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Abstract: Machine learning (ML) has emerged as a powerful tool in petroleum engineering for 

automatically interpreting well logs and characterizing reservoir properties such as porosity. As a 

result, researchers are trying to enhance the performance of ML models further to widen their 

applicability in the real world. Random forest regression (RFR) is one such widely used ML 

technique which was developed by combining multiple decision trees. To improve its performance 

one of its hyperparameters, the number of trees in the forest (n_estimators) are tuned during model 

optimization. However, existing literature lacks in-depth studies on the influence of n_estimators 

on RFR model when used for predicting porosity, given that n_estimators is one of the most 

influential hyperparameters that can be tuned to optimize the RFR algorithm. In this study, the 

effects of n_estimators on RFR model in porosity prediction were investigated. Furthermore, 

n_estimators' interaction with another two key hyperparameters, namely the number of features 

considered for the best split (max_features) and the minimum number of samples required to be at 

a leaf node (min_samples_leaf) was explored. The RFR models were developed using 4 input 
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features namely, resistivity log (RES), neutron porosity log (NPHI), gamma ray log (GR) and 

corresponding depths obtained from Volve oil field in North Sea and calculated porosity was used 

as the target data. The methodology consisted of 4 approaches. In the first approach only 

n_estimators were changed, in the second approach n_estimators were changed along with 

max_features, in the third approach n_estimators were changed along with min_samples_leaf and 

in the final approach all three hyperparameters were tuned. Altogether 24 RFR models were 

developed, and models were evaluated using adjusted R2 (adj. R2), root mean squared error 

(RMSE) and their computational times. The obtained results showed that the highest performance 

with an adj. R2 value of 0.8505 was given when n_estimators was 81, max_features was 2 and 

min_samples_leaf was 1. In approach 2, when n_estimators upper limit was increased from 10 to 

100 there was a test model performance growth of more than 1.60%, whereas increasing 

n_estimators’ upper limit from 100 to 1000 showed a performance drop of around 0.4%. Models 

developed by tuning n_estimators from 1 to 100 in intervals of 10 had healthy test model adj. R2 

values and lower computational times making them the best n_estimators range and interval when 

both performances and computational times were taken into consideration to predict porosity of 

Volve oil field in North Sea. Further, it was concluded that by tuning only n_estimators and 

max_features the performance of RFR models can be increased significantly.

Keywords: Machine Learning, Random Forest Regression, Porosity Prediction, Hyperparameter 

Tuning, Decision Trees Tuning, Volve Oil Field 

1. Introduction

Artificial intelligence (AI) has become a popular topic over the past few years due to its immense 

potential in STEM fields. Machine learning (ML) is a branch of AI where it learns with or without 

supervision to do predictions. Its ability to predict or forecast outputs, decrease computational time 
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and extract features from complex and high-dimensional datasets make it a tremendous tool to 

work with complex and huge datasets.1-3 The concept of ML was first put forward by Turing.4 

Since then, ML has seen a significant improvement with the invention of complex and high 

performing algorithms. With the popularity of ML algorithms, like many other engineering sectors, 

their applicability in reservoir engineering has been tested, especially in porosity prediction. 

Porosity gives an idea about the fluid storage capacity, and it plays a vital role in the upstream oil 

and gas industry, since it is used in estimating petroleum initially in place in the reservoir. Core 

analysis is a reliable and a widely accepted approach used to estimate porosity. However, this 

method is expensive and time consuming. To address these challenges petroleum engineers and 

researchers are investigating the applicability of ML in reservoir characterization. Random forest 

regression (RFR) is one such ML algorithm which has successfully been used to predict porosity. 

To enhance the performance of ML models hyperparameter optimization is used. The research 

investigated the effects of one of the main hyperparameters of RFR, number of decision trees in 

the forest (n_estimators) when predicting porosity of a sandstone dominated section in Volve 

oilfield. Moreover, the behaviour of two other widely used hyperparameters in RFR, minimum 

number of samples required to be at a leaf node (min_samples_leaf) and number of features 

considered for the best split (max_features) when tuned along with n_estimators was studied. 

Apart from the primary objectives mentioned, this study tested the feasibility of an optimized RFR 

algorithm in reservoir characterization, specifically porosity prediction which could be further 

extended to be used in permeability and saturation prediction in future studies. 

ML application in reservoir characterization has seen a significant increase over the last couple of 

decades due to its ability to tackle regression and classification type problems.5-7 With the 

evolvement of ML, a notable number of algorithms have been introduced. Artificial neural network 
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(ANN) which uses a parallel processing approach and developed based on the function of a neuron 

of a human brain has been utilized in petrophysical parameter prediction.8,9 Support vector 

regression (SVR) is another algorithm developed in the initial stages of the ML timeline and has 

the capability to handle non-linear relationships between a set of inputs and an output. Moreover, 

SVR has been utilized widely in reservoir characterization.10-13 Least absolute shrinkage and 

selection operator (LASSO) regression and Bayesian model averaging (BMA) has also been used 

in ML related studies extensively in the literature.14 BMA uses Bayes theorem and LASSO uses 

residual sums of squares to build a linear relationship between the inputs and the output. BMA and 

LASSO regression has been used in permeability modelling in recent studies.5 Apart from 

petrophysical parameter prediction ML models have been used in lithofacies classification as 

well.15 Generally, these studies utilized ML approaches to model lithofacies sequences as a 

function of well logging data in order to predict discrete lithofacies distribution at missing 

intervals.16-18 Besides permeability prediction, water saturation estimation and lithofacies 

classification, ML models have been used in reservoir porosity estimation which is the parameter 

focused on this study. ML algorithms such as ANN, deep learning and SVR were used to predict 

porosity using logging data, seismic attributes and drilling parameters.19-21 

Apart from the aforementioned ML models an ML approach known as ensemble learning has been 

applied in many recent studies. Here, ML base models (weaker models) are strategically combined 

to produce a high performing and efficient model as shown in Fig. 1. Ensemble ML models has 

become a popular tool among researchers to predict petrophysical properties due to their ability to 

reduce overfitting and underfitting.22-26 RFR is one such popular ensemble ML model which was 

developed by amalgamating multiple decision trees.27
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Fig. 1 Representation of the ensemble model.

Hyperparameter tuning is a process implemented to fine-tune ML algorithms to obtain optimal 

models.28-30 There are several hyperparameters that can be controlled in an RFR model such as, 

n_estimators, max_features, min_samples_leaf, maximum depth of the tree (max_depth), fraction 

of the original dataset assigned to any individual tree (max_samples), minimum number of samples 

required to split an internal node (min_samples_split), maximum leaf nodes to restrict the growth 

of the tree (max_leaf_nodes). 

Hyperparameter optimization has been utilized in recent studies related to reservoir 

characterization. Wang et al. developed a RFR model to predict permeability in Xishan Coalfield, 

China.24 Five hyperparameters n_estimators, max_features, max_depth, min_samples_leaf and 

min_samples_split were tuned during hyperparameter optimization. Zou et al. estimated reservoir 

porosity using a random forest algorithm.31 During the hyperparameter optimization stage 

n_estimators, max_features, min_samples_leaf, min_samples_split and max_depth were tuned. 

Rezaee and Ekundayo tuned n_estimator, min_samples_leaf, min_samples_split and max_depth 

during the development of the RFR model used to predict permeability of precipice sandstone in 

Surat Basin, Australia.32
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Even though hyperparameters have been tuned during hyperparameter optimization phase of an 

ensemble ML model development, literature lacks studies done specifically focusing on the effects 

of hyperparameter tuning in ensemble learning when predicting petrophysical properties in 

reservoir characterization. Addressing this research gap, in this study, the authors investigated the 

influence of one of the most utilized hyperparameters in the literatures, n_estimators of RFR when 

predicting porosity of a hydrocarbon reservoir. Also, the effects of n_estimators were studied along 

with another two widely used hyperparameters, max_features and min_samples_leaf when 

predicting porosity of Volve oil field in North Sea. The study considered a supervised learning 

regression approach. The workflow of the study consisted of data preprocessing, RFR models 

development and models analysis. Several RFR models were developed tuning n_estimators, 

tuning n_estimators along with max_features, tuning n_estimators along with min_samples_leaf 

and tuning all three hyperparameters at once under four approaches by integrating grid search 

optimization and K-fold cross-validation. Models’ performances were evaluated based on adjusted 

coefficient of determination (adj. R2), root mean squared error (RMSE) and computational time. 

The study considered only aforementioned 3 hyperparameters due to processing capacity 

limitations. However, the study is expected to be a solid initiation towards the development of 

future studies on the effects of hyperparameters in ML algorithms in reservoir characterization.

2. Methodology

Developing an ML model consists of multiple steps, namely, data acquisition, data preprocessing 

models development and data analysis.33-35 In this study the above steps were implemented to 

develop robust ML models.

2.1 Geological setting and dataset
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Volve oil field (Fig. 2) was selected as the study area and the well log data of the field was publicly 

available. Several ML related studies have been conducted using the Volve oil field datasets.36-38 

It was formed during the Jurassic period by the collapse of adjacent salt ridges. Oil was discovered 

in the field back in 1993 in the middle Jurassic Hugin sandstone formations identifying it as a 

clastic reservoir. 

Fig. 2 Study area – Volve oil field’s location in the North Sea. Adapted from Mapchart.39

The Hugin Formation is 153 m thick and oil-bearing, and was penetrated at 3796.5 m, 

approximately 60 m deeper than expected. The total oil column in the well was 80 m, but no clear 

oil-water contact was observed.38,40 The reservoir section was made up of highly variable fine to 

coarse grained, well to poorly sorted subarkosic arenite sandstones with good to excellent reservoir 

properties. The Hugin Formation of the area consists of shallow marine shoreface, coastal 

plain/lagoonal, channel and possibly mouth bar deposits. The underlying Skagerrak formation was 

completely tight due to extensive kaolinite and dolomite cementation. The current study used data 
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from the well 15/9-19A. The well was drilled through the Skagerrak formation and terminated 

approximately 30 m into the Triassic Smith Bank formation. To fully utilize the available data, the 

study considered data from 3666.59 to 3907.08 m depth interval. This depth interval ran through 

three formations namely, Draupne, Heather and Hugin. The stratigraphic column and description 

about the vertical facies distribution of the focused section is shown in Fig. 3.
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Fig. 3 Stratigraphic column and facies description of the considered subsurface section. Adapted from Statoil.41

The dataset consisted of depth, well log data and corresponding calculated porosity values and had 

a total of 1547 data points. Three well log parameters, namely: resistivity log (RES), neutron 
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porosity log (NPHI) and gamma ray log (GR) along with corresponding depth were used as input 

features and total porosity (PHIF) was used as the target data. PHIF was calculated using porosity 

from density log (PHID) and NPHI. PHIF was derived from the density log which is calibrated to 

overburden corrected core porosity for wells drilled with either oil-based mud or water-based mud. 

NPHI was used to correct for varying mud filtrate invasion. Equations used to calculate PHIF and 

PHID are shown in Eq. 1 and Eq. 2 respectively.

𝑃𝐻𝐼𝐹 = 𝑃𝐻𝐼𝐷 + 𝐴 × (𝑁𝑃𝐻𝐼 ― 𝑃𝐻𝐼𝐷) +𝐵. (1)

𝑃𝐻𝐼𝐷 =
𝜌𝑚𝑎 𝜌𝑏

𝜌𝑚𝑎 𝜌𝑓𝑙. (2)

In Eq. 1 A and B are regression coefficients and in Eq. 2 𝜌𝑚𝑎 is matrix density, 𝜌𝑏 is measured 

bulk density and 𝜌𝑓𝑙 is pore fluid density. Calculated PHIF values were assumed as actual 

porosities during model development and evaluation. 

2.2 Data preprocessing

The raw data acquired from Volve oil field was subjected to data preprocessing before they were 

used in ML model development. Three main data preprocessing practices; (i) data cleaning, (ii) 

feature scaling and (iii) data division were utilized in this study.42-49 Under data cleaning, missing 

values and outliers were identified. Missing values were the sections where datapoints were 

missing from the dataset. Outliers were the data which lied outside of a considered range in each 

feature. The interquartile range method was used to detect the outliers. Both missing data and 

outliers were treated by removing them completely from the dataset.50,51

Feature scaling is also a common practice implemented during data preprocessing. There are two 

widely used feature scaling approaches in the literature namely, normalization and standardization. 
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However, in this study feature scaling was neglected since RFR is a tree-based ML model where 

splits do not change with any monotonic transformation.52 

Data division was carried out by splitting the dataset into 2 parts as training and testing. Training 

portion was used to train the ML models while the testing portion was used to test the trained 

models. Train-test ratio was considered as 80:20, i.e., 80% of the total dataset was allocated for 

training while the remaining 20% was used for testing.53,54

2.3 Machine learning models development

The RFR model is a combination of multiple decision trees. A typical architecture of an RFR 

model is shown in Fig. 4. Segal demonstrated random forest algorithm mathematically as ℎ(𝑥;𝜃𝑟)

, 𝑟 = 1,…,𝑅 where 𝑥 represents the observed input vector associated with vector 𝑋. 𝑋 and 𝜃𝑟 are 

independent and identically distributed random vectors.55 For mathematical clarification let’s 

define a vector with numerical outcomes 𝑌. Therefore, training dataset of the RFR can be assumed 

to be drawn from a joint distribution of (𝑋,𝑌).

Fig. 4 Random Forest architecture (left) and the base model architecture (right).

For regression, the random forest prediction is the unweighted average over the collection: 
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ℎ(𝑥) = 1
𝑅

∑𝑅
𝑟=1 ℎ(𝑥;𝜃𝑟). (3)

As 𝑟  ∞ the Law of Large Numbers ensures,

𝐸𝑋,𝑌 𝑌 ― ℎ(𝑋)
2

  𝐸𝑋,𝑌(𝑌 ― 𝐸𝜃ℎ(𝑋;𝜃))2. (4)

The quantity on the right is the prediction (or generalization) error for the random forest, 

designated 𝑃𝐸∗
𝑓. The convergence in Eq. (4) implies that random forests do not overfit.

Now define the average prediction error for an individual tree as ℎ(𝑋; 𝜃)

𝑃𝐸∗
𝑓 = 𝐸𝜃𝐸𝑋,𝑌(𝑌 ― ℎ(𝑋;𝜃))2. (5)

Assuming that for all θ the tree is unbiased, i.e., 𝐸𝑌 =  𝐸𝑋ℎ(𝑋;𝜃). Then

𝑃𝐸∗
𝑓 < 𝜌𝑃𝐸∗

𝑓 (6)

Where 𝜌 is the weighted correlation between residuals 𝑌 ― ℎ(𝑋;𝜃) and 𝑌 ― ℎ(𝑋;𝜃′) for 

independent 𝜃,𝜃′.

The inequality shown by Eq. (6) highlights what is required for accurate RFR which is having a 

low correlation between residuals of differing tree members of the forest and low prediction error 

for the individual trees. Model’s performance can be further enhanced by tuning its 

hyperparameters. 

During the study RFR models were developed using Python programming language. The cleaned 

dataset obtained during data preprocessing stage was loaded into Python. Then they were split into 

training and testing. Python based scikit-learn library’s RandomForestRegressor was used to 

develop the RFR algorithm. The RandomForestRegressor comes with default hyperparameters 
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built into it. Default values assigned to some of the main hyperparameters of RFR in scikit-learn 

are tabulated in Table 1.

Table 1 Some hyperparameters of random forest algorithm and their default values in scikit-learn library.

Hyperparameter Default Value

n_estimators 100

max_features 1.0

min_samples_leaf 1

max_depth None

max_samples None

min_samples_split 2

max_leaf_nodes None

However, rather than using the default hyperparameters assigned by scikit-lean library, to achieve 

the primary objectives of the study hyperparameter optimization was implemented. 

Hyperparameter optimization is a commonly used practice to build robust ML models.56,57 The 

hyperparameters of RFR were tuned using the grid search optimization (GSO) approach. For this 

GridSearchCV optimization algorithm in scikit-learn library was used. GSO was considered since 

it runs through all the possible combinations in the hyperparameter space hence selecting the best 

combination of the space.57,58 The hyperparameter space was predefined by including the possible 

values and it was fed into the GSO algorithm. 
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Fig. 5 Demonstration of K-fold cross validation.

GSO was implemented along with random subsampling cross-validation. An approach known as 

K-fold cross-validation was used. During K-fold cross-validation the training dataset is divided 

into K number of same-sized portions (folds) and K-1 of the portions will be used for training and 

the remainder will be used for validation.59,60 This will be repeated until each fold gets the chance 

to be the validation set. For this study 5-fold cross-validation was implemented as shown in Fig. 

5. Therefore, the training set was divided into five portions and during each split four folds were 

used for training and one fold was used for validation.
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Fig. 6 Workflow of the methodology.

Tuning was done under 4 approaches as shown in Fig. 6 to investigate the effects of the considered 

hyperparameters. In the first approach n_estimators was changed from 1 to 10, 1 to 100 and 1 to 

1000 in different intervals. The notation used to demonstrate the n_estimators change is shown in 

Table 2. 
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Table 2 Notations of n_estimators change and their representations.

n_estimators Change 

Notation

Starting Value Ending Value Increment

1:10:1 1 10 1

1:100:1 1 100 1

1:100:10 1 100 10

1:1000:1 1 1000 1

1:1000:10 1 1000 10

1:1000:100 1 1000 100

In the second approach n_estimators was changed from 1 to 1000 in the same way as approach 1 

along with max_features. Here, max_features was changed from 10% to 100% of total features in 

increments of 10%. In the third appraoch n_estimators was changed in the same way along with 

min_samples_leaf. In this case, min_samples_leaf was changed from 1 to 20 in intervals of 1. In 

the fourth approach all 3 hyperparameters, i.e., n_estimators, max_features and min_samples_leaf 

were varied at the same time in above mentioned intervals. In each approach values of all the other 

hyperparameters of RFR were kept at their default values assigned by scikit-learn library. The link 

to the GitHub folder with the developed codes is given in the appendix. 

2.4 Results analysis

In the literature coefficient of determination (R2) seems to be the go-to statistical parameter to 

evaluate the performance of the RFR models.61-63 However, an improved version of R2 known as 

adjusted coefficient of determination (adj. R2) was used in this study to evaluate the developed 
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models since it takes the number of datapoints and the number of input features into consideration 

during evaluation.5 The mathematical equation of R2 is shown in Eq. 7 and Eq. 8 shows the 

mathematical equation of adj. R2. The closer the adj. R2 to 1, the higher the performance of the 

model.

𝑅2 = 1 ―
(𝑦𝑖 𝑦𝑖)2

(𝑦𝑖 𝑦𝑖)2
 .             (7)

𝐴𝑑𝑗.  𝑅2 = 1 ― (1 𝑅2)(𝑛 1)
𝑛 𝑚 1  .       (8)

In Eq. 7 and Eq. 8 𝑦𝑖 is the actual value, y is the predicted value, y is the mean value of the 

distribution, 𝑛 is the number of datapoints and 𝑚 is the number of input features.

Apart from the adj. R2, models were evaluated using RMSE as well. The mathematical equation 

of RMSE is shown in Eq. 9.

𝑅𝑀𝑆𝐸 =  ∑ (𝑦𝑖 𝑦𝑖)2

𝑛
 .                                                 (9)

developed RFR models were further evaluated based on their runtime to study how tuning 

considered hyperparameters affects computational times.  Train-test difference was also used to 

further analyze the models. Train-test difference is an indication of the generalizability of an ML 

model, and it gives an idea about the variance of the model. The lower the train-test difference, the 

higher the generalizability of the model.64,65

3. Results and discussion

The adj. R2 values obtained using approach 1 of the methodology are tabulated in Table 3. When 

only n_estimators increased from 1 to 10 in intervals of 1 (keeping all the other hyperparameters 

at their default values), the model yielded a training adj. R2 of 0.9650, validation adj. R2 of 0.8188 

Page 17 of 38 Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
4/

8/
9 

3:
16

:5
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00313F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ya00313f


and testing adj. R2 of 0.8024. The training score is higher than the validation (cross-validation) 

and testing scores as expected since the model is fitted (trained) to the training set and this pattern 

was observed in all the models developed during the study. In approach 1, when the upper limit of 

n_estimators value was increased from 10 to 100, training, validation and testing scores showed a 

significant increase. Training score had an increase of 1.14%, validation score had an increase of 

2.19%. The test score had an increase of 2.22%. This rise in performance can be clearly seen in 

Fig. 7 where the adj. R2 values of the testing models were plotted for each approach.

Table 3 Coefficient of determination, train-test difference and computational times of the models obtained in 

approach 1.

adj. R2Model 

No.

n_estimato

r Change

n_estimator

Training Validatio

n 

Testing

Computation Time 

(sec)

M11 1:10:1 8 0.9650 0.8188 0.8024 0.81

M12 1:100:1 51 0.9760 0.8367 0.8202 70.25

M13 1:100:10 51 0.9760 0.8367 0.8202 6.88

M14 1:1000:1 51 0.9760 0.8367 0.8202 6932.55

M15 1:1000:10 51 0.9760 0.8367 0.8202 707.56

M16 1:1000:100 801 0.9799 0.8352 0.8218 65.73
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Fig. 7 Coefficient of determination values of each approach for different n_estimators change.

Interestingly, when the upper limit of the n_estimators range was pushed beyond 100, performance 

of the model did not show any noticeable increase in all training validation and testing adj. R2 

values. In fact, when n_estimators changed from 1 to 100 in intervals 1 and 10 (models M12 and 

M13) and n_estimators changed from 1 to 1000 in intervals 1 and 10 (models M14 and M15) 

models showed the same performance, i.e. a training score of 0.9760, validation score of 0.8367 

and a testing score of 0.8202. However, when n_estimators were changed from 1 to 1000 in 

intervals of 100, training and testing scores of the model M16 showed a slight increase of 

performance yielding an adj. R2 of 0.9799 and 0.8218 respectively. However, validation score 

showed a slight decrease which was negligible. 

Fig. 8 Coefficient of determination values of each n_estimators change for different approaches.
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Further, the highest computational time of 6932.55 seconds was shown by the model M14 where 

n_estimators was changed from 1 to 1000 in increments of 1. The results from approach 1 showed 

that after a certain n_etimators value models’ performances increased drastically and the 

performance was maintained at a constant value over a certain n_estimators range showing that 

the performance of the RFR when n_estimators were tuned was efficient within a certain range. 

Since the range and interval at which the n_estimators values are tuned affects the computational 

time an effective range and an interval for n_estimators to be decided upon taking computational 

time into account.  

In approach 2, max_features were also tuned along with n_estimators. Results obtained using 

approach 2 of the methodology are tabulated in Table 4. As observed in approach 1, a clear spike 

in training, validation and testing adj. R2 values was observed when n_estimators’ upper limit was 

increased from 10 to 100. Training score had an increase of 1.36%, validation score had an increase 

of 1.92%. The test score had an increase of 1.60%. This clear jump in performance is noticeable 

in Fig. 7. Interestingly, the performances of the models developed in approach 2 were significantly 

higher than the performance of the corresponding “n_estimators change” in approach 1. This is 

quite visible in Fig. 8 as well. Further, going from approach 1 to 2, the average validation score 

increased by 2.24% and the testing score increased by 3.52% which was significant. This increase 

of adj. R2 values is an indication that tuning max_features have a major impact on the predicting 

porosity using RFR. Model M21 where n_estimators were changed from 1 to 10 in intervals of 1 

and max_features were changed from 0.1 to 1 in intervals of 0.1 showed the least performance 

with a training score of 0.9672, validation score of 0.8381 and a testing score of 0.8366. On the 

other hand, model M23 showed the highest testing performance with an adj. R2 of 0.8505 where 

n_estimators were changed from 1 to 100 in intervals of 10 and max_features were changed from 
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0.1 to 1 in intervals of 0.1. The model M23 yielded its best test model when n_estimators were 81 

and max_features were 0.5. It has to be noted that even though the model M23 had the highest 

testing score, training and validation scores were not the best out of all the models developed in 

approach 2. The highest training score of 0.9823 was shown by models M24, M25 and M26. 

Highest validation scores were shown by models M24 and M25. However, it is more meaningful 

to select model M23 as the best performing model since the testing set represents an independent 

dataset which had never been seen by the model before.

Table 4 Coefficient of determination, train-test difference and computational times of the models obtained in 

approach 2.

adj. R2Model No. n_estimato

r Change

n_estimator max_feature

s Training Validatio

n

Testing

Computation 

Time (sec)

M21 1:10:1 9 0.1 0.9672 0.8381 0.8366 3.69

M22 1:100:1 79 0.5 0.9804 0.8542 0.8500 326.56

M23 1:100:10 81 0.5 0.9806 0.8541 0.8505 30.20

M24 1:1000:1 520 0.5 0.9823 0.8556 0.8467 32620.39

M25 1:1000:10 521 0.5 0.9823 0.8556 0.8467 3045.27

M26 1:1000:100 801 0.5 0.9823 0.8554 0.8471 284.29

The anomaly in the validation score observed when the n_esitimators were changed from 1 to 

1000 in intervals of 100 in approach 1 was observable in approach 2 as well. The difference in 

train-test score gives an idea about the generalizability of the model. The lesser the train-test 

difference, the higher the generalizability of the model. Overall train-test difference of approach 2 

was noticeably less than that of approach 1. The average train-test difference decreased by 15.51% 
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going from approach 1 to 2. This showed that the generalizability of the models improved when 

max_features was introduced to the hyperparameter space. Similar to that of approach 1 highest 

runtime was shown when the n_estimators were changed from 1 to 1000 in increments of 1.  

In approach 3 n_estimators was investigated with the alteration of min_samples_leaf and the 

results obtained are tabulated in Table 5. Noticeably, all the performance results obtained for all 

the RFR models except the runtimes were the same as that of approach 1 as seen in Fig. 7 and Fig. 

8. The reason for this was the optimum value selected by grid search optimization of 

min_samples_leaf was same as the default value assigned by scikit-learn library for the RFR 

algorithm, hence the best testing adj. R2 was shown by model M34 when n_estimators were 

changed from 1 to 1000 in intervals of 100. Computational times were clearly higher than those 

obtained in approach 1 since models developed in approach 3 had a larger hyperparameter space 

compared to approach 1. 

Table 5 Coefficient of determination, train-test difference and computational times of the models obtained in 

approach 3.

adj. R2Model 

No.

n_estimator 

Change

n_estimators min_samples_leaf

Training Validation Testing

Computation 

Time (sec)

M31 1:10:1 8 1 0.9650 0.8188 0.8024 7.79

M32 1:100:1 51 1 0.9760 0.8367 0.8202 674.81

M33 1:100:10 51 1 0.9760 0.8367 0.8202 64.96

M34 1:1000:1 51 1 0.9760 0.8367 0.8202 70039.55

M35 1:1000:10 51 1 0.9760 0.8367 0.8202 6525.18

M36 1:1000:100 801 1 0.9799 0.8352 0.8218 606.28
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In approach 4, n_estimators was changed along with both max_features and min_samples_leaf. 

Results in Table 6 showed that the performances of the models were the same as that of approach 

2. A similar phenomenon caused this performance similarity as observed between approach 1 and 

approach 3. In this case, min_samples_leaf always selected the default value during the tuning 

process and the max_features selected for the optimum model was similar to that of approach 2. 

Approach 4 consumed the longest computational time since 3 hyperparameters had to be tuned 

simultaneously. The highest runtime consumed for all models was recorded in this approach by 

the model M44, which was 82832.02 seconds. In approach 4 as observed in approach 2 as well, 

there was a test model performance increase of 1.60% when the upper limit of n_estimators was 

increased from 10 to 100. When the upper limit was increased from 100 to 1000 there was a test 

model performance drop of around 0.4%.

Table 6 Coefficient of determination, train-test difference and computational times of the models obtained in 

approach 4.

adj. R2Model 

No.

n_estimato

r Change

n_estimator max_features min_samples_leaf

Trainin

g

Validatio

n

Testing

Computation 

Time (sec)

M41 1:10:1 9 0.1 1 0.9672 0.8381 0.8366 56.22

M42 1:100:1 79 0.5 1 0.9804 0.8542 0.8500 4242.86

M43 1:100:10 81 0.5 1 0.9806 0.8541 0.8505 425.65

M44 1:1000:1 520 0.5 1 0.9823 0.8556 0.8467 82832.02

M45 1:1000:10 521 0.5 1 0.9823 0.8556 0.8467 51444.27

M46 1:1000:100 801 0.5 1 0.9823 0.8554 0.8471 3796.99
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Table 7 RMSE of training and testing models of approaches 1, 2, 3 and 4.

RMSE

Approach 1 Approach 2 Approach 3 Approach 4

Model 

No.

Trainin

g

Testin

g

Model 

No.

Training Testin

g

Model 

No.

Trainin

g

Testing Model 

No.

Training Testin

g

M11 1.2894 2.9967 M21 1.2516 2.7218 M31 1.2894 2.9967 M41 1.2516 2.7218

M12 1.0817 2.8499 M22 0.9835 2.5917 M32 1.0817 2.8499 M42 0.9835 2.5917

M13 1.0817 2.8499 M23 0.9798 2.5875 M33 1.0817 2.8499 M43 0.9798 2.5880

M14 1.0817 2.8499 M24 0.9399 2.6190 M34 1.0817 2.8499 M44 0.9399 2.6190

M15 1.0817 2.8499 M25 0.9396 2.6187 M35 1.0817 2.8499 M45 0.9396 2.6187

M16 0.9988 2.8312 M26 0.9396 2.6148 M36 0.9988 2.8312 M46 0.9396 2.6148

Table 7 shows the RMSE values of approaches 1, 2, 3 and 4. While adj. R2 values give an idea 

about the correlation between the actual porosities and the predicted porosities, the RMSE values 

give an idea about the difference (or the error) between the two. Therefore, RMSE is also an 

important parameter in ML model performance evaluation. The pattern in which RMSE values 

fluctuated in the 4 approaches was similar to that of adj. R2. The least RMSE’s were shown by 

models M16 with a training model RMSE of 0.9988 and a testing model RMSE of 2.8312. The 

results improvement when max_features were introduced to the hyperparameter space was also 

evident based on the RMSE values obtained in approach 2. There was a clear decrease in RMSE 

values in both training and testing models in approach 2 and 4 where max_features was tuned.  
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Fig. 9 Runtime of the models of each n_estimators change for different approaches.

Runtime and grid search combinations had a positive relationship, i.e., when the number of 

combinations in the grid search space was the largest, the runtime of the model was the highest 

and vice versa. Further, it was observed that, from approach 1 to approach 3, the increase of 

computational times was roughly proportional to each other as seen in Fig. 9. However, in 

approach 4, where n_estimators was changed along with the tuning of max_features and 

min_samples_leaf, an anomaly was observed when n_estimators were changed from 1 to 1000 in 

intervals of 10.
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Fig 10. Depth-porosity and correlation plots obtained from the predictions of the best performing RFR testing 

model.

Even though the primary objective of the study was to investigate the influence of n_estimators 

along with max_features and min_samples_leaf on the performance of RFR, having an overall 

picture on the variation of actual and predicted porosity and their relationship is important to 

understand the model’s applicability in porosity prediction. To achieve this, depth-porosity graphs 

and correlation plots were plotted. Fig. 10 shows one such depth-porosity graph and a correlation 

plot developed for the best performing RFR test model (model M23) of the study. Depth-porosity 

plot indicated that most of the time the predicted porosity followed the pattern of the actual 
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porosity. The correlation plot showed that the majority of the points scattered around the perfect 

correlation line which is an indication of a high correlation between the actual values and the 

predicted values.

4. Conclusions

The aim of this study was to examine the effects of tuning the number of decision trees in the forest 

(n_estimators) in random forest regression (RFR) for predicting porosity within the Volve oil field 

in North Sea. Additionally, the study investigated the influence of n_estimators when tuned with 

two others commonly used hyperparameters, namely, number of features to consider when looking 

for the best split (max_features) and minimum number of samples required to be at a leaf node 

(min_samples_leaf). The hyperparameters were tuned using grid search optimization integrating 

5-fold cross validation and model performances were evaluated based on adj. R2, RMSE and 

computational times.

• Overall, based on both performance and computational time, the RFR model with n_estimators 

at 81 and max_features at 2 (while keeping all the other hyperparameters at their default 

values), which was developed in approach 2, produced the most effective model for predicting 

porosity of Volve oil field in North Sea with a testing model adj. R2 of 0.8505, a testing model 

RMSE of 2.5875 and a computational time of 30.2 seconds.

• There was a notable increase in performance when the upper limit of the n_estimators 

increased from 10 to 100. On the other hand, the performance of the models did not increase 

significantly when the upper limit of n_estimators increased from 100 to 1000. This 

phenomenon indicated that identifying an effective n_estimators range which is not too low 

(which will make the performance significantly low) and not too high (which will increase the 

computational time) is important to produce an efficient RFR model during porosity prediction.
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• Further, range 1 to 100 changed in intervals of 10 can be suggested for n_estimators when 

developing an RFR model to predict porosity of Volve oil field, since those models showed 

higher performances and lower computational times in all four approaches. When n_estimators 

range 1 to 100 was changed in intervals of 10 it always yielded a high adj. R2 value (in approach 

2 and 4 it yielded the highest testing model adj. R2 value) for the model and consumed the 

second least computational time.

• When n_estimators tuned along with max_features in approach 2 the results improved 

drastically compared to approach 1 where only n_estimators were tuned. There was an average 

validation score increase of 2.24% and the testing score increase of 3.52% going from approach 

1 to 2. This improvement of the scores (adj. R2) showed that max_features have a significant 

influence on the RFR model’s performance.

• Moreover, it was observed that computational time was largely affected by the number of 

hyperparameters altered, their range and interval. Out of all the approaches, the highest 

computational time was consumed when n_estimators were tuned from 1 to 1000 in intervals 

of 1 along with max_features and min_samples_leaf.

Based on the results, only by adjusting n_estimators and max_features an RFR model can be 

developed with a robust prediction power to estimate porosity in Volve oil field.

Recommendations

This study focused on three hyperparameters, namely, n_estimators, max_festures and 

min_samples_leaf. Apart from these hyperparameters min_samples_split and max_depth are also 

widely used in the literature during hyperparameter optimization in RFR. Therefore, for future 
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studies the behaviour of min_samples_split and max_depth along with n_estimators are 

recommended to be investigated.  

Author contributions

Kushan Sandunil: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 

Validation, Visualization, Writing – original draft. Ziad Bennour: Conceptualization, 

Methodology, Supervision, Funding acquisition, Resources, Writing - review & editing. Hisham 

Ben Mahmud: Supervision, Funding acquisition, Writing - review & editing. Ausama Giwelli: 

Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper.

Data availability statement

Data for this article, including codes and graphs are available at GitHub at 

https://github.com/kwkushan/effects-of-tuning-decision-trees-in-random-forest-regression-on-

predicting-porosity-kushan-sandunil-. A description about the available files in GitHub repository 

can be found in the appendix.

Acknowledgement

Authors would like to thank Curtin University Malaysia and Curtin Malaysia Postgraduate 

Research Scholarship (CMPRS) for hosting and allocating the research grant for the study. Further, 

a special thanks would be given to Equinor and the Volve license partners for making the Volve 

field dataset available for scientific research (https://discovervolve.com/citation-non-

commerciality-clause/).

Page 29 of 38 Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
4/

8/
9 

3:
16

:5
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00313F

https://github.com/kwkushan/effects-of-tuning-decision-trees-in-random-forest-regression-on-predicting-porosity-kushan-sandunil-
https://github.com/kwkushan/effects-of-tuning-decision-trees-in-random-forest-regression-on-predicting-porosity-kushan-sandunil-
https://discovervolve.com/citation-non-commerciality-clause/
https://discovervolve.com/citation-non-commerciality-clause/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ya00313f


Appendix

The authors would like to share open repository folder containing the codes and resources for this 

study on GitHub and extend an invitation to collaborate through Open Knowledge sharing. In the 

folder, 4 codes are provided; Code_1 was developed by only tuning n_estimators. Code_2 was 

developed by tuning n_estimators along with max_features. Code_3 was developed by tuning 

n_estimaors along with min_samples_leaf and the Code_4 was developed by tuning all three 

hyperparameters, i.e., n_estimators, max_features and min_samples_leaf. The GitHub repository 

with the developed codes in the study can be accessed via this link. 

Nomenclature

AI Artificial Intelligence

ML Machine Learning

RFR Random Forest Regression

ANN Artificial Neural Network

SVR Support Vector Regression

LASSO Least Absolute Shrinkage and Selection Operator

BMA Bayesian Model Averaging

GSO Grid Search Optimization

RMSE Root Mean Squared Error

R2 Coefficient of determination

adj. R2 Adjusted coefficient of determination

RES Resistivity log

NPHI Neutron porosity log

GR Gamma ray log

PHIF Total porosity

PHID Porosity from density log

Page 30 of 38Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

02
4/

8/
9 

3:
16

:5
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00313F

https://github.com/
https://github.com/kwkushan/effects-of-tuning-decision-trees-in-random-forest-regression-on-predicting-porosity-kushan-sandunil-
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ya00313f


n_estimators Number of trees in the forest

max_features Number of features considered for the best split

min_samples_leaf Minimum number of samples required to be at a leaf node

max_depth Maximum depth of the tree

max_samples Fraction of the original dataset assigned to any individual tree

min_samples_split Minimum number of samples required to split an internal node

max_leaf_nodes Maximum leaf nodes to restrict the growth of the tree

A A regression coefficient

B A regression coefficient

𝜌𝑚𝑎 Matrix density

𝜌𝑏 Measured bulk density

𝜌𝑓𝑙 Pore fluid density

𝑛 Number of datapoints

𝑚 Number of input features

𝑋 Independent and identically distributed random vector

𝜃𝑟 Independent and identically distributed random vector

𝑥 Observed input vector associated with vector 𝑋

𝑌 A vector with numerical outcomes

𝑦𝑖 Actual Value

y Predicted Value

y Mean Value of the Distribution
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