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Screening and property targeting of
thermochemical energy storage materials in
concentrated solar power using thermodynamics-
based insights and mathematical optimizationt

*bd

Ishan Bajaj,®® Xinyue Peng ¢ and Christos T. Maravelias

We propose a computational framework to systematically identify promising solid—gas reaction candidates
for thermochemical energy storage (TCES) in concentrating solar power (CSP) plants. The framework is
based on four steps that include the generation of reaction candidates, screening based on
thermodynamic criteria, solving a process model to estimate the levelized cost of electricity (LCOE) and
thermal energy storage (TES) costs, and selection of the promising reactions. Our approach identifies
twelve reactions from a pool of three hundred and sixty-four possible reactions. Furthermore, we
develop an optimization model to simultaneously optimize the material properties, design, and operating
conditions while considering the limitations on thermodynamic properties and the correlation between
different material properties. The solution of the model yields a target (best possible) LCOE for a range
of material prices. By comparing the LCOE of the systems employing the top-performing materials with
the target LCOE, we discover that the LCOE of the systems is 9.7% to 15.9% higher than the target LCOE.
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Finally, we provide insights into the desired material properties to attain the target LCOE.

Concentrating solar power (CSP) with integrated thermal energy storage has the potential to generate cost-effective and dispatchable renewable power. Among
different types of storage technologies, thermochemical energy storage (TCES) has many desirable features (e.g:, high storage density and operating temper-

ature) but is still in its infancy due to, among other reasons, the system complexity. It remains unclear which reaction should be selected and what are the
desired material properties. Towards this goal, we develop computational frameworks to identify existing cost-effective reaction candidates and the target

properties for new reactions to further reduce the levelized cost of electricity (LCOE). Importantly, our analysis can serve as guidelines for further developing
TCES materials with tailored properties. Our work aligns with the following UN sustainable development goals: affordable and clean energy (SDG 7), industry,

innovation, and infrastructure (SDG 9), and climate action (SDG 13).

1. Introduction

To keep the global temperature rise below 2 °C in accordance
with the Paris Agreement, it is necessary that an increasing
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fraction of world's energy demand is satisfied by renewable
energy.' Many U.S. states and territories, including California,
Maine, New Mexico, Washington, and Hawaii, have mandated
that electricity must be generated by renewable resources by
2040-2050.>° However, generating electricity reliably using
intermittent resources such as solar and wind requires storing
excess energy. While using a combination of photovoltaic or
wind power with battery can provide reliable electricity, another
promising strategy to deliver cost-effective, reliable, and dis-
patchable renewable power is integrating concentrated solar
power (CSP) with thermal energy storage (TES).

Due to technological innovation, CSP costs were reduced by
68% during the previous decade. It is estimated that CSP could
provide 11% of global electricity by 2050.” Furthermore, CSP can
also be used to convert CO, and H,O into solar fuels.**° Today,
more than 21 GWh of TES, based mainly on molten salts, are
operational, and most new CSP plants are incorporating TES."*
Interestingly, while the global installed capacity of solar
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photovoltaics is 100 times greater than CSP, TES installed
worldwide is twice that of utility-scale batteries. Moreover,
recent studies compared the economics of CSP with TES to PV
with battery storage and concluded that the LCOE of the former
is lower than the latter when the storage duration is greater than
4-6 hours.”

Although molten salts are used for TES in existing plants,
they have two major drawbacks. First, heat is delivered to the
power cycle at a lower temperature (~565 °C), resulting in low
solar-to-electricity efficiency. Second, due to the low energy
density of molten salt, a large quantity of material is needed,
which can become too costly for large-scale systems. Thermo-
chemical energy storage (TCES) systems, on the other hand, are
a promising alternative for the next generation CSP plants
because of their high energy density, ability to deliver heat at
a higher temperature, and low heat loss over long storage times.

TCES is based on a reversible reaction, wherein heat is
required for the forward reaction, and thus, the reaction
enthalpy is stored in the products. In addition to chemically
stored heat, sensible heat stored in the reaction products can
also be utilized. Fluid-phase and solid-gas reactions are the two
classes of TCES systems that have been studied. Peng et al.*®
analyzed gas-phase reactions, including ammonia dissociation
and methane reforming. They reported that systems that
employ reactions that require storage of reacting gases have low
energy efficiency and high cost. Solid-gas reactions encompass
various possible chemistries, including redox, hydroxide, and
carbonate. They can be promising because the products can be
easily separated and may require less energy-intensive and
expensive storage. Therefore, the primary focus of this work is
on analyzing solid-gas TCES systems.

A solid-gas reaction is expressed as vaA (s) + AH" <> vgB (s) +
vcC (g), where AH" denotes the reaction enthalpy and v,, v, and
v are the stoichiometric coefficients. For simplicity, we refer to
the above reaction as A/B. Most of the literature on TCES has
focused on carbonate,"*™* hydroxide,**** and redox**° reaction
systems and studied various characteristics, including ther-
modynamics, kinetics, and reversibility. Among various
carbonate reaction systems, calcium carbonate/calcium oxide
(CaCO3/Ca0) is the most extensively studied due to its high
equilibrium temperature (895 °C at 1 bar CO, partial pressure),
high energy density (692 kW h per m* CaCO;), and abundance
of cheap limestone feedstock.’* The strontium carbonate/
strontium oxide (SrCO3/SrO) system has also been found to be
promising because of its higher equilibrium temperature
(~1200 °C).** Among hydroxide reaction systems, calcium
hydroxide/calcium oxide (Ca(OH),/CaO),barium hydroxide/
barium oxide (Ba(OH),/BaO), and strontium hydroxide/
strontium oxide (Sr(OH),/SrO) are found to be promising.*?
Cobalt tetraoxide/cobalt oxide(Co;0,/Co0O), manganese(i)
oxide/trimanganese  tetraoxide (Mn,03/Mn;0,), barium
peroxide/barium oxide (BaO,/BaO), and iron (u, wlII) oxide/
ferrous oxide (Fe;0,/FeO) are proposed to be the promising
candidates®-** for CSP integrated with solid-gas TCES systems
(hereinafter referred as CSP-TCES).

Several studies have presented system-level analysis for the
CSP-TCES systems, including thermodynamic analysis, process
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design, and techno-economic analysis (TEA). Energy/exergy
analysis studies have been conducted for CSP employing
carbonate,** hydroxide,* and redox** TCES systems. Schmidt
et al.”* and Criado et al.** performed conceptual process design
for the Ca(OH),/CaO TCES system. Bravo et al.*> and Salas et al.**
performed TEA for CSP integrated with CaCO;/CaO and
Ca(OH),/CaO TCES systems, respectively. Bayon et al.*® esti-
mated the energy storage costs for 17 solid-gas TCES systems.

Deploying CSP-TCES systems at an industrial scale would
require both material- and process-level considerations.
Previous studies have considered these aspects in isolation. As
indicated in the previous paragraph, most system-level studies
were performed on a few reaction systems while most previous
reaction screening studies selected promising reaction candi-
dates based on equilibrium temperature, gravimetric, and
volumetric energy densities.**** However, not much attention
has been given to issues such as plant design and operations
under different solar conditions. The cost-effectiveness of
a TCES system depends on, among others, material price,
densities, heat capacities, kinetics, reaction type, and enthalpy.
Thus, to consider different trade-offs, the material performance
must be evaluated in the context of an optimized process.
Accordingly, in this work, we develop a computational frame-
work that enables the screening of large reaction databases to
identify promising candidates leading to the most cost-effective
CSP-TCES systems.

Recent studies indicate that the thermodynamic properties
of a class of TCES materials can be tuned.*”*° For instance,
al®  investigated the
La,Sr,_xCo,Mn;_,0;3_; and La,Sr,_,Co,Fe;_,0;_; families and
showed that energy density of 250 kJ kg™" could be obtained by
manipulating x and y. Since the above class of materials is not
cost-effective, in their follow-up article, Babiniec et al>
proposed CaAl,,Mn, 03 s and CaTip,Mn, Oz 5 for thermal
energy storage and estimated their energy densities to be 390 kJ
kg " and 370 k] kg™, respectively. Imponenti et al.’*>* evaluated
the performance of Ca;_,Sr,MnO;_; and CaCryMn;_,0;_;, and
estimated their energy density to be 555 k] kg™ * and 392 kJ kg™,
respectively for x =y = 0.05.

Most of these studies focused on tuning materials to
enhance the energy density of the material. While higher energy
density is critical to improving the storage costs, lower storage
costs do not necessarily result in a lower levelized cost of elec-
tricity (LCOE).>>*® Although computational material science
techniques (e.g., quantum-mechanical calculations) has made it
possible to construct novel crystal structures and accurately
predict their properties, the number of possible materials is
considerable, and an exhaustive screening of such a search
space is impractical. Accordingly, in the latter part of our article,
we develop a systematic material property targeting strategy. To
accomplish this goal, we develop an optimization model to
simultaneously optimize the material properties, design, and
operating conditions while considering limitations in material
thermodynamic properties. The analysis provides insights into
the desirable material properties to minimize LCOE.

The contributions of the article include the following:

Babiniec et materials  in
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(1) Development of an in silico reaction screening framework
to identify promising reaction candidates for CSP-TCES plants
based on thermodynamic criteria and system-level analysis.

(2) Derivation of insights into the energetic and economic
performance of the top-performing reactions; identification of
key factors contributing to the efficiency and economics of the
CSP-TCES plants for those reactions.

(3) Development of a material targeting strategy to identify
promising material properties. Two approaches are proposed
and compared to bound and correlate material properties.

(4) Comparison of desirable material properties to the
properties of existing materials.

The rest of the article is organized as follows. Section 2
provides the description of CSP-TCES system and Section 3
describes the material screening and optimization method-
ology. Section 4 presents the results and finally, conclusions are
given in Section 5.

Day

Heat transfer
fluid

Power Cycle

Working Fluid — TCES Reactants

Fig. 1 Schematic diagram of a CSP plant with solid—gas TCES
employing fluidized-bed reactors.

(A) (B)
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2. System description

A CSP-TCES plant is shown in Fig. 1. It has four components:
collector, receiver, TCES system, and power cycle. The collector
uses reflector facets to concentrate sunlight and directs the
concentrated flux to a smaller receiver. The receiver converts
sunlight to heat and uses a heat transfer fluid (HTF). The key
units of the TCES system are two reactors: R1 and R2. In reactor
R1, the forward endothermic reaction (v,A (s) — vgB (s) + C (g))
occurs, and in R2, the reverse exothermic reaction occurs. In
a previous work, Peng et al.*® analyzed several configurations
and found that the configuration with indirect heat transfer to
R1 employing fluidized-bed reactors was the most efficient.
Therefore, this configuration is selected in this work. The power
cycle converts the collected solar heat to electricity via a ther-
modynamic cycle. Molten salt is used as HTF in a commercial
CSP plant, with a maximum attainable temperature of 565 °C.
To attain higher turbine efficiency, supercritical CO, (s-CO,) is
proposed as a promising candidate for both HTF and working
fluid (WF) for the next-generation CSP plants. Emerging receiver
technologies® based on gas,”®* liquid,**** and solid parti-
cles®>® are being actively researched for CSP. In this study, we
employ a s-CO, based tubular receiver to enable easier heat
transfer to the reactor and the power cycle. Previous studies
have described the design of direct s-CO, receivers capable of
operating at high pressure and temperature.®** Furthermore,
recent studies suggest that s-CO, Brayton cycles are more effi-
cient and economical.®®®” Therefore, s-CO, is used as both the
HTF and WF, and the Brayton cycle is used for power
generation.

The plant shown in Fig. 1 operates as follows. The collector
reflects the sunlight to the receiver during the “sun hours”,
where HTF is heated. The flow of HTF is split such that a part of
it flows through R1 to drive the forward endothermic reaction,
and the remaining flows through the power cycle to provide
heat. Solids are transferred from a tank to R1, where A is con-
verted to B and C. Solid mixture containing B and unconverted A
is stored in a tank, and based on the properties of gas C,
different storage options are chosen (Fig. 2). We study three
types of solid-gas reactions: redox, hydroxide, and carbonate.
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Fig. 2 Gas storage options for (A) redox, (B) hydroxide, and (C) carbonate reactions.

© 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Sustainability, 2024, 2, 943-960 | 945


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00244f

Open Access Article. Published on 15 2024. Downloaded on 2025/11/4 0:03:46.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Sustainability

Redox reactions utilize an open-loop configuration, where the
generated O, is directly emitted, and the air is used as a source
of O, during discharging. Hydroxide and carbonate reactions
operate in a closed-loop configuration, where the generated CO,
and H,O are stored in liquid CO, (75 bar and 25 °C) and water (1
bar and 25 °C) vessels, respectively. During the night, the solids
and gas stored in STK2 and GTK are transferred to R2, where the
exothermic reaction occurs. The solid mixture containing A and
unconverted B is sent to a tank.

Typically, the reactions occur at high temperatures; however,
gas C needs to be stored at low temperatures to reduce the
volume of the storage tank. Furthermore, during discharging, C
needs to be reheated. Thus, to achieve high system efficiency,
a sensible heat storage unit is employed to store the heat
associated with cooling gas C. This heat is then reused to
preheat C entering R2 during discharging. During charging,
a compressor is used to store CO, into the storage vessels for the
carbonate reaction (Fig. 2 (C)). During discharging, CO,
expands through a turbine and generates power.

3. Material screening and property
targeting: methodology

In this section, the methods for material screening and property
targeting are discussed.

3.1 Material screening

The computational screening framework to identify promising
TCES systems is based on generating reaction candidates,
eliminating reactions based on thermodynamic criteria, devel-
oping an optimization model to obtain design and operating
conditions that result in minimizing LCOE for a specific reac-
tion, and selecting the top-performing reaction candidates
(Fig. 3).

3.1.1. Generating reaction candidates. We consider three
categories of reaction systems: redox (eqn (1)), hydroxide (eqn
(2)), and carbonate (eqn (3)):

MO, < MO, + (x — )20, 1)
M(OH), < MO, + x/2H,O )
M(CO3), < MO, + xCO, (3)

In redox reaction systems, we consider the reduction of metal
oxide from a higher oxidation state to a lower state, including
pure metal (y = 0). To limit the search space of possible reac-
tions, we make the following three assumptions. First, only
inorganic materials are considered. Second, we search for
materials containing only one metal type. Third, only one
gaseous component is allowed to avoid the need for gas sepa-
ration. Aspen Plus is used to search for the materials and their
properties, including density (p), melting point (7"), molecular
weight (w), heat capacity (Cp), enthalpy (H), and entropy (S).
Specifically, Barin's equation is used to estimate the latter three
properties as a function of temperature.®® We obtain 128, 19, 17,
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Apply thermodynamic-
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Estimate LCOE and
TES costs

Select top
reactions

Fig. 3 Proposed screening procedure to identify promising reaction
candidates.

and 70 metal oxides, hydroxides, carbonates, and pure metals,
respectively.

Based on the materials considered, we identify 364 reactions
comprising of 328 redox, 19 hydroxide, and 17 carbonate
systems that are stoichiometrically possible. While perovskites
and spinels®” have attractive properties, including reaction
rate and reversibility, we consider pure metal oxides to limit the
scope of the study. However, the developed computational
framework can be applied to screen promising perovskites and
spinels. The list of the reactions and corresponding equilibrium
temperature (7°9) and reaction enthalpy (AH") are given in ESI
Table S1.7 The equilibrium temperature is estimated using the
following equation:

Tea AH" — TAST )
R In pcre
where AS", R, and pc are the reaction entropy, universal gas
constant, and partial pressure of gas C, respectively. We use pc
= 0.21 bar for the redox reactions and pc = 1 bar for hydroxide
and carbonate reactions. Reaction enthalpy is estimated at 7°¢
using:

AH" = vcHc(T®) + vgHy(T™) — vaAHA(T®?) (5)

where H,, Hg, and Hc are the enthalpies of A, B, and C,
respectively.

We also validate the estimated properties by comparing
them with those obtained by Pardo et al.,** who used HSC
Chemistry. The results of the comparison are shown in ESI
Fig. S1.T The mean squared error (MSE) of reaction enthalpy
estimated using Aspen Plus and HSC Chemistry for redox,
hydroxide, and carbonate reactions are 0.25%, 0.15%, and
1.18%, respectively. The MSE of equilibrium temperature esti-
mated by the two software tools for redox, hydroxide, and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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carbonate reactions are 0.33%, 0.46%, and 0.04%, respectively,
suggesting that the estimated properties are rather accurate.
Furthermore, our reported equilibrium temperatures of Coz0,/
CoO (888 °C), CuO/Cu,0 (1031.8 °C), Fe,0;/Fe;0, (1340 °C),
and Mn,0;/Mn;0, (901 °C) systems lie within the oxidation and
reduction temperatures reported in experimental works.””* We
also note that we used theoretical AH" values, which are typi-
cally lower than the experimental values. For instance, theo-
retical AH" for Co;0,/CoO and CuO/Cu,O are 821.3 ] gf1 and
816 ] g, and experimental values are 576 J g " and 652 J g *,
respectively.”

3.1.2. Preliminary screening based on thermodynamic
criteria. For a reaction to be considered suitable for application
in a CSP-TCES plant, it should satisfy certain thermodynamic
criteria. First, its equilibrium temperature should be within
300-1500 °C. Second, the forward reaction should be endo-
thermic. Third, no phase change should occur, ie., 7°Y > min
{TX, Tg'}, where T3' and Ty are the melting points of A and B,
respectively. The equilibrium temperature impacts the overall
system efficiency and AH" affects both the storage cost and
efficiency. For high efficiency, 7°Y needs to be in the range 500-
1200 °C and AH' needs to be high. The criteria may result in
many reactions with appealing properties; however, it is also
critical to understand the impact of these properties on the
energetic and economic performance of the integrated plant.

3.1.3. Estimating LCOE and TES costs. The performance of
the reactions obtained after thermodynamic screening is eval-
uated using an optimization-based process model. The major
assumptions of the model are as follows:

(1) the material remains stable with cycles, and no side
products are formed.

(2) The solid reactants are available in appropriate size so
that the reactors operate optimally.

(3) For fluidized-bed reactors, the temperature of the solids is
assumed to be spatially uniform. For other types, the assump-
tion can be adapted appropriately.

(4) The reactors operate at atmospheric pressure to avoid the
additional cost of compressors.

(5) Since the kinetics data for all the considered reactions are
unavailable, reactors are designed considering only heat
transfer limitations. However, we discuss the impact of the
conversion on LCOE for different reaction systems.

Based on previous works,'*****”> we develop a process model
for the design and operation of CSP plants with solid-gas TCES
systems employing fluidized-bed reactors. The input required
by the model is (1) TCES reaction, (2) reaction properties
(enthalpy, equilibrium temperature), (3) material price and
properties (Cp, p), (4) equipment cost parameters, (5) weather
data, and (6) plant capacity. It is assumed that the CSP plant
employs a solar tower configuration, and its capacity is 100 MW.
The plant location is Daggett, California, and its weather data
(direct normal irradiation and sun hours) is obtained from
National Solar Radiation Data Base.” A stochastic program-
ming approach is adopted to account for variability in direct
normal irradiation (DNI) and sun hours. This approach is
frequently used to model optimization problems involving
uncertainty.”®”” Six representative scenarios are chosen from

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the annual data using the centroid clustering algorithm. The
DNI, sun hours, and occurrence frequency of each representa-
tive scenario can be found in Peng et al.*®

The objective function of the model is to minimize LCOE.
The constraints account for the performance and efficiency of
plant components, mass and energy balances, and equipment
sizing and costing calculations. The major plant components
include collector, receiver, TCES, and power cycle. The collector
is characterized by concentration ratio (¢°*') and efficiency
(nCOI), where ¢! is the ratio of the collector area to the receiver
area, 7! is defined as the ratio of sunlight that reaches the
receiver divided by the sunlight incident on the collector and it
is less than one because of imperfect reflection and varying
solar elevation. The receiver consists of an absorber that
converts sunlight to heat and piping that carries HTF. The
receiver efficiency (1) is defined as:

o O V(T (T T)
Toe T 09
where Q" is the heat absorbed by the receiver after considering
convective and radiative losses, Q™ is the solar energy incident
upon the receiver, «" is the receiver solar absorptance, Y is
the receiver thermal emittance, ¢ is Stefan-Boltzmann
constant, ¢ and T°™ are the receiver and ambient tempera-
tures, respectively, and g™ is the convective heat transfer
coefficient.

The TCES system comprises of six units, including reactors,
compressor/turbine, heat exchanger, sensible heat storage, and
gas and solid storage tanks. We employ fluidized-bed reactors of
shell-and-tube-type with HTF/WF flowing on the tube side and
the solids on the shell side. The reactor is modeled as a mixed-
flow reactor, and the optimal heat exchange area and volume
that achieves the desired heat transfer for all scenarios is
determined. Carbonate TCES requires a compressor during
charging and a turbine for power generation when CO, expands
during discharging. The compressor is designed based on the
electricity consumption required to compress CO, from 1 bar to
75 bar. A heat exchanger is used to preheat gas C using the
solids at a higher temperature exiting R1 during charging. The
area of the heat exchanger is estimated based on the tempera-
ture difference between the two streams, the rate of heat
transfer, and the average heat transfer coefficient (8"™). A
sensible heat storage unit is utilized to store the heat associated
with the cooling of gas C and reusing the heat to increase its
temperature while discharging. Its size is estimated based on
the amount of heat stored. The storage tanks are designed
based on the flow rates and charging/discharging time. Each
unit is designed at the maximum required size to guarantee
operational feasibility in different modes and scenarios.

To generate power, s-CO, Brayton cycle with a simple recu-
perative configuration (ESI Fig. S21) is used because of its
higher efficiency, lower cost, and smaller equipment.”® A
mathematical model is developed for the power cycle by
assuming that (i) HTF and turbine inlet pressure are 25 MPa, (ii)
turbine pressure ratio is 3, (iii) compressor and turbine effi-
ciencies are 0.9, (iv) compressor inlet temperature is 40 °C, and

(6)
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(v) the minimum approach temperature of the recuperator is
10 °C. A surrogate model is developed to obtain the power cycle
efficiency (7P°) as a function of turbine inlet temperature (7°°)
by using simulation data:

= 025( ) Los (T o
e (1000) o (1000)_ ' @)

The cost parameters for various equipment and model
parameters are given in ESI Table S3.f The material price is
taken from the USGS database” and listed in ESI Table S2.f
Since the price of all the materials is not available, it is chosen
based on the following rules:

(1) if the prices of both A and B are available in the database,
then the lower of the two prices is chosen.

(2) If the price of either of A or B is available, then the
available material price is chosen.

(3) If the price of neither A nor B is known, but the prices of
other compounds related to the metal in A and B are known,
then the average price of these compounds is used. For
instance, the prices of KO, and K,0, are unavailable in the
USGS database, but the prices of KCl, K,SO,, and KNO; are, so
the material price is chosen to be the average of the prices of the
three compounds.

The resulting optimization model is a nonlinear program-
ming model and it is formulated in GAMS. The model equations
are given in ESI Section S4.1 A solution strategy is developed to
solve the model to global optimality. The details of the strategy
are given in ESI Section S5.7 The solution of the model gives the
optimal design (collector area, reactor volume, heat exchange
area, etc.) and scenario-specific operational variables (unit
temperature, flow rates of streams, storage hours, fraction of
chemical and sensible heat storage, etc.) from which the LCOE
is calculated.

3.1.4. Selecting promising reaction candidates. There are
various important performance metrics, including LCOE, TES
cost, or efficiency, that can be used to evaluate a CSP-TCES
system. However, we select promising reactions based on
LCOE because we are primarily interested in employing a CSP-
TCES system to generate electricity. Furthermore, this leads to
reactions with both low TES cost and high efficiency, which are
critical to achieve low LCOE. We select reactions for which we
could verify the thermodynamic data from the literature, and
LCOE is less than 12 ¢ per kW h.

3.2 Material property targeting strategy

To exploit recent advances in synthesizing materials with
tailored properties, it is critical to understand the impact of
material properties on LCOE. Thus, this section develops
a material property targeting strategy that can serve as a guide-
line for developing new materials. Importantly, an optimization
model is developed such that material properties, design, and
operating conditions are simultaneously optimized while
considering seasonal solar variability. Specifically, the proper-
ties that are of interest are AH', AS", Cp, p, and w, denoted by P,
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and stoichiometry coefficient of gas C (vc). For brevity, we
assume that gas C is O,.

There are two major challenges that need to be addressed.
First, practical bounds on various properties need to be
enforced. Second, the correlation between different material
properties should be evaluated. One approach to bound the
values of the properties is to use the minimum and maximum
values of the properties of the existing materials. However, this
approach does not consider the correlation between material
properties. Thus, it is likely that extreme values of all the
properties are obtained on solving the optimization problem.
We propose two methods to overcome these challenges. The
first one is based on approximating the feasible property space
by a convex hull. The second method is based on developing
empirical relationships (ER). These are derived by combining
the Neumann-Kopp rule® and volume-based thermodynamic
equations of Glasser and Jenkins.*»* We denote the latter
approach by NKVT for brevity. We note that the two methods
provide similar insights. Therefore, we only discuss the former
method here, whereas the latter is discussed in ESI Section S6.}

Before providing details of the approach, we define a convex
hull. The convex hull of a set of points is defined as the smallest
convex polytope containing the points. Mathematically, the
convex hull of a set of points, ¢; € C, denoted as conv(C) is:

IC] IC]
conv(C) = {ZL,C,~|C,-G C,L=0i=1,..., |C|,ZL,~ = 1}
=1

i=1

where L; is weight corresponding to ¢, We enforce that the
optimal material properties lie within the convex hull formed by
the properties of existing materials. It can also be interpreted as
achieving the desirable properties by linearly combining the
properties of different materials. While it is possible to develop
a convex hull based on the properties of materials involved in all
the 364 reactions generated in Section 3.1.1, it will substantially
increase the computational cost. Therefore, we chose the set of
reactions obtained after applying thermodynamic screening
criteria described in Section 3.1.2. The set of reactions obtained
are denoted as N.

The ability of this approach to provide practical bounds on
material properties and consider correlations between different
properties is illustrated using Fig. 4. The figure is generated by
independently considering two pairs of properties for better
visualization. From Fig. 4(A), it is apparent that materials with
high Cp have low p. In fact, Glasser and Jenkins®*"** state that Cp
is inversely proportional to p (Cp o« 1/p). The convex hull
captures this correlation and ensures that the regions corre-
sponding to both high Cp and p and low Cp and p are not
selected. Similarly, the regions with high AH" and low AS" and
low AH" and high AS" are also not chosen as shown in Fig. 4(B).

The following set of equations are added to the optimization
model given in ESI Section S4:t

P=3 L, (8)
SLo=1 (9)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Data and convex hull of (A) heat capacity and density of A, and
(B) reaction enthalpy and entropy for reaction set N.

where n € N denotes the set of reactions obtained after the
thermodynamic screening, x, represents the vector of proper-
ties in reaction n, and L, is the corresponding weight. In the
above equations, P and L, are optimization variables. Eqn (8)
and (9) state that the material properties lie within the convex
hull formed by the respective properties of materials in reaction
set N. Although heat capacity, entropy, and enthalpy are func-
tions of temperature, their values corresponding to 298 K are
used to restrict the number of nonlinear terms in the model.
The following set of equations are also added:

T = AAI;I: (10)

™ = 7°9 + 10 (11)
™ =719 - 10 (12)
ve =22 (13)

wA = wp + Ve e (14)

where T%' and T are the temperatures at which the endo-
thermic and exothermic reactions occur, respectively. The

© 2024 The Author(s). Published by the Royal Society of Chemistry
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reaction equilibrium temperature is defined in eqn (10). The
endothermic reaction should occur at a temperature higher
than 7°, and a temperature lower than 7°9 is needed for the
exothermic reaction. These conditions are enforced by eqn (11)
and (12), respectively. The stoichiometric coefficient for gas C is
given by eqn (13). Molar weights of reactants and products must
be equal; this is enforced by eqn (14). The solution of the model
yields the optimal design, operating conditions, and properties
including the property vector P, vc, and the number of oxygen
atoms in A and B.

4. Results

In this section, we first present material screening results fol-
lowed by insights into the optimal material properties.

4.1 Material screening analysis

Based on the three thermodynamic criteria (Section 3.1.2), 325
reactions are eliminated. Among the remaining 39 reactions, 29
are redox, 4 are hydroxide, and 6 are carbonate reactions. The
reactions obtained after screening, and their properties,
including Cp, p, material price, AH", and T°Y, are given in ESI
Table S2.t The key properties of the selected reactions are
shown in Fig. 5.

The optimization model discussed in Section 3.1.3 is solved
to global optimality for each of the reactions in set N. The
results are summarized in Table 1, where we show reactions for
which LCOE = 40 ¢ per kW h. The table lists the overall system
efficiency (n°~°), defined as the ratio of net electricity output to
solar energy input, TES costs, and LCOE. As expected, the
reactions with high efficiency and low TES costs have low LCOE.
The optimal design and operation variables for a representative
Fe,03/Fe;0, system is shown in ESI Section S7.t

Due to our assumption that no side products are formed, we
obtain an equilibrium temperature of 1179 K for the MnO,/
MnO system. However, considering the other oxides (Mn,Os3,
Mn;0,4), MnO formation occurs at a high temperature (~1900
K).*® First, MnO, reduces to Mn,O; at 700 K, which further
reduces to Mn;O, at 1200 K. Therefore, we discard the MnO,/
MnO system. We found Na,0,/Na,0 and KO,/K,O, to be
promising because of their attractive thermodynamic properties
and low price. While sodium and potassium air batteries have
been explored, to the authors' knowledge, no experimental work
has studied the systems for TCES application. Thus, there is
high uncertainty in their thermodynamic properties. Therefore,
we exclude the two systems from the list of top-performing
reaction systems.

The overall system efficiency depends on the efficiency of the
four plant components. The collector efficiency is constant,
whereas the receiver and power cycle efficiencies are functions
of temperature, as shown in eqn (6) and (7). While the receiver
efficiency decreases with 7°°°, the power cycle efficiency
increases with 7P°. For high #* ¢, T°°° should be low, 7°° should
be high, and the difference between 7°°¢ and 7°¢ (T™¢ — 77°)
should be as small as possible to minimize exergy losses. The
temperature-enthalpy diagram of the heat transfer process for
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Fig. 5 Key parameters for reactions obtained after applying thermodynamic criteria. Each bubble represents a candidate reaction, and its size

represents reaction enthalpy.

day and night operation is shown in ESI Fig. S6.7 It is impos-
sible to have both low 77 and high 7°° because the second law
of thermodynamics needs to be satisfied for heat transfer.
While the difference between 7°°“ and 7°° is low during the day

Table 1 Overall efficiency, TES cost, and LCOE for the reaction set N
with LCOE = 40 ¢ per kW h

TES cost LCOE
No.  Reactions 7" ($ per kW h-heat) (¢ per kW h)
1 Mn,0;/Mn;O,  0.205 32.92 11.18
2 Mn,05/MnO 0.178 18.53 11.28
3 MnO,/Mn,0; 0.189 28.21 11.87
4 MnO,/Mn;0, 0.196 25.28 11.38
5 Ba0O,/BaO 0.204 31.21 11.01
6 CuO/Cu, O 0.21 48.28 11.58
7 Fe,03/Fe;0, 0.185 16.62 10.98
8 MnO,/MnO 0.218 21.12 10.29
9 Pb;0,/PbO 0.162 287.22 27.34
10 UO0;/U,0q 0.145 692.86 38.21
11 UO0;/UO, 0.147 599.72 33.90
12 Na,0,/Na,O 0.218 19.92 10.24
13 NaO,/Na,O 0.171 18.14 12.04
14 C050,/CoO 0.183 161.92 17.24
15 KO,/K,0, 0.203 41.39 11.72
16 Pr,0,,/Pr,0; 0.147  532.29 33.29
17 PrO,/Pr,0; 0.164  532.09 34.00
18 Ba(OH),/BaO 0.21 49.83 11.7
19 Ca(OH),/CaO  0.195 31.28 11.78
20 LiOH/Li,O 0.198 67.11 12.88
21 Sr(OH),/SrO 0.208 50.99 11.89
22 CaCO;/Ca0O 0.218 46.03 11.29
23 Pb,CO,4/PbO 0.168 109.57 17.99
24 PbCO3/PbO 0.165 86.81 17.51
25 MgCO;/MgO 0.169 43.13 14.54
26 MnCO;/MnO 0.175 46.22 14.32
27 SrCO;/SrO 0.206 40.58 11.32

950 | RSC Sustainability, 2024, 2, 943-960

operation because HTF transfers heat to WF, it is high during
the night operation because heat is transferred to WF by reactor
R2. Thus, T°¢ lies between T%' and T%%, moving towards 7% as
the fraction of sensible heat storage decreases.

Note that 7%" needs to be higher than 7°¢ for forward reac-
tion and 7% should be lower for the reverse reaction (7" > 7°9 >
T®?). Furthermore, high 7°° — T°° indicates more sensible heat
storage, which becomes more important for expensive mate-
rials. The optimization balances these tradeoffs and chooses
design and operation variables that result in minimum LCOE.
The top twelve reactions based on LCOE are selected, and the
results corresponding to complete conversion are shown in
Fig. 6. The overall efficiency of the selected reactions lies
between 0.18 and 0.22 (Table 2). Except for Fe,03/Fe;0,, Mn, 05/
MnO, MnO,/Mn;0,, Ca(OH),/Ca0, and MnO,/Mn,0; reaction
systems, the remaining systems have an efficiency of more than
0.2. The critical operating temperatures that affect n°~° are lis-
ted in Table 2. The equilibrium temperature of reactions with
high #°° lies in the range 1000-1400 K. Note that 7°4 and 7°¢
are high for Fe,03/Fe;0, and Mn,03/MnO systems, resulting in
lower 7. On the other hand, MnO,/Mn;0,, Ca(OH),/Ca0, and
MnO,/Mn,0; reaction systems have lower 7°9 and 77, leading
to low nP°.

Thermal energy storage requires six equipment types: reac-
tors, solid and fluid storage tanks, heat exchangers, a sensible
heat storage unit, and a compressor. Since reactors are designed
considering heat transfer limitations, their costs depend on the
heat exchange area, which in turn depends on the overall heat
transfer coefficient, the average temperature difference between
the hot and the cold streams, and the heat exchange rate. The
contribution of reactor costs is similar for all the selected
reactions (Fig. 6(A)) because a comparable heat exchange area is
needed. Solid tank cost depends on the amount of material
required, which is, in turn, dependent on AH", Cp, and p. The

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Key operating temperature, properties, and efficiencies of the 12 top performing reactions selected based on LCOE

Operating

temperature Properties Efficiency

T*¢ TP¢ 7% AH Cp (kJ P Price
Reactions (K) (K) (K) (k] kg™ (kg™ K) (kg m™) ($ per kg) 7" nPe e
Fe,0;/Fe;0, 1673 1383 1613 487 0.88 5010 0.80 0.64 0.57 0.18
Ba0O,/BaO 1345 1150 1015 475 0.44 5570 1.36 0.81 0.51 0.20
Mn,03/Mn;0, 1454 1220 1174 204 0.89 4655 1.84 0.77 0.53 0.21
Mn,03/MnO 1727 1447 1647 1102 0.91 4955 1.84 0.59 0.58 0.18
CaCO3/Ca0O 1349 1211 1169 1665 1.13 2950 0.10 0.81 0.53 0.22
SrCO,/SrO 1512 1308 1432 1349 0.75 4180 0.86 0.74 0.55 0.21
MnO,/Mn;0, 1329 1057 809 646 0.81 4300 2.27 0.82 0.46 0.19
CuO/Cu,O 1435 1243 1305 816 0.68 5985 6.22 0.78 0.54 0.21
Ba(OH),/BaO 1400 1207 1320 588 0.61 5105 1.98 0.79 0.53 0.21
Ca(OH),/Ca0O 1264 1012 794 1342 1.22 2745 0.15 0.84 0.45 0.19
MnO,/Mn,03 1298 1010 718 458 0.80 4365 2.27 0.83 0.44 0.19
Sr(OH),/SrO 1374 1167 1014 736 0.88 4115 2.11 0.80 0.51 0.21
sensible heat storage cost depends on the amount of type of gas ® )

B Reactor B Sensible heat storage

C and T*". The cost of storage material is affected by AH", Cp,
and its price. Sensible heat storage cost is the main cost driver
for the three hydroxide systems (Ba(OH),/BaO, Ca(OH),/CaO,
and Sr(OH),/SrO) because of the need to store large amounts of
heat in the form of heat of vaporization. Compressor cost is the
main cost contributor for the carbonate systems because CO,
needs to be compressed before it can be stored. Among oxides,
BaO,/Ba0O, Mn,05/Mn;0,, and CuO/Cu,O have TES cost greater
than 30 $ per kW h-heat. Solid storage tanks and storage
material are the main cost driver for BaO,/BaO system because
of its low AH" and Cp. The main limiting property of Mn,Os/
Mn;0, system is its low AH' compared to other manganese
oxide systems, whereas the major cost contributor for CuO/
Cu,O system is its high price.

The operating and turbine costs are assumed to be propor-
tional to the plant capacity, which is the same for all the reac-
tion systems (Fig. 6(B)). The overall efficiency impacts the
collector and receiver costs. Note that the systems with n° ¢ <0.2
(e.g., Fe,03/Fe;0,4, Mn,03/MnO, etc.) have lower TES costs (<$30
per kW h-heat), and those with high TES costs (e.g., CaCO3/CaO,
CuO/Cu,0) have higher #°°. The lower and the upper caps of
the error bars represent the LCOE and the TES costs when the
material price is reduced by half and doubled, respectively. The
error bars are larger for systems with higher material price.

While most experimental studies on the s-CO, Brayton cycle
have working temperatures below 1050 K, we observe that the
optimal power cycle temperature for all listed systems exceeds this
temperature suggesting that more research is needed to enable
operation at higher temperatures. We illustrate the effect of
temperature constraints on the performance of the MnO,/Mn;0,
system by limiting the maximum cycle temperature to 1050 K. The
optimal LCOE increases to (12.4 per kW h from ¢11.38 per kW h,
1° ¢ remains the same, and the TES costs increase to $39.83 per
kW h-heat from $25.82 per kW h-heat. The primary reason for the
increase in the TES costs is due to the lower fraction of sensible
heat storage, resulting in higher material costs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) TES cost and (B) LCOE of the top twelve performing reac-
tions selected based on LCOE. The error bars represent the LCOE and
TES costs corresponding to halving and doubling the material price.
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The results presented above are based on the assumption
that the reaction kinetics is fast and that 100% conversion for
the forward and reverse reaction is achieved. Note that low
conversion implies less chemical energy stored per unit mass,
resulting in more material requirement. At the same time, less
chemical energy storage also leads to higher 7°°° — TP, resulting
in lower n°°.

We study the effect of conversion on TES cost and LCOE, and
the results are shown in Fig. 7. We make five key observations.
First, for the oxide systems, lower conversion leads to higher
TES cost and LCOE. Second, as expected, the impact of the
conversion on the two metrics is more significant for expensive
materials (e.g., CuO/Cu,0). Third, TES cost and LCOE increase
with an increase in conversion for the two carbonate systems.
This may seem non-intuitive initially because, as mentioned
earlier, higher fraction of chemical energy storage results in
higher n°7° and more material requirements. However, an
increase in TES cost with conversion can be explained by noting
that higher conversion leads to a higher CO, yield, which means
more gas needs to be compressed, thereby, increasing the
compression cost. The increase in compression cost is higher
than the decrease in material cost obtained with an increase in
conversion. To explain the increase in LCOE, we note that while
higher conversion results in higher #°7¢, the increase in TES
cost is more significant than the reduction in collector and
receiver costs obtained due to higher n°*. Fourth, for Ca(OH),/
CaO and Sr(OH),/SrO systems, TES cost and LCOE increase with
an increase in conversion because of the higher cost contribu-
tion of sensible heat storage unit compared to the material cost.
In summary, for the two carbonate and hydroxide systems,
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Fig. 7 Variation of (A) TES cost, and (B) LCOE with reaction conversion.
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a reduction in TES cost dominates the increase in collector and
receiver costs that follow due to a decrease in %* . Fifth, for
Ba(OH),/BaO system, due to comparable material and sensible
heat storage costs, the reduction in TES cost is not significant
with a decrease in conversion, and thus LCOE is lower when
conversion is high.

4.2 Practical application of selected systems

While MnO,-based TCES systems (MnO,/MnO, MnO,/Mnz0,,
and MnO,/Mn,0;) have attractive properties, and their ther-
modynamic data suggest that they should undergo reversible
reactions, experimental works suggest that MnO,-based
systems are not fully reversible.** Thus, more work is needed to
identify appropriate conditions to improve reversibility as
carried out for other TCES materials.®**® Though the Fe,Os/
Fe;0, system has not been substantially explored in the TCES
literature, it has been widely studied for thermochemical
hydrogen production.®”*® This is primarily due to its high
reduction temperature, making the TCES system challenging to
implement in solar tower plants with s-CO, power cycles.
However, our analysis suggests that Fe,O;/Fe;0,4 can be prom-
ising for next-generation CSP plants capable of efficiently
operating at high temperatures. Furthermore, ongoing work on
cationic doping to reduce the reduction temperature can enable
extensive application of Fe,03/Fe;0, in CSP plants.®”

The BaO,/BaO system is an attractive TCES candidate due to
its high energy storage density, material availability, and
moderate working temperature making it suitable for CSP
plants with a central receiver and s-CO, Brayton cycle.

(B)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Nevertheless, there are disadvantages related to the reactivity of
BaO with H,0 and CO, and material cyclability®® that need to be
addressed. The Mn,05;/Mn;0, is one of the most studied TCES
systems. While it has moderate working temperature, its
disadvantages include low energy density, slow oxidation
kinetics of Mn;0,4, and material degradation. Several works
have developed strategies based on morphological and chem-
ical modification to overcome these challenges.”*> Previous
works have explored the application of the Mn,03/MnO system
for thermochemical hydrogen production.” However, limited
work has been done to explore its applicability for TCES.**
The CaCO;/CaO system has the advantage that the materials
are abundant, inexpensive, and less toxic. The SrCO;/SrO
system has also been reported recently as promising for storing
solar thermal heat.”® However, both carbonate systems have
drawbacks related to particle deactivation, which are being
addressed by morphological and chemical modifications.?>*®
The CuO/Cu,0 system is also promising due to its high energy
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density. A previous study performed a kinetic analysis of the
system and found that thermal reduction of CuO is much faster
than oxidation of Cu,O. The high price of CuO makes it
important for the material to remain stable over cycles. Stability
assessment studies show that decreasing the reduction
temperature by lowering the partial pressure of O, improves
stability.”” However, lowering the pressure requires sweeping
inert gas or vacuum, increasing costs.

Among the hydroxide systems, Ca(OH),/CaO has been
studied the most. It has the advantage of high energy density
and a low price, but one of its main drawbacks is the poor
mechanical stability of CaO due to volume change during
hydration/dehydration cycles. Several approaches have been
proposed to improve the mechanical properties of the system,
including adding SiO,,”® Al oxides,” and material
encapsulation.'®

In summary, TCES materials are at an early stage of devel-
opment and several challenges need to be addressed before they
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(A) Efficiency, (B) TES cost, and (C) LCOE corresponding to the optimal material properties as a function of material price obtained using

convex hull and NKVT approaches. The results for the top performing reactions are shown by solid circles.
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can be applied on an industrial scale. While we do not rank the
TCES materials, we provide critical insights into the desirable
materials’ properties and study their impact on the process
economics.

4.3 Material property targeting results

Our analysis in this section has three goals. First, we compare
the LCOE of the top-performing materials identified in Section
4.1 with the target LCOE. Second, we provide insights into the
target material properties as a function of material price.
Finally, we compare the results obtained from the convex hull
and the NKVT approach. Since we don't know the material
a priori, we solve the optimization model discussed in Section
3.2 for a range of material prices.

The variation of n°~¢, TES cost, and LCOE with material price
are given in Fig. 8. The convex hull and NKVT approach results
are shown in solid black and blue lines, respectively. Circles
denote the metrics for the top materials obtained after the
material screening. The curves corresponding to n° ¢ (Fig. 8(A))
and TES cost (Fig. 8(B)) can be interpreted as the target effi-
ciency and energy storage costs to achieve the target LCOE
(Fig. 8(C)). Although some existing reactions have higher n*~*
than the target efficiency curve, there are none that has lower
TES cost and LCOE. The LCOE of the top-performing reaction
systems is 9.7% to 15.9% higher than the target LCOE.

The overall efficiency of the Fe,0;/Fe;O,system is 0.186,
whereas the target efficiency corresponding to the material
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Solid storage tank M Storage material
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Fig. 9 A comparison of TES cost of Fe,O3z/FesO4 system with the
target TES cost obtained by convex hull and NKVT approach.
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Table 3 A comparison of material properties of Fe,O3z/FesO4 system
and optimal properties determined by the convex hull and the NKVT
approach

Cp AH' P
System/pproach (kg " K™Y (K kg™ (kg m™?) volwg
Fe,0;/Fe;0, 0.883 487 5010 0.001
Convex hull 0.982 1138 8995 0.0006
NKVT 0.27 1509 7716 0.0009

price of the Fe,03/Fe;0, system obtained by the convex hull and
NKVT approach are 0.217 and 0.218, respectively. The TES cost
of the Fe,03/Fe;0, system is $17.14 per kW h-heat, and the
target TES cost obtained by the convex hull and the NKVT
approach is $12.4 per kW h-heat and $12.19 per kW h-heat,
respectively. A comparison of various factors contributing to
TES cost is shown in Fig. 9, and key material properties affecting
TES cost are given in Table 3.

We make three key observations from Fig. 9. First, the solid
tank cost is the lowest for the NKVT approach because of the
highest material density and lowest material requirement.
Second, the cost of sensible heat storage unit is the highest for
Fe,03/Fe;0, system. Recall that the cost of sensible heat storage
depends on the mass of O, released, which in turn is directly
proportional to v¢ and inversely proportional to w, or wg. The
ratio vc/wsg is fixed for the Fe,03/Fe;0, system, whereas vc, wa,
and wg are variables obtained by solving the optimization
model corresponding to the convex hull and the NKVT
approach. Optimization identifies that lower vc/wg results in
lower sensible heat storage costs. Third, the reactor cost is the
lowest for Fe,O;/Fe;O0, because of lower heat exchanged and
higher heat transfer coefficient because of higher gas velocity.

As expected, an increase in material price results in an
increase in TES cost and LCOE. The target efficiency curve lies
within 0.2-0.22, decreasing monotonically with an increase in
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Fig. 10 Variation of T — TP and capacity factor with price.
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material price because it becomes economical to increase the
sensible heat storage fraction, which leads to higher 7°¢ — 7°¢
(Fig. 10). However, note that the decrease is non-smooth. This
can be explained by noting a sudden increase in the optimal
capacity factor (CF). Recall that CF is defined as the ratio of the
amount of electricity produced over a specified period, to the
electricity that could have been generated if the power plant was
operating continuously at full capacity. Increasing CF requires
more energy storage during low DNI scenarios, which leads to
oversizing the collector and discarding excess solar energy
during high DNI scenarios.

The optimal receiver and the average power cycle tempera-
ture increase monotonically with an increase in material price
and range between 1372-1459 K and 1266-1315 K, respectively
(Fig. 11(A)). An increase in 7°¢ leads to a reduction in the
receiver efficiency. In contrast, an increase in TP¢ increases
power cycle efficiency. Although both 7°¢ and TP¢ increase, T¢
increases more significantly so that overall 7°°° — TP¢ increases
with material price.
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Fig.11 Variation of optimal (A) receiver and power-cycle temperature,
and (B) reaction enthalpy, average heat capacity, and average density
of solid materials with price.
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Although with an increase in material price, TES cost will
inevitably increase, the material properties, including AH',
average heat capacity of A and B (Cp), and average density of A
and B (p), vary to reduce the amount of required material. The
results obtained using the convex hull approach suggest that
the optimal AH" and Cp should increase with an increase in
material price. However, the optimal p decreases with an
increase in material price, which may appear counterintuitive at
first, as high density is critical for reducing the volume of solid
storage tanks. This occurs because, as illustrated in Fig. 4(A), Cp
is inversely correlated with p. Second, the reactor volume is
directly proportional to the amount of heat transferred (eqn
(25)-(27) ESIt), which remains constant for material prices less
than $4.7/kg (Fig. 10). The weight of solid material required in
the reactor is directly proportional to its density (eqn (34) and
(35) ESIf). Thus, increasing density reduces the volume of
storage tanks and increases the amount of material needed in
the reactors. Heat transfer increases once the material price
exceeds $4.7/kg. Accordingly, a small decrease and an increase
are observed in Cp and p, respectively.

The optimal LCOE, target efficiency, and TES cost curves
obtained by the NKVT approach are remarkably close to those
obtained by the convex hull approach. The optimal receiver and
power cycle temperature curves are also quite close. However,
we observe differences in AH", Cp, and p obtained by the two
methods. Notably, except for AH', the properties curves ob-
tained by the two methods follow the same trend. It can be
observed that AH" obtained by the NKVT approach corresponds
to its upper bound because the approach does not correlate AH*
with the other properties. Thus, there is a need to extend the
NKVT approach to accurately correlate AH" with other material
properties.

5. Conclusions

We developed a large-scale in silico reaction screening frame-
work to identify economical CSP-TCES systems. Twelve reac-
tions with the lowest LCOE are identified from a pool of 364
candidate reactions. The material properties and optimal
operating conditions of the twelve CSP-TCES systems are
analyzed to see how various plant components are affected. We
also study the effect of conversion on plant economics and
illustrate that TES costs and the LCOE decrease with an increase
in conversion for the oxide systems. In contrast, for the
hydroxide and carbonate systems, TES costs and the LCOE
increase. We also developed an optimization model for the
simultaneous optimization of material properties, system
design, and operating conditions. Two approaches are devel-
oped to consider the limitations and correlations between
material properties. The first approach is based on a convex hull
of properties of known materials, and the second is based on
empirical relationships. Our results suggest that the target
LCOE ranges between 9.7-11.5 ¢ per kW h for material prices
between $0.1 and 8/kg. We also obtain the corresponding target
overall efficiency and TES cost. We show how the target effi-
ciency TES cost decreases with an increase in material price.
Furthermore, our system-level approach considers various

RSC Sustainability, 2024, 2, 943-960 | 955


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00244f

Open Access Article. Published on 15 2024. Downloaded on 2025/11/4 0:03:46.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Sustainability

trade-offs and provides insights into the target material prop-
erties and operating conditions. We elucidate that while energy
density is critical for low TES cost and LCOE, other material
properties also critically impact the system performance. We
hope our analysis will facilitate the development of novel TCES
materials and help accelerate the commercial deployment of
CSP-TCES plants.

Nomenclature
Abbreviations
CSpP Concentrating solar power

LCOE Levelized cost of electricity
HTF Heat transfer fluid

TES Thermal energy storage

s-CO, Superecritical carbon dioxide
TCES Thermochemical energy storage
WF Working fluid in power cycle
MSE Mean squared error

CF Capacity factor

Parameters and variables

T Reaction equilibrium temperature

Va, VB, Ve Stoichiometry coefficients

AG" Gibb's energy of reaction

R Universal gas constant

Pc Partial pressure of gas C

Ta, Tg.  Melting points of A and B, respectively
¢! Ratio of the collector area to the receiver area
7 Collector efficiency

7" Receiver efficiency

(o) Net heat absorbed by the receiver

Qe Solar energy incident upon the receiver
e Receiver solar absorptance

Yree Receiver thermal emittance

o Stefan-Boltzmann constant

"¢ Receiver temperature

TP® Average power cycle temperature
7°mP Ambient temperature

geeny Convective heat transfer coefficient

nP¢ Power cycle efficiency

¢ Turbine inlet temperature

™, T" Temperature of endothermic and exothermic
reactors
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