Issue 24, 2013

Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

Abstract

A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340–400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420–520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.

Graphical abstract: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

Supplementary files

Article information

Article type
Paper
Submitted
19 Aga 2013
Accepted
29 Sep 2013
First published
07 Okt 2013

Nanoscale, 2013,5, 12272-12277

Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie and Z. Sun, Nanoscale, 2013, 5, 12272 DOI: 10.1039/C3NR04402E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements