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Improving energy security and lowering greenhouse gas emissions need the utilization of renewable
resources like biomass. The production of power, heat, and biofuels from biomass has gained significant
attention in the current energy scenario. The current study highlights the developments, advancements,
and future possibilities of merging thermochemical and biochemical conversion processes for the
manufacture of value-added chemicals and green fuels. While biological processes have extensive
processing times and low product yields, thermochemical methods are limited by high processing costs
and temperature requirements. The integration of thermochemical and biochemical conversion
processes facilitates the circular economy and improves resource usage. Despite the wide range of
feasible integration scenarios, the majority of research that is now accessible in the literature
concentrates on the developments in thermochemical or biochemical processes as a standalone
conversion pathway. The present review aids in gaining a basic understanding of potential routes to
unlock pathways for complete biomass conversion. Pyrolysis, as well as hybrid conversion techniques,
are the most appealing methods from an economic evaluation standpoint. In this work, a techno-
economic analysis of the significant conversion processes has also been presented. Examining the

environmental impact and costs of alternative waste conversion processes is necessary when obtaining
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Accepted 27th May 2024 energy from garbage or biomass. So, life cycle assessment (LCA) is a useful method for comparing the

environmental effects of various waste-to-energy options. To increase the production of biofuels,
further research is required in the areas of feedstock pretreatment, catalyst development, and total
production system optimization.
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Environmental significance

The integration of thermochemical and biochemical conversion processes for biomass represents a crucial step in addressing energy security, greenhouse gas
emissions, and sustainable resource management. By harmonizing these methodologies, this study delineates pathways for comprehensive biomass utilization,
yielding value-added chemicals and green fuels. This approach not only tackles the inefficiencies of standalone processes but also promotes a circular economy
model, optimizing resource usage. Advancing biofuel technologies and refining waste-to-energy systems emerge as pivotal strategies, crucial for mitigating
environmental degradation and fostering sustainability. This research underscores the urgent need to address these challenges, emphasizing the potential for
transformative change towards a greener, more resilient future.

energy consumption.' Agriculture is one of the key contributors
to the Indian economy. The accelerated growth in the human

1. Introduction

The need for a transition to sustainability is growing due to
global climate change and the depletion of natural resources.
This urgency is made even more pressing by the world's pop-
ulation growth and rapid industrialisation, which together
present serious obstacles to the disposal of biowaste and rising
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population in recent times has led to a rapid increase in the
requirement of food for our survival. As a result, the demand for
agricultural production has increased manifold.> Global agri-
culture generates 23.7 million tons of food every day on average,
according to a 2017 report released by the Food and Agricultural
Organization.> The increased agricultural production can be
attributed to several factors and this growth has caused negative
impacts on the environment. Depending on the kind of agri-
cultural produce or product, processing methods, and intended
use, every stage of production, processing, and consumption
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results in significant waste creation.* However, due to a lack of
a proper waste management system, these wastes consisting of
husks, seeds, leaves, stalks, pulp, stem, bagasse etc. are left
underutilized. This causes a lower return from the wastes as
agricultural wastes have a highly nutritious composition and
can be used for feeding animals, manufacturing fertilizers, soil
improvement, production of biogas and bioethanol, as alter-
native substrates for fermentation and various other commer-
cial purposes.® If not managed properly, serious health issues
are caused by these wastes through environmental pollution.
Agricultural productivity needs to be improved due to the
adverse impact of agricultural activities on the environment,
aquatic life, and human health. Thus, the development of effi-
cient and effective methods for managing agricultural solid
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wastes is much needed.® Agricultural residues can be managed
effectively by recycling them to produce useful products. The
lignocellulosic biomass present in the natural environment is
recognized as a highly important renewable resource due to its
ability to generate biofuels and high-value materials.” Pyrolysis
is one of the methods for converting biomass that has attracted
a lot of interest since it may directly transform lignocellulosic
biomass into useful byproducts.*

Fuel for transportation is produced from biomass, which
comes from renewable sources. Biomass components like
cellulose, hemicellulose, and lignin which are found in ligno-
cellulosic compounds can be used to generate transportation
fuels that could replace fossil fuels to some extent.® One feasible
option to lessen the environmental effects of waste
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management and disposal is to generate bioenergy from
biomass buildup and a variety of wastes, such as food waste,
animal manure, urban garbage, and rural waste.” The thermo-
chemical conversion of waste into biochar ensures a dramatic
reduction in waste volume. This in turn helps in creating
a pollution-free environment.

A porous carbonaceous substance known as “biochar” is
produced when biomass feedstock is thermochemically broken
down in an oxygen deficient environment.' The biomass feed-
stock encompasses a variety of organic sources like residues
from crops and forests, sewage sludge, wood chips, algae, and
municipal solid wastes that are organic."*> Various processes
are used for the thermochemical breakdown of biomass like
hydrothermal carbonization, pyrolysis, torrefaction, gasifica-
tion, and microwave heating. All these methods differ in their
thermochemical temperature and duration.”*'* So far, several
research studies and reviews have been carried out on biochar
based on its two distinct merits: firstly, through stable carbon
storage, biochar can mitigate greenhouse gas emissions by
halting the atmospheric release of greenhouse gases that arise
from the breakdown of biomass; secondly, owing to its
numerous surface functional groups and comparatively wide
surface area, this adsorbent is cheap, effective and environ-
mentally benign.'>*® Several review articles on biofuels and
bioenergy have been published, as summarized in Table 1.

This highly porous and carbon-rich material can also be used
to purify water by adsorbing metals/metalloids.’” Additionally, it
can be applied on soils as a catalyst and an adsorbent for a wide
range of pollutants to increase crop yield, soil productiveness,
thus helping to minimize greenhouse gas emissions and
partially replace fossil fuels.**** Consequently, biochar is gain-
ing importance as a remedial solution for several worldwide
issues, including soil degradation, pollution, and climate
change.” Fig. 1 displays the publication trends from 2019 to
2024 and a word cloud showcasing the most frequently used
terms. A publication analysis was conducted to examine
research trends and identify areas lacking in the literature, thus
providing the framework for future study.

2. Sources of waste biomass/
feedstock

The diverse categories of feedstocks that affect the physico-
chemical properties of biochar have been covered in several
prior review publications.*® The main components of lignocel-
lulosic biomass are lignin, cellulose, and hemicellulose. In
addition to water in the form of moisture and ash, it also
contains other plant elements in trace quantities like lipids,
starch, sugars, oils, and acids. Worldwide crop residue
production is millions of tons (5280 megatons in 2020-21).%
Lignocellulosic biomasses like rice straw, wheat straw, corn
stover, and sugarcane bagasse dominate agricultural waste.
WW is produced by processing wood resources such as leaves,
branches, bark, sawdust, and shavings. WW includes wasted
furniture, building materials, pallets, and wood packaging.
Since timber harvesting eliminates 25% to 50% of the volume,
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Fig.1 Number of publications from 2019-2024 and word cloud of most repeated keywords.

waste wood is an important energy resource. Day-to-day FW
production occurs in retail, food service, farming, post-har-
vesting, packing, processing, distribution, and disposal.*® To
reduce waste and improve environmental sustainability,
sustainable food processing techniques can be developed,
cooking oil can be turned into biofuel, and food donation
programs can be organized. Without treatment, animal wastes
like manure and faeces can pollute water and eutrophicate
surface water due to their high nitrogen and phosphate
content.’

Following recommendations in the literature,**** biomass
materials have been organized into groups as detailed in Fig. 2.
Significant differences exist in the overall characteristics and
molecular makeup of herbaceous and woody biomass, as seen
in Table 2.

Woody Biomass

Stem, wood
chips,
sawdust,
forest

Poultry litter,
Manure, Swine

Solids, Chicken
manure, Food,
Fruits etc.

Fig. 2 Biomass feedstock categories.*
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When choosing methods, these differences need to be
carefully considered to guarantee the smooth manufacture of
biochar with the appropriate qualities. The overall composition
can vary significantly, even within the same biomass group.

3. Bioenergy

Biofuels represent a category of sustainable fuels sourced from
abundant biological materials known as biomass. This biomass
encompasses diverse resources, including forestry products,
agricultural residues such as straw, husks, and animal fat
byproducts from food processing, industrial waste from pulp
production and sewage, waste wood from construction and
demolition and biodegradable waste.** Additionally, biofuels
can be obtained from specific energy crops cultivated

Herbaceous Biomass
5) W - "v_ ;

2 Switchgrass,
stalks,

i straws, grass,
bamboo etc.

Sewage and
digestion
sludge etc.
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Table 2 Composition and properties of woody and herbaceous biomass groups*®

Biomass type Volatiles (wWt%) Ash (wt%)

Fixed carbon (wt%)

Cellulose (wt%) Hemicellulose (wWt%) Lignin (wWt%)

Woody biomass
Herbaceous biomass

84.0(2.1)

. 14.7(1.6)
79.1(5.8) 5.5(3.2)

15.4(4.0)

exclusively for energy or transport fuel purposes, as well as from
algae, microalgae, and seaweed.*” Biofuels encompass a broad
spectrum of fuel types, including biogas, biodiesel, bioethanol,
biohydrogen, and others. Three primary categories of biofuels
can be distinguished by their constituent parts and physical
states: solid, liquid, and gaseous biofuels. Typically, processed
biomass, raw biomass fuels, and leftovers from biomass
conversion operations are all considered solid biofuels.
However, gaseous and liquid biofuels—known as syngas and
bio-oil, respectively—come from the conversion of biomass.*
Production of bioenergy has been considered a net zero carbon
emission technique since carbon emitted during energy trans-
formation is assumed to have been taken up by biomass during
the process of photosynthesis. Thus, during energy conversion,
the carbon dioxide taken from the atmosphere during photo-
synthesis is released.

3.1. Production of bioenergy

Biomass can serve directly as a fuel or can be transformed into
liquid or gaseous forms, making it an important source of
energy for producing chemicals, heat, electricity, and liquid and
gaseous fuels.” There are two primary methods of converting
biomass into biofuels: thermochemical conversion and
biochemical conversion.*” In contrast, there are five subcate-
gories of thermochemical conversion: gasification, pyrolysis,
carbonization, liquefaction, and combustion. Thermochemical
conversion technologies are generally considered more efficient
and flexible than their biochemical counterparts.*® The global
population hit 8.0 billion in mid-November 2022 and is ex-
pected to reach 9.7 billion by 2050, according to a reputable
source.” Population growth affects food, water, and energy
supplies. The effective management of all waste, including
biomass waste like sewage sludge, wood, food, municipal solid
trash, and agricultural waste, is crucial. Landfilling, compost-
ing, fertilizing, and foddering are common waste management
strategies.®® All of these technologies are unsustainable due to
greenhouse gas emissions, surface and groundwater contami-
nation, and disease growth. Composting uses nutrient-rich
organic wastes like sewage sludge, animal manure, agricultural
residues, and more to improve soil quality. Methane emissions,
foul odours, and toxic leachate are released throughout the
lengthy process. However, organic waste is dumped in land-
fills,*® harming the ecosystem and wasting resources. Modern
sustainable waste treatment systems focus on waste conversion
into energy, fuels, and goods to maximize biomass resources
and create a circular economy around lignocellulosic biomass.”
This technology is thought to process biomass and organic
wastes more efficiently. Depending on the organic waste feed-
stocks, biomass wastes can be used and handled in various

© 2024 The Author(s). Published by the Royal Society of Chemistry

51.2(8.7)
32.1(4.5)

21.0(8.7)
18.6(3.4)

26.1(5.3)
16.3(3.3)

ways. However, these approaches may not solve all issues. When
handling inevitable biomass wastes, an integrated multi-tech-
nology strategy is crucial.

4. Waste-to-energy conversion
routes

4.1. Thermochemical conversion processes

Chemical energy that has been stored during photosynthesis is
released by the breakage of bonds between neighbouring
molecules of carbon, hydrogen, and oxygen in thermochemical
conversion pathways.** The thermochemical conversion routes
concentrate on transforming organic matter into solids (like
hydrochar or biochar), liquid fuels (such as hydrocarbon fuels)
and bio-oils or gases (such as syngas), as well as their inter-
mediates.** Thus, biochar, bitumen, bio-oils, and incompress-
ible gases are the usual end products of thermochemical
conversion processes.*’

These are effective methods available to safely dispose of
waste biomass and maximize its economic value. Through the
use of scientific methods, these technologies can reduce the
reliance on non-renewable resources such as fossil fuels by
converting biomass into alternative fuels.> All the conversion
technologies that have been discussed previously have inherent
limitations, regardless of their scientific approach.** There are
drawbacks to both thermochemical and biochemical
approaches. Thermochemical methods often lead to the
production of low-quality biofuel and come with high costs in
terms of production and energy. Additionally, they contribute to
greenhouse gas emissions and require gas purification.”® In
contrast, the alternative method is less efficient in breaking
down resistant biomass materials, takes longer to complete,
and has a lower production rate.>*

Biochar or pre-treated biomass correlates with torrefied
biomass, pyrochar (derived from slow pyrolysis), and hydro
chars (produced from hydrothermal carbonization). Heating
rate, residence duration, temperature and pressure are among
the factors that determine this transformation.”® There are three
main groups of thermochemical conversion pathways based on
the primary product they produce. The first group is biomass to
solid processes which involve torrefaction and hydrothermal
carbonisation. The second group is biomass to liquid processes
which include hydrothermal liquefaction, pyrolysis (fast and
flash), and slow pyrolysis. The third group is biomass to gas
processes which include hydrothermal gasification and
conventional gasification.’® Table 3 contains a list of all ther-
mochemical transformation processes along with their char-
acteristics and reaction products. Temperature, residence time
and heating rate play a crucial role in all thermochemical

Environ. Sci.: Adv., 2024, 3, 1197-1216 | 1203
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conversions. Fig. 3 represents the concept of thermochemical
conversion processes of biomass.

4.2. Biochemical conversion processes

Biochemical conversion methods, consisting of anaerobic
digestion and syngas fermentation, involve the breakdown of
non-woody organic materials in the absence of oxygen under
mild conditions. The final products like methane and carbon
dioxide are usually stable compounds.*” However, biochemical
conversion processes have limitations, as they primarily utilize
cellulose and hemicellulose components of biomass and tend
to be time-consuming. The key challenges for biochemical
conversion include the considerable cost and difficulty involved
in breaking down the tough, complex structures of the cell walls
in cellulosic biomass.>® Another key challenge is to more effi-
ciently convert the sugars into biofuels and purify them.
Anaerobic digestion is a biological conversion process which
combines the processes of hydrolysis, acidogenesis, aceto-
genesis, and methanogenesis to convert organic biomass into
methane-rich biogas.®® The process yields digestate, with
potential uses such as as a fertilizer and value-added products.®*
In comparison to aerobic systems, anaerobic systems are pref-
erable because they can handle organic residues that are diffi-
cult to decompose, consume less energy, produce less sludge,
remove pathogens, and have less odour.®*®® Syngas fermenta-
tion is a recently developed method that uses microorganisms
to help transform gaseous mixtures (called syngas) that contain
H,, CO, and CO, into fuels and compounds with additional
value in an oxygen-poor environment. Acetic acid, formic acid,
methane, butanol, and ethanol are the main byproducts of SNF.
Gas for SNF is produced via pyrolysis, electrochemical syngas
production, biomass gasification, and industry exhaust gases.

4.3. Biochemical-thermochemical hybrid conversion

4.3.1. Pyrolysis-anaerobic digestion. Anaerobic digestion
produces digestate, which may be dehydrated and used as a fuel
in pyrolysis processes to create biochar. This integrated method
improves energy sustainability while lowering total expenses.
The use of AD and pyrolysis together has been studied by
researchers to enhance the recovery of resources from agricul-
tural waste (Fig. 4). When the digestate from AD is dried and
utilized as feedstock for pyrolysis, the electricity gain increases
by 42% as compared to AD alone.* The sale of extra electricity to
the grid through this integration also brings in extra money.
Comprehending the characteristics of pyrolysis products and
digestate's thermal decomposition behaviour is essential for
techno-economic research and process optimization.® It has
been investigated to enhance the quality of bio-oil by pretreat-
ing biomass before pyrolysis. Comparing solid products from
AD with digestate pyrolysis, biochar performs better as a soil
conditioner because of its higher potassium and phosphorus
content, larger surface area, and improved ability to hold
water.®® Several studies have been carried out on hybrid pyrol-
ysis-anaerobic digestion processes using different feedstocks
(Table 4).

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4va00109e

Open Access Article. Published on 29 2024. Downloaded on 2025/11/1 6:34:30.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Critical Review

View Article Online

Environmental Science: Advances

SURPLUS SURPLUS SURPLUS SURPLUS ‘ SURPLUS
AIR AIR AIR AIR AIR
‘ PARTIAL PARTIAL PARTIAL PARTIAL ‘ PARTIAL
AIR AIR AIR AIR AIR
AIR AIR AIR AIR AIR
DEFICIT DEFICIT DEFICIT DEFICIT DEFICIT

gas

Fig. 3 Concept of thermochemical conversion processes of biomass.

Biochar

Bio-oils

Biogas

Biomass

Aqueous products

Anaerobic | Digestate [~

Digestion » Activation

Drying
Biochar
v v
m
Composting Fertilizer Activated
charcoal

Fig. 4

Studies that used digestate derived from the anaerobic
digestion of food waste as fuel have also looked into how AD
affects the yield of pyrolysis. While raw food waste can be pyro-
lyzed to produce more gas and bio-oil, digestate-derived bio-oils
have decreased quantities of hydrocarbon derivatives, phenols
and esters. Digestate pyrolysis produces bio-oils that have similar
qualities to biodiesel and can be used as fuel for vehicles.®”
Improved biofuel recovery results from syngas biomethanation,
which uses anaerobic microorganisms to convert CO,, H,, and
CO into CH,.®® Furthermore, liquid digestate and biochar from
solid digestate pyrolysis can be mixed to improve soil.*

Overall, the integration of AD and pyrolysis presents
a promising approach to enhance resource recovery, reduce
waste, and promote sustainability in the energy and agricultural
sectors.”®

4.3.2. Hydrothermal liquefaction-anaerobic digestion.
There is an opportunity to improve the energy output from
organic waste by combining HTL with AD. Some research work

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(a) Flow diagram for hybrid AD and pyrolysis digestion process; (b) flow diagram for hybrid pyrolysis and AD digestion process.

has been carried out utilising this hybrid technology as in
Table 5. Anaerobic digestate management and disposal provide
difficulties from an environmental and economic standpoint,
with possible problems relating to odour, pollution of the
environment, and the presence of pathogens.”” Utilizing diges-
tate as liquid fertilizer in agriculture may lead to excess dosage
concerns and contribute to overall process costs.”® Due to its
high organic content, anaerobic digestate can be used to
produce biocrude, a valuable liquid fuel, through HTL.” This
biocrude can subsequently undergo upgrading to produce
green transportation fuels. One benefit of HTL is that it may be
used with feedstocks that have a high moisture content, which
means it doesn't need to be dried and is especially good for
anaerobic digestate. Post-HTL wastewater is a viable feedstock
for biological processes since it preserves up to 40% of organic
matter and at least 80% of the nutrients from the original
feedstock.** Additionally, because of its high nutritional
concentration, this effluent may be used in the development of

Environ. Sci.: Adv., 2024, 3, 1197-1216 | 1205
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Table 4

Impact of different operating conditions on hybrid pyrolysis—AD technology
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Operational conditions for
pyrolysis (temperature and

Operational conditions
for AD (type, mode,

Effect of pyrochar on

Pyrochar feedstock residence time) temperature, substrate) anaerobic digestion References
Saw dust 500 °C, 60 min Thermophilic, batch, 55 °C, It reported a decline in the 71
waste-activated sludge with lag phase, an increase in the
food waste rate of CH, synthesis, and
the adaptability of
microorganisms to highly
volatile organic compounds
through pH control using
pyrochar
Leaf waste 200 to 400 °C, 180 min Mesophilic, N.A,, N.A,, It demonstrated a significant 72
biogas with 500 to 1300 ppm level of H,S adsorption for
H,S around 30 minutes before
saturation
Saw dust 500 °C, 90 min Mesophilic, batch, 35 °C, It showed a reduction in the 73

food waste with dewatered
activated sludge

Dairy manure, waste sludge 400 to 800 °C, 90 min

Vermi-compost 500 °C, 120 min

Coconut shell, rice husk, 450 °C

wood

algae.” Anaerobic bacteria are more resilient to the diverse
chemical compounds in post-HTL effluent than other
strains.®**> An inventive method for supplying nutrients and
recovering energy from post-HTL wastewater combines algae
farming with AD. As a detoxifying stage, the AD process gets rid
of organic contaminants that can prevent algae from growing.
To cleanse wastewater and produce a reduced post-hydro-
thermal liquefaction wastewater dilution ratio appropriate for
the cultivation of algae, the study uses a detoxification approach
that combines ozone and granular activated carbon. Methane
output and overall energy recovery are greatly increased by the
AD process's inclusion of activated carbon. Effective material
usage and resource recovery are two benefits of the integrated
HTL-AD process.* Fig. 5(a) represents the flow diagram for the
hybrid hydrothermal liquefaction and AD process.

4.3.3. Hydrothermal carbonization-anaerobic digestion.
Anaerobic digestate can be efficiently combined with anaerobic
digestion downstream to create hydrochars, which can be used
as fuel or in a variety of industrial processes. Numerous studies
have looked into the possibility of HTC to improve anaerobic
digestate. In addition to creating carbon-rich hydrochar, the
HTC process yields organic-dissolved process water that aids in
chemical and nutrient recovery.”” This integrated approach
demonstrates the versatility of HTC in maximizing the

1206 | Environ. Sci.. Adv, 2024, 3, 197-1216

Mesophilic, batch, 37 °C,
waste activated sludge

Mesophilic, batch, 35 °C,
chicken manure with
kitchen waste

Mesophilic, batch, 35 °C,
citrus peel

lag phase, an increase in

buffering capacity, and an
improvement in CH,

formation, all of which

helped to facilitate pH

reduction

It revealed the adsorption of 74
heavy metals, particularly

lead, on pyrochar

It revealed a notable rise in 75
CH, production along with
enhanced buffering

capability

It revealed a minor rise in 76
CH, along with more

methanogen colonies,

a shorter lag time, and more
removal 7

utilization of anaerobic digestate while promoting resource
recovery and sustainability.®®*° It is crucial to understand that
the chemical structure and composition of pyrochar and
hydrochar are different.®® Because of the higher temperatures
utilised in pyrolysis, pyrochar is formed with a strong carbon
structure which is less prone to microbial destruction. HTC
hydrochars, however, don't have these characteristics. The
energy efficiency of combined HTC and AD processes has been
acknowledged, yet process stability may be hampered by the
repetitive input of aqueous liquid of HTC back into the AD
system. This is explained by the constant changes in the content
of digestate and aqueous liquids and microbial sensitivity.”*
Consequently, a preferable approach involves the integration of
a two-stage AD.”> Many studies have been carried out using
different feedstocks for combined HTC-AD conversion tech-
nology (Table 6).

Because of the constant addition of HTC aqueous liquid,
which introduces dynamic variations, it is believed that this
two-stage AD design is a superior option for preserving process
stability. Separating acidification activities (acetogenesis and
hydrolysis) from methanation processes (acetogenesis and
methanogenesis) is a key component of the two-stage AD
process. After the first stage of anaerobic digestion is
completed, it is feasible to separate the substrates into solid and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Flow diagram for the hybrid hydrothermal liquefaction and
AD process; (b) flow diagram for the hybrid AD and hydrothermal
carbonization process.

liquid portions i.e. digestate and hydrolysate respectively. Extra
conditioning or drying steps are no longer necessary since the
digestate, consisting of an unmodified organic material, is
subjected to hydrothermal carbonization to generate hydrochar
and carbon-rich process water.”® To produce biogas, the second
stage of anaerobic digestion may include the hydrolysate and
aqueous liquid from HTC, which are high in soluble carbon and
organic acids.® The two-step approach improves overall process
stability by offering the best conditions for bacterial growth at
each stage. Additionally, it makes it possible to operate at larger
rates of organic loading, which raises the amount of biogas
produced per reactor volume.®* This integrated strategy guar-
antees the effective use of various substrates and improves the
AD system's overall performance (Fig. 5(b)).

4.3.4. Gasification-syngas fermentation. In comparison to
other techniques, hybrid gasification-SNF (syngas fermenta-
tion) systems are more robust as shown in Fig. 6. The more
stable hybrid gasification-SNF processes result from SNF's
softer operating conditions. SNF biocatalysts have several
benefits, including resistance to sulfur-based contaminants in
syngas, lack of need for a certain CO/H molar ratio, and good
selectivity for the intended end product with minimal byprod-
ucts.” The optimal option for turning softwood and wheat straw
into second-generation bioethanol was determined by inte-
grating three different gasification technologies (bubbling
fluidized bed, updraft fixed bed and indirect gasification) with
SNF. According to the findings, the gasification technology
selection affected the composition of the syngas. Wheat straw's
lower tar concentration and H, molar ratio made indirect
gasification the most successful method.'*® Carbon fixation was
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Table 6 COD removal and methane production in anaerobic digestion of process water from HTC

AD of process water from HTC

AD feedstock

Temperature Time COD

Methane yield

Energy Methane yield Energy

Biomass waste (°C) (min) removal (%) (mL CH, g ' COD added) recovery (%) (mL CH, g ' COD) recovery (%) References
Primary sewage sludge 160 30 61 259 13.4 137 13.2 93
Secondary sewage sludge 160 30 51 258 15.3 120 4.3 93
Mixed sewage sludge 160 30 66 280 20.1 253 8.1 93
Digestate 200 60 50 297 9.1 — — 94
Water hyacinth 200 60 61 213 13.9 103 28 95
Microalgae 150 60 — 230 18.8 200 34.2 96
Cattle manure 160 60 49 294 18.8 111 25.6 97
Value-added
chemicals
Aqueous phase
Wet
Biomass Hydrothermal Cleaning Syngas Biofuels
Gasification Syngas j — Fermentation
.................
: H Tar
M M Ethylene
Activated Agricultural Acetylene
carbon applications Benzene

Fig. 6 Flow chart illustrating the process of hybrid gasification and syngas fermentation.

enhanced by 55% when Clostridium was utilized as an inoculum
after downstream processing was employed to remove methane
(CH,) and saturated C,-C; hydrocarbons from syngas.'®* It is
recommended to use hydrochar as a porous material in SNF to
improve mass transfer rates by immobilizing germs. Because
hydrochar is high in macronutrients, it is also suggested that it
be used as a sustainable fertilizer and soil amendment, sup-
porting a circular economy.”

4.3.5. Hydrothermal liquefaction-fermentation. Hydro-
thermal liquefaction is a potential thermochemical conversion
method that can produce biocrude oils from biomass with high
moisture content. One of the characteristics of this process is the
production of a significant volume of aqueous phase, or HTL-AL.
Along with some number of organics, HTL-AL also contains C and
N, which are transported via a variety of chemical routes."” HTL-AL
is commonly considered a waste liquid; however, it has the
potential to be utilized as an energy source due to its high
concentration of both organic and inorganic components, pres-
ence of heavy metal ions, and changeable chemical composition.
Anaerobic fermentation is one biological conversion technology
that could be utilized to value-add HTL-AL and create environ-
mentally friendly chemicals and fuels. However, the liquid may
contain potential inhibitors which might inhibit the biological

1208 | Environ. Sci.: Adv, 2024, 3, 1197-1216

process. Therefore, pretreatment methods including extraction,
partial oxidation, and adsorption are employed to change the
inhibitors into substances that the body can easily metabolize.'*>**
Because it is more intensive and takes less time, aerobic fermen-
tation is a practical biological conversion technique that can help
HTL-AL develop value-added products when oxygen is present.'**

5. Potential of bioenergy

The need for clean and renewable energy sources is becoming
more pressing due to the growing demand for resources and
energy, as well as worries about climate change and the finite
supply of fossil fuels.'® A variety of energy sources are included
in the category of renewable energy, such as solar, geothermal,
hydropower, tidal, wind, and bioenergy. Among them, biomass
is thought to be the best carbon source for creating fuels,
chemicals, and renewable heat and power without harming the
environment.'”® Instead of drawing from subterranean carbon
reserves, biofuels made from biomass provide a unique benefit
by harnessing atmospheric carbon. A special role in improving
the economy is played by biofuels, which have the potential to
be sustainable and completely renewable.’” Since they are
produced using a variety of renewable carbon sources and have

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the potential to be inexpensive, they are also very important in
the renewable energy industry.'® In the next 30 years, it is
anticipated that the production of biofuel from biomass will
rise regardless of changes in the price of fossil fuels.**®

6. Techno-economic and
environmental assessment

Growing costs associated with energy sources and inappropriate
disposal of waste materials are increasing public interest in
improving environmental quality in the modern period. The
economics of biomass conversion pathways are significantly
influenced by the end products. Latent release of hazardous
gases and substances like SO,, CO, and NO, as well as unstable
chemical compounds generated from combustion and insuffi-
cient oxidation are the key hazards.'* All these dangerous gases
are bad for the environment and human health. Therefore,
seepage should be avoided during waste-to-energy conversion
processes; a suitable conditioning system and an efficient gas
clean-up are essential for this. Reducing the likelihood of
incomplete oxidation during the conversion process is another
effective strategy to lessen the risk of hazardous gases.

For the generation of ethanol, a hybrid method of gasification
coupled with fermentation has been compared to traditional
enzymatic hydrolysis coupled with fermentation technology. The
cost of producing ethanol through gasification and fermentation
is significantly higher than that of producing ethanol through
enzymatic hydrolysis and fermentation."® The primary reasons
for this increased cost are the comparatively low ethanol yield, the
high energy recovery costs, and the high capital cost. The use of
land, the demand for equipment, and the amount of feed
required all affect cost analysis. The labour and maintenance
costs are included in the process's operational fee. These costs are
all estimates, but the precise cost depends on the area's admin-
istrative requirements, incentives, feedstock accessibility, and
skilled labour. However, gasification is not a good method for
feedstocks with high moisture concentrations because it
increases the cost of the entire process and needs the adoption of
a pretreatment technology to boost processing efficiency."* But
when it comes to reducing incineration-related process costs,
techniques like pyrolysis or gasification are more beneficial.
Among all the other thermal and biochemical processes, pyrol-
ysis, as well as hybrid conversion techniques, are the most
appealing methods from an economic evaluation standpoint.

7. Life cycle assessment

It is crucial to evaluate the environmental and economic impacts
of combining different processes to make informed decisions
regarding the commercial feasibility of thermochemical and
biological conversion methods.'* Using computer-based LCA is
a valuable approach for comparing the environmental impacts of
different waste-to-energy options."* In many cases, an LCA can
tackle various challenges associated with biomass conversion
processes. These challenges can include economic consider-
ations, limited resources, concerns about food security, health
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and safety issues, water usage, land use concerns, and potential
environmental impacts on nearby communities.”** Using LCA, it
is possible to determine the environmental impacts of different
biomass and municipal solid waste conversion methods,
including acidification and global warming, throughout the
entire life cycle."” To determine the most environmentally
friendly or superior approach in terms of LCA, it is necessary to
conduct a comparative LCA study for each specific case. This
study should consider factors such as the specific feedstock,
process parameters, and intended products.”* A comprehensive
analysis should consider a wide range of environmental factors,
such as energy consumption, carbon emissions, water usage,
waste production, pollutant emissions, and resource utilization
efficiency. It is recommended to conduct a comprehensive and
site-specific LCA for each WtE process and its intended products.
This analysis should consider the specific conditions and envi-
ronmental priorities of the site. This analysis will provide a strong
basis for evaluating environmental performance and making
informed decisions regarding the most effective waste and
biomass treatment methods."*

A comprehensive analysis was conducted using the LCA
technique to compare a novel integrated HTC-AD technology for
FW management with a reference AD process, both designed to
be energetically self-sufficient."® By utilizing hydrochar as a bio-
fuel, the combined process presents an opportunity to enhance
energy recovery from FW. The improved energy and resource
recovery of the innovative FW management system leads to
positive environmental effects and a better environmental life
cycle compared to the reference AD system. In addition, the
combination of AD and pyrolysis has the potential to enhance
productivity, sustainability, and the exploration of innovative
applications for byproducts in the future."® One potential solu-
tion for managing SSW in a cost-effective and eco-friendly manner
could involve combining AD with plasma pyrolysis.™® Therefore, it
is crucial to utilize LCA analysis to evaluate the environmental
performance and sustainability of different WtE processes. These
studies provide valuable insights into the environmental impacts
and help identify the most eco-friendly methods for utilizing
biomass and other waste materials. Existing research on LCA
evaluating biomass pyrolysis mainly emphasizes the assessment
of GWP, while giving less consideration to other environmental
impact categories. Therefore, it is important to prioritize a thor-
ough environmental assessment study to fully evaluate the envi-
ronmental impact of the biomass conversion system.

The evaluation of waste utilization has established a reputa-
tion for equating most of the criteria within the various treat-
ment options and end-product creation. It has also produced
the main decision support tool for policymakers at all levels to
make the best decisions about waste management.

8. Environmental application of
advanced biomass conversion
techniques

The industrial sector faces numerous obstacles because of the
shortcomings of current technologies, which are gradually being
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replaced by more sophisticated developing technologies. The
most common conversion process, pyrolysis, produces large
amounts of heat energy. However, with the application of micro-
wave stimulation and additional chemicals, heat energy is now
changed to produce a high yield rate.* The result is mesoporous
biochar, which has a unique high surface area. A new technology
called solar energy-assisted pyrolysis is used in place of the
traditional method. With this technique, the system is exposed to
a variety of solar heat temperatures. This process yields a phenol
content of roughly 44% while maintaining the hydrocarbon's
properties, and it is utilized to produce a variety of biofuels."”

After undergoing various treatments, biomass derived from
the lignocellulose components yields a variety of high-value
products, including bio-oil, biogas, and other energy sources.
After being treated, feed biomass from forests, agriculture, and
food waste is produced as pellets and charcoal that are
enhanced with hydrocarbon components."™® They generate
products for bioremediation, wastewater treatment, and pollu-
tion control at elevated production rates of up to 134%. Because
biochar has a large pore opening and can adsorb dye particles, it
is used to remove environmental colours from water. It works
well to remove dyes connected to leather and textiles since it can
be carbonated or decarbonated.* The bioconversion of waste
into useful goods has led to the development of a new and
innovative approach. This conversion is now carried out with
the assistance of a high-range designed protein-infused
membrane. Today, pectinolytic enzymes have been found to
significantly increase lignin breakdown by 58.4% compared to
the chemical enzymes currently in use. Metagenomic research
was utilized to investigate this phenomenon."’ Pre-treatment is
a common technique for producing bioethanol and other liquid
fuels because it improves pore size, breaks down biomass, and
makes cellulases available for conversion.

9. Future perspectives

To maximize resource recovery, this study investigates different
thermochemical and biochemical conversion process combina-
tions. The techno-economic aspects of hybrid thermochemical-
biochemical conversion processes, which include pyrolysis—
anaerobic digestion, hydrothermal liquefaction-anaerobic diges-
tion, gasification-syngas fermentation, and hydrothermal
carbonization-anaerobic digestion, have been thoroughly exam-
ined.” More research is necessary to fully comprehend residue
recycling and efficient utilization, even if the hybrid pyrolysis-AD
method exhibits promise from an economic and environmental
standpoint. It is crucial to investigate and compare the pyro-
liquid's composition with that of aqueous liquids resulting from
various thermochemical conversion processes. It takes interdis-
ciplinary understanding to combine thermochemical and
biochemical processes for the valorization of waste biomass.
Research on the chemical composition of waste biomass and
behaviour under different conversion processes is necessary for
optimization. It is necessary to thoroughly investigate the behav-
iour of microbes in a variety of aerobic and anaerobic environ-
ments as well as the conversion pathways. Although most
research on gasification concentrates on conventional

1210 | Environ. Sci.: Adv., 2024, 3, 1197-1216
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gasification and ignores hydrothermal gasification, hybrid gasi-
fication—-SNF is a viable integrated method. A detailed investiga-
tion of the environmental consequences and economic viability of
coupling hydrothermal gasification with SNF is necessary.'*?
Given that the process of hybrid gasification-AD is the least
known, experimental methods and simulation studies must be
included in future research to achieve complete knowledge and
optimization. For global adoption, decision-making and fore-
casting of the number of biofuels generated must take feedstock
supply into account. Chemical process modelling and optimiza-
tion have been tackled through the application of ML, which
offers precise forecasting and financial benefits. Through inte-
grated processes, ML technology might monitor and control the
production of green chemicals and biofuels. Future research must
focus on machine learning models for process prediction, control,
optimization, and real-time monitoring, as evidenced by the
dearth of ML studies regarding integrated processes. It is difficult
and complex to model integrated systems using phenomenolog-
ical and mathematical models. Because of their resilience to the
extreme complexity, heterogeneity, and dynamic character of
integrated processes, machine learning models are highly valued.
Researchers have conducted TEA on the combination of ther-
mochemical and biochemical conversion processes; however, an
integrated TEA that takes into account different production routes
and products is still necessary.” A thorough analysis of the
effects on the economy and environment of alternative
manufacturing routes for different products is also necessary. To
enhance the yield of biofuels, additional investigation is necessary
in the domains of feedstock pretreatment, catalyst creation, life-
cycle evaluation, and overall production system enhancement.

10. Conclusion

Bioenergy is a type of fuel that is derived from a range of
biomass sources, including manures, sewage sludge, forestry
residues, agricultural residues, and solid organic municipal
wastes. It is both economically viable and environmentally
sustainable. The promise of biofuels, characterized by their low
carbon emissions and ample availability of raw materials, is
widely recognized as a key component for achieving a sustain-
able future. This study's efforts have primarily concentrated on
biofuel production, specifically addressing difficulties such as
feedstock pretreatment, catalyst development, life-cycle
assessment, and overall system optimization. The waste-to-
energy industry, which supports a circular economy, has
advanced with methods that can convert different types of
garbage into energy and useful products via thermochemical
and biochemical processes. While these technologies help
reduce the need for non-renewable resources, they also have
their drawbacks. Thermochemical conversion generally yields
biofuel of inferior quality and incurs substantial production
expenses. In contrast, biochemical conversion is less efficient in
breaking down resilient biomass materials and has a slower
production rate. Integrating several treatment methods not only
promotes the development of a circular economy concept but
also mitigates the limitations of a single conversion pathway by
leveraging the benefits of both approaches. The integration of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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many technologies not only mitigates the difficulties associated
with each technology but also reduces the total cost of the
process and enhances the energy sustainability of the entire
process. This study recognizes the highly advanced waste-to-
energy industry and its significant role in promoting sustain-
ability, managing waste, and facilitating the transition to
a circular economy. Nevertheless, hybrid systems necessitate
additional investigation to comprehensively comprehend their
benefits and limitations.
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