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Photocatalytic activity of dual defect modified
graphitic carbon nitride is robust to tautomerism:
machine learning assisted ab initio quantum
dynamics†
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Two-dimensional graphitic carbon nitride (GCN) is a popular metal-free polymer for sustainable energy

applications due to its unique structure and semiconductor properties. Dopants and defects are used to

tune GCN, and dual defect modified GCN exhibits superior properties and enhanced photocatalytic

efficiency in comparison to pristine or single defect GCN. We employ a multistep approach combining

time-dependent density functional theory and nonadiabatic molecular dynamics (NAMD) with machine

learning (ML) to investigate coupled structural and electronic dynamics in GCN over a nanosecond time-

scale, comparable to and exceeding the lifetimes of photo-generated charge carriers and photocatalytic

events. Although frequent hydrogen hopping transitions occur among four tautomeric structures, the

electron–hole separation and recombination processes are only weakly sensitive to the tautomerism. The

charge separated state survives for about 10 ps, sufficiently long to enable photocatalysis. The employed

ML-NAMD methodology provides insights into rare events that can influence excited state dynamics in

the condensed phase and nanoscale materials and extends NAMD simulations from pico- to nano-

seconds. The ab initio quantum dynamics simulation provides a detailed atomistic mechanism of photo-

induced evolution of charge carriers in GCN and rationalizes how GCN remains photo-catalytically active

despite its multiple isomeric and tautomeric forms.

1. Introduction

Graphitic carbon nitride (GCN) is a metal-free polymeric semi-
conductor that has emerged as a promising photocatalyst for
solar-driven energy conversion and environmental remediation
applications.1–4 The high stability, facile synthesis, low cost
and visible light absorption capacity of GCN contribute signifi-
cantly to a plethora of reactions including water splitting and

CO2 reduction.5–11 Its polymeric nature allows for structural
flexibility as well and can serve as a compatible host substrate
to other inorganic nanoparticles. Despite these impressive
characteristics, the photocatalytic performance of pristine
GCN has been limited due to its intrinsic issues, including
recombination of photo-generated charge carriers, inefficient
charge separation, and poor conductivity.12,13 Modification
strategies, such as engineering surface vacancies, introducing
dopants or heteroatoms, and building hybrid structures, can
tackle these drawbacks to a great extent by effectively tuning
the physicochemical properties of carbon nitride, thereby
increasing the efficiency of conversion of the energy of light
into photocatalytic chemical reactions.14–16 Nitrogen defects in
GCN can create mid-gap bands that can be used for excitation
and extraction of charge carriers, act as reactive sites, facilitate
charge separation, prevent charge recombination, and expand
the optical response of the photocatalyst material overall.17,18

On the other hand, O doping enhances the photocatalytic per-
formance due to improvements in material’s electronic band
structure.19–21 Through synergistic enhancement, dual-defect-
modified GCN (ON-GCN) exhibits superior properties, includ-
ing a pronounced shift in light absorption towards longer
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wavelengths and a modulated energy band structure, com-
bined with more-effective charge carrier separation, surpassing
that of undoped GCN.22–24 ON-GCN is advantageous over
N-defect GCN because it exhibits a longer carrier lifetime and
has a higher oxidation potential. GCN exhibits
polymorphism25,26 in which structural changes27 can lead to
modification in the electronic properties and charge carrier
dynamics of the dual defect system. Tautomeric events occur
over long times and are not captured by ab initio simulations,
since ab initio molecular dynamics (MD) trajectories are
limited to a few picoseconds. Modeling quantum dynamics of
charge carriers using nonadiabatic (NA) MD further adds to
the computational cost, while NAMD simulations provide the
most direct route to understanding excited state processes in
molecules and materials.2,28–32

Recently, machine learning (ML) has emerged as a powerful
tool to overcome the computational cost of first principles
methods. It is developing rapidly and has already been applied
to a wide range of systems and processes.33–39 ML methods are
paving the way to uncover complex reaction paths and to corre-
late and predict material structure and properties, providing a
balance between accuracy and efficiency. Generation of long
MD trajectories with ab initio quality results is now feasible
with the aid of ML force fields (MLFFs).37–39 An MLFF model-
ing of dual defect GCN can effectively sample a diverse set of
structural conformations that impact electronic properties and
charge carrier dynamics. ML also provides a means to acceler-
ate the calculation of the electronic properties needed as the
input for NAMD simulations of excited state dynamics. To
mimic time-resolved experiments, NAMD requires electronic
state energies and NA couplings (NACs) between states. Our
group has recently demonstrated that the computational cost
of NAMD can be reduced by interpolating the NAMD
Hamiltonian along an MLFF trajectory.40–43

In this work, we report a multiscale methodology and study
the coupled structural evolution and quantum dynamics of
charge carriers in dual defect ON-GCN over a nanosecond
timescale by combining NAMD and real-time time-dependent
density functional theory (RT-TDDFT) with supervised ML
learning. We train an MLFF to investigate structural changes
in dual defect ON-GCN over nanosecond MD trajectories,
revealing hydrogen hopping involving four tautomeric struc-
tures. Higher energy structures remain metastable for signifi-
cant periods of time, indicating that they should be taken into
account when interpreting experiments. We sample the NAMD
Hamiltonian along the trajectories and interpolate it to femto-
second resolution, needed to perform robust time-domain
DFT and NAMD simulations. Despite the pronounced hydro-
gen atom hopping, the electronic dynamics is only weakly sen-
sitive to tautomerism, because the dominant tautomers have
similar electronic properties, and the most electronically dis-
tinct structure rarely appears. We show that catalytically active
states are populated for 5–10 ps, which should be sufficient to
perform elementary photochemical reactions, such as bond
breaking, since bond oscillation periods are 100 times shorter.
The ML-NAMD methodology used here allows us to sample

rare events that can influence excited state dynamics in
modern materials and to perform quantum dynamics simu-
lations over nanosecond timescales. Our simulations provide
atomistic insights into the photoinduced excited state
dynamics of GCN and illustrate how GCN can remain photo-
catalytically active in its multiple structural forms.

2. Computational details

Geometry optimization, ground state MD, and electronic struc-
ture calculations are performed with the Vienna ab initio simu-
lation package.44,45 The Perdew–Burke–Ernzerhof46 exchange–
correlation functional and the projected-augmented wave
method (PAW)47 describing the interactions between electrons
and ion cores are employed. A 2 × 2 × 1 simulation cell consist-
ing of 60 atoms is used to model the dual defect ON-GCN. The
plane-wave basis energy cutoff is set to 530 eV for all DFT cal-
culations. van der Waals interactions are described via the
optB86b-vdW method.48 A 20 Å vacuum layer is introduced in
the z direction to eliminate interactions between layers. A 3 ×
3 × 1 Γ-centered k-point Monkhorst–Pack mesh is used for geo-
metry optimizations and electronic property characterization.
Structures and charge densities are visualized using VESTA
software.49

An MLFF is built using the DeepPOT-SE50 approach, as
implemented in the DeepMD-Kit package,51 utilizing a deep
learning neural network to describe interatomic interactions
in the ON-GCN systems based on just a small amount of
ab initio training data. The geometry is first optimized at 0 K.
Then, the system is heated to temperatures from 100 K to
1600 K with a 100 K step, by velocity rescaling in the NVT
ensemble to generate a training set for the MLFF. A total of
∼20 000 configurations of training data are generated.
Specifically, the training dataset consists of 3000 structures at
300 K, 1500 structures at 200 K and 400 K, and 1000 structures
each at the rest of the temperatures. More ab initio data points
are obtained at 200–400 K than other temperatures to rep-
resent better the subsequent room temperature MLFF simu-
lation. High temperature structures are needed to gather a
diverse set of structure patterns, including transition paths
between different tautomers. A cutoff radius of 9 Å is used for
neighbor searching with 0.5 Å as the smoothing distance. The
dimensions of the embedding and fitting nets are set to 25 ×
50 × 100 and 240 × 240 × 240, respectively. The neural network
is trained using the Adam stochastic gradient descent
method52 with a learning rate that decreased exponentially
starting from the value of 0.001. The input data are split into
80% training and 20% testing sets. Thereafter, the system is
heated to 300 K and a Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)53 is used to generate 1 ns MD tra-
jectories with the trained MLFF model using a 1 fs timestep.
Single point ab initio calculations are carried out at every 10 ps
along the ML generated 1 ns trajectories at the Γ-point only for
computational efficiency, since the direct bandgap of 2 × 2
pristine GCN lies at the Γ-point.54 The potential energies from
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DFT and ML calculations are compared to validate the MLFF
used, Fig. S2.† The root-mean-square deviation in the energy is
within 10 meV per atom, and the root-mean-square difference
for the ab initio and ML forces is 0.16 eV Å−1, as per the rec-
ommended acceptable error.38

The 1 ns long NVE trajectories generated using an MLFF
are used to perform NAMD calculations. Structures are chosen
at every 64 fs of each trajectory to calculate ab initio electronic
energy levels and NACs by computing the overlap of adjacent
wavefunctions using the CA-NAC package.55,56 This infor-
mation is used as input by the inverse fast Fourier transform
(iFFT) code42 to interpolate the energy levels and NACs for the
entire 1 ns trajectories with a 1 fs timestep. The 64 fs sampling
interval represents a power of 2, i.e., 26, that is needed for
iFFT. The interpolation of the NA Hamiltonian greatly reduces
the computational cost required to calculate all NACs and
energy levels using only ab initio methods. A total of 100
atomic initial conditions and 100 stochastic realizations for
each initial condition are used for each NAMD simulation.
NAMD calculations are carried out using the decoherence
induced surface hopping (DISH)57 method under the classical
path approximation, as implemented in the PYXAID58,59

package. A more detailed description of the NAMD/TDDFT
method can be found in our previous papers.60,61

3. Results and discussion

The multiple defect system considered here is constructed by
creating a nitrogen vacancy that leads to the formation of a C–
C bond. The other defects involve formation of the CN group
along with the NH and NH2 groups, and replacement of a
nitrogen atom by an oxygen atom. Fig. 1 shows the optimized

structures of the modified dual defect ON-GCN. The four struc-
tures differ in the position of one of the hydrogens in the ring.
These tautomeric structures are obtained from the tempera-
ture sampled training set. Ab initio total energies, reported in
Table 1, indicate that the structure shown in Fig. 1a is the
most stable, while that in Fig. 1d is the least stable.

The projected densities of states (PDOS) of the optimized
structure of the four tautomers, Fig. 2, demonstrate that even a
small modification in the ON-GCN structure by a shift of the H
atom can lead to notable changes in the electronic properties
of the material. For instance, changing the position of hydro-
gen from NH–CN to N_Hβ alters the energy and degeneracy of
the deep hole trap state and the valence band maximum
(VBM). The degeneracy of the spin up and down components
of the d1 trap is lifted, and the VBM separates from the rest of
the band. The corresponding orbital charge densities for NH–

CN are shown in Fig. S1.† CBM, VBM and trap states energy
level alignments are of prime importance to photocatalytic
applications, including a multitude of oxidation and reduction
reactions initiated by energetic charge carriers. A variety of tau-
tomeric structures exist in the training set, allowing one to use
MLFFs to study whether various structures appear on the time-
scales of carrier trapping and recombination, and whether

Fig. 1 Optimized structures of dual defect ON-GCN tautomers. The structures are labeled based on the position of the circled hydrogen atoms as
(a) NH–CN (most stable structure), (b) NH3, (c) N_Hβ and (d) N_Hα (least stable structure), Table 1. C: grey, N: blue, O: golden and H: red.

Table 1 Total energies of the four tautomer structures shown in Fig. 1.
NH–CN is the most stable, and N_Hα is the least stable

Structure Total energy (eV)

NH-CN −460.38
NH3 −459.62
N_Hβ −448.69
N_Hα −447.42
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these structures influence charge carrier properties and
dynamics.

We generate 1 ns long MD trajectories using an MLFF start-
ing from the most stable and least stable structure, Table 1, at
300 K and 400 K. 300 K corresponds to ambient conditions,
while 400 K represents photovoltaic or photocatalytic operating
conditions, during which significant local heating can occur
as charges relax nonradiatively through manifold trap states.
Fig. S2† shows a comparison of the potential energies of the
system predicted by MLFF with DFT energies calculated for the
same geometries along the 1 ns trajectory generated starting
from the most stable structure at 300 K. Deviations between
ML and DFT results are around 10 meV per atom, providing a
satisfactory agreement38 for this complex system with multiple
defects. Furthermore, ab initio electronic energy levels calcu-
lated for both trajectories at 300 K remain stable and only fluc-
tuate around average values, as shown in Fig. 3a–d. The rela-
tive positions of the energy levels remain the same as those in
the PDOS of the optimized structures, Fig. 2.

Fig. 4 demonstrates the hydrogen hopping dynamics in
ON-GCN. Fig. 4a and c show the results for the ML MD trajec-
tories starting from the most stable structure at 300 K and
400 K, respectively. Conformational hopping between NH–CN
and NH3 tautomers occurs multiple times at both tempera-
tures. Hydrogen is considered to be bonded to the particular
labelled nitrogen atom when the N–H bond length is less than
1.2 Å. On the other hand, for the MD trajectories starting from

the least stable structure, Fig. 4b and d, hydrogen hopping
only takes place between NHα and NH–CN tautomers. In this
case, the system does not reach the most stable form even
after 1 ns. This implies that metastable, higher energy struc-
tures can survive for long times. Therefore, the existence of
long-lived structures should be considered when interpreting
experimental data, and a careful characterization of multiple
structures seems mandatory. The trajectories corresponding to
the higher temperature show more frequent hydrogen hops
between two structures, as expected due to higher thermal
energy. Trajectory snapshots during ten random hydrogen
hopping events show that it takes on an average 7 fs for the
hydrogen to hop from one position to the other. Fig. S3† illus-
trates one such instance, in which hopping from NH3 to
NH-CN structures takes 9 fs.

Correlating the evolution of the electronic energy levels,
Fig. 3, with the hydrogen hopping dynamics, Fig. 4, we can
rationalize why the electronic energy levels do not undergo
substantial changes as a result of the hops, even though the
electronic properties of the four tautomers exhibit differences
at 0 K, Fig. 2. The hopping dynamics shown in Fig. 4a corres-
ponds to the spin up and down electronic levels in Fig. 3a and
b. Despite multiple hydrogen hops seen in Fig. 4a, the elec-
tronic energy levels seen in Fig. 3a and b do not undergo any
jumps, because the PDOS of NH-CN and NH3 are similar,
Fig. 2a and b. On the other hand, for the trajectory in Fig. 4b,
with the evolution of the spin up and down electronic levels

Fig. 2 Partial density of states (PDOS) for the optimized structures of the ON-GCN tautomers shown in Fig. 1: (a) NH–CN, (b) NH3, (c) N_Hβ and (d)
N_Hα. Hopping of just one hydrogen leads to substantial changes in the electronic properties. The Fermi level is set to 0 eV. Band edges and defect
states are marked with colored arrows: VBM: pink, CBM: green, defects (d1–d3): yellow.
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Fig. 3 (a) Spin up and (b) spin down ab initio energy levels calculated every 10 ps along the 1 ns ML trajectory at 300 K starting from the most stable
NH–CN structure, Fig. 1a, and (c) spin up, (d) spin down levels for the trajectory starting from the least stable N_Hα structure (Fig. 1d). The corres-
ponding hydrogen hopping trajectories are shown in Fig. 4a and b, respectively. The Fermi energy has been subtracted from the KS state energies to
set the Fermi level to 0.

Fig. 4 Hydrogen hopping dynamics over 1 ns ML trajectories generated starting from (a) the most stable structure (NH–CN) at 300 K, (b) the least
stable structure (N_Hα) at 300 K, (c) the most stable structure (NH–CN) at 400 K, and (d) the least stable structure (N_Hα) at 400 K. The y-axis pre-
sents the position of the hydrogen circled in the corresponding structures (a)–(d) of Fig. 1. The frequency of hydrogen hopping increases at higher
temperatures. The N–H bond length ranges from 0.98– to 1.26 Å. Hydrogen hopping occurs when the N–H bond length exceeds 1.26 Å.
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shown in Fig. 3c and d, we again do not observe significant
changes in the electronic levels, because the hops are rare, and
the system rapidly returns to the initial structure through
hydrogen rearrangement. The analysis suggests that the struc-
tural changes should have little influence on the charge carrier
dynamics.

Nonradiative charge recombination is the dominant unde-
sired mechanism that limits the availability of free charge car-
riers, an important factor for photocatalytic activity. NAMD
models excited state dynamics of photo-generated charge car-
riers coupled to vibrational motions, directly mimicking the
non-equilibrium ultrafast processes. Fig. 5 shows the results of
the NAMD simulations, in which the electron and hole are
initiated in the CBM and VBM, respectively. Although the solar
spectrum and other light sources used in photocatalysis and
photovoltaics cover a wide energy range, charge carriers gener-
ated away from the edges of the fundamental bandgap relax
rapidly to the CBM and VBM through the dense manifolds of
band states,62,63 Fig. 2. The electronic configurations forming
the NAMD active space are shown in Fig. S4.† The populations
shown in Fig. 5 are summed up over all electron and hole
traps, and the corresponding timescales obtained by exponen-
tial fitting of the rise and decay of the relevant curves are sum-
marized in Table 2. The evolution of the populations of the
individual multi-electron states are presented in Fig. S5† and
respective timescales are given in Table S1.† Photo-generated
electrons and holes are required for desired oxidation and
reduction reactions. Localized midgap states facilitate charge
separation, promote photo-catalytic activity and extend light
absorption into longer wavelengths. At the same time, midgap
traps act as recombination centers and reduce carrier
lifetimes.64–68

The NAMD simulations demonstrate that the separation of
the charge carriers, facilitated by trapping of electrons and
holes, occurs within a few picoseconds. The two spin channels
exhibit different dynamics, because of the differences in the
spin up and down electronic structure, Fig. 2. This suggests
that spin selection techniques can be used to control charge
separation and recombination.69–71 The populations of the
electron and hole trap states reach over 50% in approximately
10 ps. This timescale should be sufficient to perform an
elementary photochemical reaction, such as bond breaking,
provided the chemical species is already present at the charge
trapping site. For comparison, a period of oscillation of typical
chemical bonds, such as C–C or CvO is about 50 fs. Thus, the
photo-generated charge exists in a catalytic site for around a
hundred bond oscillation periods. The NAMD results obtained
here by sampling the system atomic dynamics over 1 ns are
consistent with and slightly longer than those obtained pre-
viously72 for the most stable isomer using a short ab initio MD
trajectory.73

Fig. 5 Nonradiative charge trapping and recombination dynamics in (a) spin up (b) spin down channels at 300 K starting from the most stable
ON-GCN tautomer (NH–CN), Fig. 1a. The energy level fluctuations and hydrogen hopping trajectory are shown in Fig. 3a, b and 4a, respectively.
More detailed information is provided in Fig. S4,† and the timescales are reported in Table 2. Electron and hole separation and trapping occur within
picoseconds, and charge recombination takes place within tens to hundreds of picoseconds.

Table 2 Electron and hole trapping and recombination timescales (in
ps) obtained from the rise and decay of the populations shown in Fig. 5.
State-resolved data are shown in Fig. S4, S5 and Table S1.† Charge sep-
aration and trapping takes picoseconds, while charge recombination
occurs within tens of picoseconds

ON-GCN
Electron in
CBM Decay

Trapped
electron rise

Trapped
hole rise

Hole in
VBM
decay

Spin up 7.8 4.03 1.57 15.58
Spin down 15.03 20.12 8.82 76.28

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 8986–8995 | 8991

Pu
bl

is
he

d 
on

 0
1 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

5/
11

/2
 3

:0
3:

29
. 

View Article Online

https://doi.org/10.1039/d4nr00606b


4. Conclusion

To summarize, we have reported a multistep simulation meth-
odology combining time-domain DFT, NAMD and ML and
have applied it to capture rare structural and electronic events
in dual defect modified graphitic carbon nitride that is actively
investigated for photocatalytic applications. We observe tauto-
merism between four different structures induced by hydrogen
hopping that occurs on the timescales of tens to hundreds of
picoseconds, comparable to charge carrier trapping and
recombination times. The charge carrier dynamics is found to
be robust to the tautomerism because the electronic properties
of the dominant tautomers are similar, and the most different
tautomer is accessed rarely. Our simulations indicate that
photo-generated charges are separated on a picosecond time-
scale and the catalytically active states remain populated for
10 ps. This is sufficient to perform elementary photochemical
reactions, such as bond breaking, since bond oscillations are
two orders of magnitude faster. The ML-NAMD methodology
reported here allows one to sample infrequent processes that
influence excited state dynamics in modern materials and to
perform quantum dynamics simulations over times compar-
able to the timescales of structural rearrangements and photo-
catalytic reactions. Proper sampling of structural dynamics on
the same timescale as the electronic evolution, assisted by ML
techniques, can uncover important rare events74–77 that influ-
ence or even control material’s photocatalytic activity and
other properties. The reported simulation generates a detailed
atomistic picture of excited state dynamics in the dual defect
modified GCN and rationalizes how GCN remains active in the
presence of multiple isomeric and tautomeric forms.
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