Hybrid materials comprising ferrocene and diaminoborane moieties: linear concatenation versus macrocyclization

Johannes S. Schneider and Holger Helten *
Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany. E-mail: holger.helten@uni-wuerzburg.de

Received 29th July 2024 , Accepted 28th August 2024

First published on 29th August 2024


Abstract

Combination of borane and diaminoferrocene monomers by Si/B exchange condensation reactions afforded either diazabora-[3]ferrocenophanes or, via stepwise processes, larger macrocycles and a series of linear oligomers. Additional incorporation of p-phenylene moieties in the backbone yielded alternating concatenation.


Metallopolymers comprising a polyferrocene backbone with bridging heteroatoms have evolved into a versatile class of inorganic–organic hybrid materials with unique properties and functions imparted by the special characteristics of ferrocene as well as the respective linking moieties.1 Assuredly the most prominent representatives thereof are poly(ferrocenylsilane)s (A, Fig. 1), which have been applied, for instance, as redox-active stimuli-responsive gels, high refractive index materials and polymeric precursors to nanostructured solid-state materials.1 In recent times, polyferrocenes with boron atoms in bridging positions have emerged as desired targets.2–5 Wagner and colleagues accomplished the synthesis of poly(ferrocenyl borane)s B, showing strong electronic coupling of the ferrocene moieties through the boron centres.2 The synthesis of B-amino-substituted poly(ferrocenyl borane)s C by ring-opening polymerisation was first pursued by Manners and Braunschweig.3 Müller and co-workers achieved to obtain soluble derivatives thereof by introducing solubility-enhancing side groups (R′′).4 The π-interaction over the boron centres is in C significantly reduced due to the cross-conjugated B[double bond, length as m-dash]N double bond.
image file: d4cc03813d-f1.tif
Fig. 1 Polyferrocenes A–C (R, R′, R′′ = organic substituents), macrocycle D having pendant ferrocenyl (Fc) groups, and BN-containing hybrid polymers E–G.

In recent years, we have been pursuing the development of novel polymers, oligomers and macrocycles, such as D–F, comprising B[double bond, length as m-dash]N bonds as part of a π-conjugated backbone.6–10 For example, E can be regarded as a BN analogue of poly(p-phenylene vinylene) (PPV),6a,c wherein the linear C[double bond, length as m-dash]C units are replaced by isoelectronic and isosteric B[double bond, length as m-dash]N couples.11–13 Similarly, we reported BN congeners of poly(thiophene vinylene) (PTV)6b,c and polyacetylene.7 Polymer F features electron-rich diaminoborane moieties in the main chain,8 which can be regarded as neutral isoelectronic equivalents of an allyl anion moiety.14 The bulky Tip (triisopropylphenyl) or Mes (mesityl) groups in E–G have the function of kinetically stabilising the boron centres by steric protection.15 An attempt to incorporate ferrocene (Fc) as side groups into BN-PPV-type structures yielded the hybrid macrocycle D.9 We recently reported the unprecedented B[double bond, length as m-dash]N-bridged polyferrocene G and some monodisperse oligomers of that type.16 These species showed moderate electronic communication between the ferrocenes along the polymer chain.

We now combined ferrocene with electron-releasing diaminoborane moieties. Herein, we report the synthesis and characterisation of oligomers with linearly concatenated ferrocene and NBN units, as well as macrocycles of different ring sizes, and a polycondensate composed of diaminoborane-bridged alternating ferrocene and phenylene groups in the main chain.

With the aim of synthesising a polymer composed of 1,1′-linked ferrocene and diaminoborane moieties in the main chain, we reacted 1,1′-[N,N′-bis(trimethylsilyl)diamino]ferrocene 1 in DCM in 1[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio with aryl(dibromo)boranes ArBBr2 (Ar = Ph, Mes and Tip) at 25 °C (Scheme 1). This afforded Si/B exchange with condensation of Me3SiBr; however, instead of the desired polymer, the respective 1,3,2-diazabora-[3]ferrocenophane 2Ar was selectively formed in each case. We characterised compounds 2Ar by multinuclear NMR spectroscopy and mass spectrometry. Additionally, we accomplished to determine the molecular structures of 2Ph and 2Mes by single-crystal X-ray diffraction (SXRD; Fig. 2). The 1H NMR spectra of 2Ar showed sharp signals consistent with their symmetrical molecular structure. Other derivatives of the substance class of 1,3,2-diazabora-[3]ferrocenophanes have been previously described by Wrackmeyer and Herberhold and co-workers.17,18


image file: d4cc03813d-s1.tif
Scheme 1 Synthesis of [3]ferrocenophanes 2Ar and [3.3]ferrocenophanes 4Ar (the latter formed in a mixture with larger cyclic products 5Ar).

image file: d4cc03813d-f2.tif
Fig. 2 Molecular structures of 2Ph, 2Mes, 7Mes and 4Tip in the solid state (ellipsoids are shown at the 50% probability level; ellipsoids of the peripheral groups and all hydrogen atoms except for N bounded Hs are omitted for clarity).

Different from the phenyl group in 2Ph, the bulky Mes and Tip groups provide sufficient kinetic stabilisation to make ferrocenophanes 2Mes and 2Tip stable towards air and moisture. Therefore, we decided to restrict our subsequent investigations to the use of these two substituents.

To suppress the formation of small ferrocenophanes 2, and with a view to favour the synthesis of either linearly catenated species or larger macrocycles, we reacted 1 first with a slight excess of ArBCl2 (Ar = Mes, Tip; ∼3 equiv.) to give bis(aminoborane)s 3Ar (Scheme 1). After isolating 3Ar by precipitation in n-pentane, we reacted them in 1[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio with another equivalent of 1. Analysis of the crude products by mass spectrometry suggested the formation of a mixture of larger macrocycles 4Ar and 5Ar (n = 3 and 4) in both cases. For the Tip derivative we accomplished to separate the products of larger ring sizes and isolated the previously unknown 1,3,2-diazabora-[3.3]ferrocenophane 4Tip in 24% yield. We characterized 4Tip by multinuclear NMR spectroscopy, mass spectrometry, and SXRD (Fig. 2).

Next, we aimed at preparing well-defined oligomers 7Ar and 9Ar that feature linearly concatenated ferrocene and diaminoborane moieties in alternating fashion (Scheme 2). We synthesised 7Ar by the reaction of two equivalents of N-ferrocenyl-N-trimethylsilyl amine 6 with the respective borane ArBBr2 (Ar = Mes, Tip). To obtain the oligomer 9Ar, containing three ferrocene and two diaminoborane units, we reacted 6 first with the respective aryl(dichloro)borane to give the intermediates 8Ar, which we isolated in good yields (80% for 8Mes; 74% for 8Tip). These species show a typical 11B NMR shift of δ ≈ 39 ppm, as comparable B–Cl substituted aminoboranes.14a Compounds 8Ar were subsequently reacted with 1 in 2[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio. We thus obtained oligomers 7Ar and 9Ar in moderate to good yields (79% for 7Mes, 65% for 7Tip, 62% for 9Mes and 36% for 9Tip). All isolated compounds were stable towards air and moisture. Their identities were unambiguously ascertained by multinuclear NMR spectroscopy and mass spectrometry. In addition, we accomplished to grow single crystals of 7Mes and analyse them by XRD (Fig. 2).


image file: d4cc03813d-s2.tif
Scheme 2 Synthesis of linear oligomers 7Ar and 9Ar (for 1 see Scheme 1).

The structural parameters of 2Ph and 2Mes in the solid state agree well with those of previously reported related compounds such as the N-SiMe3-/B-Ph-substituted 1,3,2-diazabora-[3]ferrocenophane.17 The N–B–N bond angles of 2Ph [123.8(2)°] and 2Mes [124.6(3)°] are close to that of the N-TMS substituted derivative [126.0(4)°],17 while the B–N bond lengths of 2Ph [1.416(3) Å] and 2Mes [1.417(4)/1.419(4) Å] are slightly shorter than those of the latter [1.432(6)/1.465(6) Å].17

Compound 7Mes shows E,Z-configuration at the partial B–N double bonds in the solid state, as observed in other structurally characterized B,N,N′-trisubstituted diaminoboranes.8,14 The B–N bond lengths (1.421(3) Å and 1.424(3) Å) and angles [N–B–N, 118.07(17)°] are in the same range with those of the phenyl-substituted diaminoborane PhN(H)B(Mes)N(H)Ph, previously reported by us [(B–N, 1.418(5) and 1.428(4) Å); N–B–N, 119.2(3)°].8 [3.3]Ferrocenophane 4Tip shows E,Z-configuration at the NBN moiety as well, which results in the anti-conformation for this bridged ferrocenophane system.19 The B–N bond lengths are 1.407(3) and 1.423(3) Å, thus, in the same range with those of 2Ph, 2Mes and 7Mes. The boron and nitrogen centres of 4Tip are all trigonal-planar coordinated (Σ< ≈ 360° each).

As our above-described attempts to prepare a polymer composed of alternating ferrocene and diaminoborane units were unsuccessful, we aimed at the synthesis of an alternating copolymer 10 (Scheme 3) featuring diaminoborane-linked ferrocene and p-phenylene moieties in the main chain. We chose mesityl side groups on boron, as this substituent was already sufficient to effectively stabilize 2Mes, 4Mes, 7Mes and 9Mes. For the polymerisation, we performed a polycondensation reaction between 3Mes and N,N′-bis(trimethylsilyl)-p-phenylenediamine (1[thin space (1/6-em)]:[thin space (1/6-em)]1) in DCM. After the mixture had been stirred for 24 h at 25 °C, we added (p-tBu)C6H4NHTMS to terminate eventually remaining reactive B–Cl end groups. We purified the product by precipitation in cold n-pentane. Additionally, we prepared compound 11 as a molecular model system for 10. Analysis of 10 by gel permeation chromatography (GPC) suggested a relatively low number-average molecular weight of Mn = 1.9 kDa (PDI = 1.66), corresponding to an average degree of polymerization (DPn) of 7 (see ESI, Fig. S60). Line broadening effects in the 1H NMR spectrum of 10 point to simultaneous dynamic interconversion of the E- and the Z-configuration at both B–N bonds, as we observed previously for polymers and oligomers of type F (Fig. 1),8 and similar to the situation found in oligoferrocenes connected by phosphaalkene units.20


image file: d4cc03813d-s3.tif
Scheme 3 Polycondensation to 10 and synthesis of model compound 11.

We investigated the electrochemical properties of all isolated final products by cyclic voltammetric (CV) measurements in DCM (Fig. 3). The voltammograms of [3]ferrocenophanes 2Ar showed each a reversible redox wave at E1/2 ≈ 80 mV, assigned to oxidation of their ferrocene moiety21 (see ESI, Fig. S61). Compound 4Tip exhibited two reversible oxidation events at E1/2 = −270 and −55 mV, with a separation of ΔE1/2 = −215 mV (Fig. 3), according to consecutive oxidation of the two ferrocene units in the molecule.


image file: d4cc03813d-f3.tif
Fig. 3 Cyclic voltammograms of 4Tip, 7Ar, 9Ar, 10 and 11 in DCM containing 0.1 M [n-Bu4N][PF6] with a scan rate of 250 mV s−1. Referenced against [Fc]0/+.

The linear species 7Mes and 7Tip exhibited two reversible oxidation events as well, at E1/2 = −253 and −112 mV (7Mes) and −236 and −107 mV (7Tip), assigned to consecutive oxidation of both ferrocenyl groups. The two waves have a small separation of ΔE1/2 = −141 mV (7Mes) and −129 mV (7Tip). The oligomers with three ferrocene and two diaminoborane units 9Ar gave rise to two reversible oxidation events at E1/2 = −420 and −162 mV (9Mes) and −376 and −165 mV (9Tip), with a separation of ΔE1/2 = −258 mV (9Mes) and −211 mV (9Tip), respectively. Here, the central diamino ferrocene unit, which is the most electron-rich one, is oxidized first. Subsequently, the terminal ferrocene units are oxidized simultaneously in a two-electron process. Overall, these results suggest a certain but low degree of communication over the NBN units in these species. The mixed species 10 and 11 showed each one reversible oxidation event at E1/2 = −531 (10) and −245 mV (11), respectively.

In conclusion, linkage of ferrocene units via diaminoborane moieties yielded either macrocyclic or linearly concatenated compounds. While Si/B exchange condensation reactions between N,N′-bissilyl-diaminoferrocene 1 and dibromoboranes gave exclusively 1,3,2-diazabora-[3]ferrocenophanes 2, stepwise procedures afforded mixtures of larger macrocycles 4 and 5, of which we succeeded in isolating the unprecedented diazabora-[3.3]ferrocenophane 4Tip. We accomplished to prepare linear oligomers 7 and 9 that feature two and three ferrocene units bridged by one and two diaminoborane moieties, respectively. These species show weak electronic coupling between the ferrocene units over NBN. Additional incorporation of rigid p-phenylene building blocks afforded the alternating cooligomer 10. Our future studies aim at the development of further novel BCN hybrid materials and exploring their full potential.

Financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 466754611, Research Grant HE 6171/6-2, 401739196, and Heisenberg Grant HE 6171/9-1, 468457264 – is gratefully acknowledged.

Data availability

The data supporting this article have been included as part of the ESI. Crystallographic data for 2Ph, 2Mes, 4Tip and 7Mes has been deposited at the CCDC under 2374123–2374126 and can be obtained from https://www.ccdc.cam.ac.uk.

Conflicts of interest

There are no conflicts to declare.

Notes and references

  1. (a) F. H. Schacher, P. A. Rupar and I. Manners, Angew. Chem., Int. Ed., 2012, 51, 7898 CrossRef PubMed; (b) X. Sui, X. Feng, M. A. Hempenius and G. J. Vancso, J. Mater. Chem. B, 2013, 1, 1658 RSC; (c) R. L. N. Hailes, A. M. Oliver, J. Gwyther, G. R. Whittell and I. Manners, Chem. Soc. Rev., 2016, 45, 5358 RSC.
  2. (a) J. B. Heilmann, M. Scheibitz, Y. Qin, A. Sundararaman, F. Jäkle, T. Kretz, M. Bolte, H.-W. Lerner, M. C. Holthausen and M. Wagner, Angew. Chem., Int. Ed., 2006, 45, 920 CrossRef CAS PubMed; (b) M. Scheibitz, H. Li, J. Schnorr, A. Sánchez Perucha, M. Bolte, H.-W. Lerner, F. Jäkle and M. Wagner, J. Am. Chem. Soc., 2009, 131, 16319 CrossRef CAS PubMed.
  3. (a) H. Braunschweig, R. Dirk, M. Müller, P. Nguyen, R. Resendes, D. P. Gates and I. Manners, Angew. Chem., Int. Ed. Engl., 1997, 36, 2338 CrossRef CAS; (b) A. Berenbaum, H. Braunschweig, R. Dirk, U. Englert, J. C. Green, F. Jäkle, A. J. Lough and I. Manners, J. Am. Chem. Soc., 2000, 122, 5765 CrossRef CAS.
  4. S. Sadeh, H. Bhattacharjee, E. Khozeimeh Sarbisheh, J. W. Quail and J. Müller, Chem. – Eur. J., 2014, 20, 16320 CrossRef CAS PubMed.
  5. Further ferrocene- and boron-containing polymers: (a) M. Fontani, F. Peters, W. Scherer, W. Wachter, M. Wagner and P. Zanello, Eur. J. Inorg. Chem., 1998, 1453 CrossRef CAS; (b) J. Dörr, A. F. Alahmadi, M. Henkelmann, M. Bolte, H.-W. Lerner, M. Wagner and F. Jäkle, Can. J. Chem., 2023, 101, 140 CrossRef.
  6. (a) T. Lorenz, M. Crumbach, T. Eckert, A. Lik and H. Helten, Angew. Chem., Int. Ed., 2017, 56, 2780 CrossRef CAS PubMed; (b) J. Chorbacher, M. Maier, J. Klopf, M. Fest and H. Helten, Macromol. Rapid Commun., 2023, 44, 2300278 CrossRef CAS; (c) M. Maier, J. Chorbacher, A. Hellinger, J. Klopf, J. Günther and H. Helten, Chem. – Eur. J., 2023, 29, e202302767 CrossRef CAS.
  7. (a) O. Ayhan, T. Eckert, F. A. Plamper and H. Helten, Angew. Chem., Int. Ed., 2016, 55, 13321 CrossRef CAS PubMed; (b) O. Ayhan, N. A. Riensch, C. Glasmacher and H. Helten, Chem. – Eur. J., 2018, 24, 5883 CrossRef CAS PubMed; (c) M. Maier, J. Klopf, C. Glasmacher, F. Fantuzzi, J. Bachmann, O. Ayhan, A. Koner, B. Engels and H. Helten, Chem. Commun., 2022, 58, 4464 RSC; (d) M. Maier, A. Friedrich, J. S. Schneider, J. A. P. Sprenger, J. Klopf, L. Fritze, M. Finze and H. Helten, ChemistryEurope, 2024, 2, e202300085 CrossRef.
  8. T. Lorenz, A. Lik, F. A. Plamper and H. Helten, Angew. Chem., Int. Ed., 2016, 55, 7236 CrossRef CAS PubMed.
  9. J. S. Schneider, I. Krummenacher, H. Braunschweig and H. Helten, Chem. Commun., 2023, 59, 8408 RSC.
  10. (a) F. Brosge, T. Lorenz, H. Helten and C. Bolm, Chem. – Eur. J., 2019, 25, 12708 CrossRef CAS PubMed; (b) M. Maier, F. Brosge, J. S. Schneider, J. Bachmann, S. Schmidt, C. Bolm and H. Helten, Macromolecules, 2024, 57, 6370 CrossRef CAS.
  11. Reviews: (a) M. J. D. Bosdet and W. E. Piers, Can. J. Chem., 2009, 87, 8 CrossRef; (b) M. M. Morgan and W. E. Piers, Dalton Trans., 2016, 45, 5920 RSC; (c) H. Helten, Chem. – Eur. J., 2016, 22, 12972 CrossRef CAS PubMed; (d) C. R. McConnell and S.-Y. Liu, Chem. Soc. Rev., 2019, 48, 3436 RSC; (e) X. Chen, D. Tan and D.-T. Yang, J. Mater. Chem. C, 2022, 10, 13499 RSC; (f) D. Marchionni, S. Basak, A. N. Khodadadi, A. Marrocchi and L. Vaccaro, Adv. Funct. Mater., 2023, 33, 2303635 CrossRef CAS.
  12. Selected recent molecular examples: (a) K. Boknevitz, J. S. Italia, B. Li, A. Chatterjee and S.-Y. Liu, Chem. Sci., 2019, 10, 4994 RSC; (b) H. Huang, Y. Zhou, M. Wang, J. Zhang, X. Cao, S. Wang, D. Cao and C. Cui, Angew. Chem., Int. Ed., 2019, 58, 10132 CrossRef CAS PubMed; (c) C.-W. Ju, B. Li, L. Li, W. Yan, C. Cui, X. Ma and D. Zhao, J. Am. Chem. Soc., 2021, 143, 5903 CrossRef CAS PubMed; (d) K. Ota and R. Kinjo, J. Am. Chem. Soc., 2021, 143, 11152 CrossRef CAS PubMed; (e) M. Chen, K. S. Unikela, R. Ramalakshmi, B. Li, C. Darrigan, A. Chrostowska and S.-Y. Liu, Angew. Chem., Int. Ed., 2021, 60, 1556 CrossRef CAS PubMed; (f) S. Akahori, T. Sasamori, H. Shinokubo and Y. Miyake, Chem. – Eur. J., 2021, 27, 8178 CrossRef CAS PubMed; (g) M. Zhao and Q. Miao, Angew. Chem., Int. Ed., 2021, 60, 21289 CrossRef CAS PubMed; (h) M. Crumbach, O. Ayhan, L. Fritze, J. A. P. Sprenger, L. Zapf, M. Finze and H. Helten, Chem. Commun., 2021, 57, 2408 RSC; (i) M. Crumbach, J. Bachmann, L. Fritze, A. Helbig, I. Krummenacher, H. Braunschweig and H. Helten, Angew. Chem., Int. Ed., 2021, 60, 9290 CrossRef CAS PubMed; (j) C. Brunecker, M. Arrowsmith, F. Fantuzzi and H. Braunschweig, Angew. Chem., Int. Ed., 2021, 60, 16864 CrossRef CAS PubMed; (k) O. Ouadoudi, T. Kaehler, M. Bolte, H.-W. Lerner and M. Wagner, Chem. Sci., 2021, 12, 5898 RSC; (l) J. Bachmann, A. Helbig, M. Crumbach, I. Krummenacher, H. Braunschweig and H. Helten, Chem. – Eur. J., 2022, 28, e202202455 CrossRef CAS PubMed; (m) W. Li, C.-Z. Du, X.-Y. Chen, L. Fu, R.-R. Gao, Z.-F. Yao, J.-Y. Wang, W. Hu, J. Pei and X.-Y. Wang, Angew. Chem., Int. Ed., 2022, 61, e202201464 CrossRef CAS PubMed; (n) M. Franceschini, M. Crosta, R. R. Ferreira, D. Poletto, N. Demitri, J. P. Zobel, L. González and D. Bonifazi, J. Am. Chem. Soc., 2022, 144, 21470 CrossRef CAS PubMed; (o) J. Dosso, H. Oubaha, F. Fasano, S. Melinte, J.-F. Gohy, C. E. Hughes, K. D. M. Harris, N. Demitri, M. Abrami, M. Grassi and D. Bonifazi, Chem. Mater., 2022, 34, 10670 CrossRef CAS PubMed; (p) J. Guo, Z. Li, X. Tian, T. Zhang, Y. Wang and C. Dou, Angew. Chem., Int. Ed., 2023, 62, e202217470 CrossRef CAS PubMed; (q) Y. Sano, T. Shintani, M. Hayakawa, S. Oda, M. Kondo, T. Matsushita and T. Hatakeyama, J. Am. Chem. Soc., 2023, 145, 11504 CrossRef CAS PubMed; (r) A. S. Scholz, M. Bolte, A. Virovets, E. Peresypkina, H.-W. Lerner, C. S. Anstöter and M. Wagner, J. Am. Chem. Soc., 2024, 146, 12100 CrossRef CAS PubMed; (s) F. Rulli, G. Sanz-Liarte, P. Roca, N. Martínez, V. Medina, R. La Puig de Bellacasa, A. Shafir and A. B. Cuenca, Chem. Sci., 2024, 15, 5674 RSC; (t) D. Gupta, R. Einholz and H. F. Bettinger, Chem. Sci., 2024, 15, 666 RSC; (u) R. C. Richter, S. M. Biebl, R. Einholz, J. Walz, C. Maichle-Mössmer, M. Ströbele, H. F. Bettinger and I. Fleischer, Angew. Chem., Int. Ed., 2024, 63, e202405818 CrossRef CAS PubMed; (v) M. Hayakawa, X. Tang, Y. Ueda, H. Eguchi, M. Kondo, S. Oda, X.-C. Fan, G. N. Iswara Lestanto, C. Adachi and T. Hatakeyama, J. Am. Chem. Soc., 2024, 146, 18331 CrossRef CAS PubMed.
  13. (a) A. W. Baggett, F. Guo, B. Li, S.-Y. Liu and F. Jäkle, Angew. Chem., Int. Ed., 2015, 54, 11191 CrossRef CAS PubMed; (b) X.-Y. Wang, F.-D. Zhuang, J.-Y. Wang and J. Pei, Chem. Commun., 2015, 51, 17532 RSC; (c) W. Zhang, G. Li, L. Xu, Y. Zhuo, W. Wan, N. Yan and G. He, Chem. Sci., 2018, 9, 4444 RSC; (d) S. Pang, Z. Wang, X. Yuan, L. Pan, W. Deng, H. Tang, H. Wu, S. Chen, C. Duan, F. Huang and Y. Cao, Angew. Chem., Int. Ed., 2021, 60, 8813 CrossRef CAS PubMed.
  14. (a) T. Chivers, C. Fedorchuk and M. Parvez, Inorg. Chem., 2004, 43, 2643 CrossRef CAS PubMed; (b) A. M. Corrente and T. Chivers, New J. Chem., 2010, 34, 1751 RSC.
  15. (a) V. M. Hertz, N. Ando, M. Hirai, M. Bolte, H.-W. Lerner, S. Yamaguchi and M. Wagner, Organometallics, 2017, 36, 2512 CrossRef CAS; (b) A. Lik, L. Fritze, L. Müller and H. Helten, J. Am. Chem. Soc., 2017, 139, 5692 CrossRef CAS PubMed.
  16. V. Zeh, J. S. Schneider, J. Bachmann, I. Krummenacher, H. Braunschweig and H. Helten, Chem. Commun., 2023, 59, 13723 RSC.
  17. B. Wrackmeyer, E. V. Klimkina, W. Milius, O. L. Tok and M. Herberhold, Inorg. Chim. Acta, 2005, 358, 1420 CrossRef CAS.
  18. For a PBP-bridged [3]ferrocenophane, see: A. Lik, D. Kargin, S. Isenberg, Z. Kelemen, R. Pietschnig and H. Helten, Chem. Commun., 2018, 54, 2471 RSC.
  19. H. Bhattacharjee and J. Müller, Coord. Chem. Rev., 2016, 314, 114 CrossRef CAS.
  20. A. Orthaber, R. H. Herber and R. Pietschnig, J. Organomet. Chem., 2012, 719, 36 CrossRef CAS PubMed.
  21. Further examples of electrochemical studies of cyclic or linear ferrocene-containing compounds: (a) F. Otón, A. Espinosa, A. Tárraga, C. Ramirez de Arellano and P. Molina, Chem. – Eur. J., 2007, 13, 5742 CrossRef PubMed; (b) D. E. Herbert, J. B. Gilroy, W. Y. Chan, L. Chabanne, A. Staubitz, A. J. Lough and I. Manners, J. Am. Chem. Soc., 2009, 131, 14958 CrossRef CAS PubMed; (c) B. Bagh, N. C. Breit, K. Harms, G. Schatte, I. J. Burgess, H. Braunschweig and J. Müller, Inorg. Chem., 2012, 51, 11155 CrossRef CAS PubMed; (d) M. S. Inkpen, S. Scheerer, M. Linseis, A. J. P. White, R. F. Winter, T. Albrecht and N. J. Long, Nat. Chem., 2016, 8, 825 CrossRef CAS PubMed; (e) D. Kargin, Z. Kelemen, K. Krekić, M. Maurer, C. Bruhn, L. Nyulászi and R. Pietschnig, Dalton Trans., 2016, 45, 2180 RSC; (f) S. A. Sheppard, T. L. R. Bennett and N. J. Long, Eur. J. Inorg. Chem., 2022, e202200055 CrossRef CAS; (g) K. Toyama, Y. Tanaka and M. Yoshizawa, Angew. Chem., Int. Ed., 2023, 62, e202308331 CrossRef CAS PubMed; (h) D. Schmitt, A. Schiesser and M. Gallei, ACS Appl. Polym. Mater., 2024, 6, 2993 CrossRef.

Footnote

Electronic supplementary information (ESI) available: Experimental details, X-ray crystallographic and characterisation data. CCDC 2374123–2374126. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d4cc03813d

This journal is © The Royal Society of Chemistry 2024
Click here to see how this site uses Cookies. View our privacy policy here.