set size.25,26 This deviation is, however, systematic
and will result in a constant prefactor for the mobility, i.e., we do
not expect any changes in functional dependencies on the
external field, charge density, or temperature.

The hole reorganization energy,27 lij = 0.068 eV, was evaluated
in the gas phase using the B3LYP functional and 6-311g(d,p)
basis set. Site energy differences, DEij = Ei � Ej were evaluated
using a perturbative scheme28 with the molecular environment
modeled by a polarizable force-field, parametrized specifically
for these calculations. In this approach, the site energy Ei = Eint

i +
Eel

i + Epol
i + qF�ri is the sum of the gas phase ionization potential,

Eint
i = 5.87 eV, an electrostatic part, Eel

i , an induction contribu-
tion, Epol

i , and the contribution due to an external electric field,
qF�ri. The mean value of these energies gives an ionization
potential of EIP = 5.28 eV.

The electrostatic contribution was evaluated using the Ewald
summation technique29,30 adapted for charged, semi-periodic
systems31,32 and distributed multipole expansions.33,34 Note that

Fig. 1 Overview of the method. (a) Chemical structure used to parametrize
atomistic force field. (b) Amorphous morphology obtained using molecular
dynamics simulations. (c) A coarse-grained model for the charge transport
network. (d) Kinetic Monte Carlo simulations are used to tabulate the
mobilities. (e) Solution of drift–diffusion equations.
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using an interaction cutoff would yield a shifted energetic land-
scape with an underestimated spatial correlation of energies.35

The induction contribution, Epol
i , was calculated self-consistently

using the Thole model36,37 with a 3 nm interaction range. Note that
the set of Thole polarizabilities were scaled in order to match the
volume of the polarizability ellipsoid calculated using the B3LYP
functional and 6-311g(d,p) basis set. This step is required to
account for larger polarizabilities of conjugated, as compared to
biological, molecules.

The resulting charge transport network is used to parametrize
the coarse-grained model, by matching characteristic morpho-
logical and transport properties of the system, such as the radial
distribution function of molecular positions, the list of neigh-
boring molecules, the site energy distribution and spatial corre-
lation, and the distance-dependent distribution of transfer
integrals.14,38 The coarse-grained model allows to study larger
systems, here of 4 � 104 and 4 � 105 sites, which are required to
perform simulations at low charge carrier densities, in our case
from 0.025 down to 10�5 carriers per site.

Charge transport is modeled using the kinetic Monte Carlo
(KMC) algorithm. Note that charge carriers interact only via the
exclusion principle, i.e., a double occupation of a molecule is
forbidden. Charge mobility is evaluated by averaging the carrier
velocity along the field, m = hvi�F/F2. KMC simulations are
repeated for eight different temperature values, from 220 K to
992 K, and twelve field values, in the range of 2.5–30 � 107 V m�1.

To avoid finite size effects, an extrapolation procedure39,40 is
used for small charge carrier densities. The mobility is simulated at
a range of higher temperatures, where mobilities are non-dispersive
and hence system-size independent. The extrapolation to lower
temperatures is performed by parametrizing the analytic mobility
versus temperature dependence available for one-dimensional
systems8 or, alternatively, using the box-size scaling relation.39

The tabulated mobility is finally interpolated and smoothed
by the scattered data interpolation method using radial base
functions,41 which can treat many-dimensional, unstructured data.

2.2 Drift–diffusion modeling

Macroscopic dynamics of electrons/holes (n/p) is modeled
using one-dimensional drift diffusion equations

Jn/p = �rn/pmn/p rc � Dn/p rrn/p, (2)

@rn=p
@t
¼ �r � Jn=p; (3)

coupled to the Poisson equation

Dc ¼ �
rn � rp
e0er

: (4)

Here c denotes the electrostatic potential, D is the diffusion
constant, e0 the vacuum permittivity and er the relative permittivity.
J = I/A is the current density, where I is the current and A the
electrode area. In case of DPBIC we are interested in hole transport
only, hence the electron current density, Jn, and density, rn, are set
to zero and only the hole equations need to be solved. To simplify
the notation we omit the index n/p. Here we are interested only in
the steady state, i.e., qr/qt = 0 in eqn (3).

Since charge carriers occupy energetic levels according to
Fermi–Dirac statistics, the carrier density is related to the
quasi-Fermi level, Z, as

r Zð Þ ¼ N

V

ð1
�1

gðEÞ 1þ exp
E � Z
kBT

� �� ��1
dE; (5)

where g(E) is the density of states and V the box volume. The
diffusion coefficient and mobility in eqn (2) are related via the
generalized Einstein relation42

D ¼ rm
e

@r
@Z

� �
: (6)

Eqn (2)–(6) are solved using an iterative scheme, until a self-
consistent solution for electrostatic potential, c, density, r, and
current, I, is found.43 First the equations are rescaled to ensure
numerical stability, which is necessary since carrier density and
electrostatic potential vary by several orders of magnitude.
Then they are discretized according to a scheme proposed by
Scharfetter and Gummel,44 linearized,45 and solved by using the
Gummel iteration method,46 adapted to organic semiconductors
at finite carrier density. This method is less sensitive to the
initial value than a Newton algorithm and thus is the method of
choice despite its slower convergence47 in terms of iteration
steps. The tabulated mobility values, m(F,r,T), computed in
Section 2.1, are used while solving eqn (2)–(6).

We use Dirichlet boundary conditions for the electrostatic
potential, c, by setting the potential difference at the boundaries
to ceff = Vapp � Vint, where Vapp is the applied potential and Vint

the built-in potential, defined as the difference of the materials’
work functions. For ITO and Aluminum we use experimental
values: the work function of ITO is reported to lie in the range
from 4.15 eV to 5.3 eV,48–51 and for Aluminum from 4.06 eV to
4.26 eV.52 Here we assume average values of 4.73 eV for ITO and
4.16 eV for Aluminum. In combination with the calculated
DPBIC solid-state ionization potential (IP) of 5.28 eV, which is
the mean value of the site energies, Ei, that are calculated as
described before, this yields injection barriers of DEITO = 0.55 eV
and DEAl = 1.12 eV.

The charge density at the electrodes is fixed to the density
resulting from inserting DEITO/Al into eqn (5). To model the
doped interlayers (see Section 2.5) within a five nanometer
range from both electrodes, an additional charge concentration
of 3 � 10�4 carriers per site, estimated from previous calcula-
tion53 is added in these regions when solving the Poisson
eqn (4), leading to high hole densities in the doped regions
even without space-charge limited effects.

2.3 Lattice model

To test the validity of lattice models, we have also parametrized
the extended correlated disorder model (ECDM)11 by fitting the
simulation results to the ECDM expression for mobility. The fit
was performed for charge densities, r, in the range of 8.7–140�
1023 m�3, including an extrapolated, non-dispersive zero-
density mobility,40 and electric fields in the range of 3–9 �
107 V m�1. For the extrapolation temperatures from 1200 K to
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50 000 K, giving non-dispersive transport in the small system,
were used. All simulations were performed at 300 K.

The fit to the ECDM model yields a lattice constant of a =
0.44 nm, an energetic disorder of s = 0.211 eV, and a zero-field
zero-density mobility of m0(300 K) = 1.8 � 10�13 m2 V�1 s�1.20

These values serve mainly for providing a fitting and extrapola-
tion function as they differ from the values observed in micro-
scopic simulations (a = 1.06 nm, s = 0.176 eV, m0(300 K) = 3.4 �
10�12 m2 V�1 s�1).

2.4 Mott–gurney model

The Mott–Gurney, or trap-free insulator model,16 predicts a
current density of

JðVÞ ¼ 9

8
erm

V2

d3
; (7)

where d is the thickness of the sample and er the material’s relative
permittivity (here we have chosen er = 3). This expression is only valid
under the assumptions of (i) hole-only (or electron-only) transport,
(ii) no doping, (iii) constant mobility and relative permittivity and (iv)
no injection barriers. The electrostatic potential and hole density
throughout the sample are then given by

VintðxÞ ¼ V
d � x

d

� �3
2
; (8)

rðxÞ ¼ 3

4

erV

qd
3
2

1ffiffiffiffiffiffiffiffiffiffiffiffi
d � x
p ; (9)

where 0 o x o d. A mobility of m = 3 � 10�22 m2 V�1 s�1 has been
chosen to provide the best match of the experimental data.

2.5 Experimental measurements

I–V curves were measured for three film thicknesses: 203 nm,
257 nm and 314 nm, including two interlayers of DPBIC doped
with molybdenum trioxide (MoO3) of 5 nm thickness on both
sides of the DPBIC film. These serve to enhance the injection
efficiency, which has been taken into account in our model by
the previously mentioned additional charge in these regions.
The hole-conducting DPBIC layer was sandwiched between a
140 nm indium tin oxide (ITO) anode and a 100 nm aluminum
cathode. To control the temperature, the samples are placed
into the oil reservoir of a cryostat, which allows for a variation
between 220 K and 330 K. The voltage was varied between 0 V
and 20 V.

All films were fabricated by vacuum thermal evaporation of
DPBIC on a glass substrate, patterned with the ITO layer.
Thicknesses were determined by optical ellipsometry after a
simultaneous deposition of the same amount of DPBIC on a
silicon wafer.

3 Validation

We first compare the current–voltage characteristics, the electro-
static potential and the hole density profiles calculated using
tabulated and ECDM mobilities, which are shown in Fig. 2,

Fig. 2 (a) Current–voltage characteristics, (b) electrostatic potential pro-
files, and (c) hole density profiles. Slab thickness 314 nm, temperature
300 K. (b and c) are plotted for an external voltage of 4 V.
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together with the experimentally measured current–voltage charac-
teristics. One can see that the experimentally measured current–
voltage characteristics are well reproduced using the tabulated
mobilities. The ECDM underestimates the current by an order of
magnitude and there is a clear mismatch of the slope, as it can be
seen in Fig. 2(a). It also predicts a negative electrostatic force at the
beginning of the slab, Fig. 2(b), and a very steep charge accumulation
at the injecting anode, Fig. 2(c). The disagreement is due to the high
energetic disorder obtained from the fit, s = 0.211 eV, which is
outside the range used to parametrize the ECDM expression. In
addition, the ECDM does not reproduce the spatial correlation of site
energies well. Finally, the Mott–Gurney model does not reproduce
experimental results even qualitatively: it neither takes into account
doped layers nor field- or density-dependence of the mobility.

To illustrate the transferability of the proposed method we also
compare current–voltage characteristics for different temperatures
and different film thicknesses. Fig. 3 shows that for high tempera-
tures the agreement between theory and experiment is excellent. At
233 K deviations are significant and can be attributed to the
breakdown of the drift–diffusion description, since at low tempera-
ture and large energetic disorder charge transport becomes dis-
persive, showing anomalous diffusion.53 Its description using
equilibrium distributions, mobility and diffusion constant cannot
be justified in this situation. Moreover, Marcus theory only applies
to sufficiently high temperatures. The crossover temperature below
which Miller–Abrahams rates54 become a more appropriate
description has been estimated to be about 250 K.55

4 Conclusions

To conclude, we have proposed a parametrization scheme for
drift–diffusion equations which is based on evaluation of

charge transfer rates, simulation of charge transport in a
coarse-grained charge transport network, and tabulation of
charge carrier mobility as a function of field, charge density
and temperature. The method is rather general, in part because
it is not limited to functional dependencies build into the
ECDM and EGDM models and, therefore, allows to treat
systems with large energetic disorder and material-specific
spatial site energy correlation functions.

Using this scheme, we have simulated I–V characteristics of
a single-layer device, and found them to be in a good agreement
with the experimentally measured I–V curves, whereas significant
deviations have been observed for the ECDM and Mott–Gurney
models.
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