Issue 36, 2017

Effective potentials induced by self-assembly of patchy particles

Abstract

Effective colloid–colloid interactions can be tailored through the addition of a complex cosolute. Here we investigate the case of a cosolute made by self-assembling patchy particles. Depending on the valence, these particles can form either polymer chains or branched structures. We numerically calculate the effective potential Veff between two colloids immersed in a suspension of reversible patchy particles, exploring a wide region of the cosolute phase diagram and the role of valence. In addition to well-known excluded volume and depletion effects, we find that, under appropriate conditions, Veff is completely attractive but shows an oscillatory character. In the case of polymerizing cosolute, this results from the fact that chains are efficiently confined by the colloids through the onset of local order. This argument is then generalized to the case of particles with higher valence, under the condition that they are still able to maintain a fully bonded organization upon confinement. The resulting effective potentials are relevant for understanding the behavior of complex mixtures in crowded environments, but may also be exploited for tuning colloidal self-assembly at preferred target distances in order to build desired superstructures.

Graphical abstract: Effective potentials induced by self-assembly of patchy particles

Article information

Article type
Paper
Submitted
30 Jun 2017
Accepted
07 Aga 2017
First published
08 Aga 2017

Soft Matter, 2017,13, 6051-6058

Effective potentials induced by self-assembly of patchy particles

N. A. García, N. Gnan and E. Zaccarelli, Soft Matter, 2017, 13, 6051 DOI: 10.1039/C7SM01293D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements