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Herein, we show that P-doped TizC,T, MXene nanosheets can
effectively catalyze the NOzRR-to-NH; conversion with a high
faradaic efficiency of 95% and a yield rate of 5.39 mg h™ mgc.. *
Moreover, the catalyst achieves an impressive high current density
of —1200 mA cm~2 at a low potential of —1.51 V, accompanied by an
NHz productivity of 123.5 mg h? mgcat_‘l. Theoretical calculations
further reveal that phosphorous dopants facilitate the adsorp-
tion and activation of reactants/intermediates and thus lower the
energy barrier.

NH; assumes a significant role in the nitrogen cycle and
represents a pivotal compound in fertilizers, explosives, plas-
tics, and so on." Generally, its industrial production strongly
relies on the Haber-Bosch approach,? leading to great energy
consumption and greenhouse gas emissions. In this case, NH;
synthesized by the N, reduction reaction (NRR) under ambient
conditions has gained much attention in recent years.*” However,
the poor solubility and inert chemical reactivity of N, molecules
typically contribute to unsatisfactory selectivity and NH; yield
rates. Therefore, the development of more efficient electrocatalytic
systems is highly desirable.

More recently, the nitrate reduction reaction (NO;RR)
demonstrates advancement as compared to the NRR because
of its low N—O cracking energy and good solubility,*° therefore
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Phosphorus-doped TisC,T, MXene nanosheets
enabling ambient NH3 synthesis with high
current densitiesy
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endowing NH; synthesis with a fast reaction rate. Besides, the
NO;RR can also alleviate the ever-increasing NO;~ pollution in
10712 11 this regard, the NO;RR acts as a dual-purpose
strategy. To date, considerable efforts have been devoted to
designing high-performance NO;RR catalysts, such as RuO,,"
Cu0,,"* Co0,," and single-atom materials."® However, these
catalysts typically deliver small current densities (<100 mA cm?),
indicative of low yield rates. That is, the industrial application of
the NOsRR cannot be technically achieved. Hence, the NO;RR-to-
NH; conversion under large current densities is still a longstand-
ing and challenging task.

The Ti;C,T, MXene is exactly considered a promising
catalyst for various electrochemical reactions due to its large
exposure area, high conductivity, and tunable surface chemi-
stry."””* Current reports have proved that Ti;C,T,-based cata-
lysts can efficiently catalyze nitrate reduction to yield NH;
with high faradaic efficiencies (FEs > 80%).>°">> However,
the obtained current densities are limited, and further improve-
ment is needed. In this context, we introduced a phosphorus
element into the Ti;C,T, MXene (namely P-Ti;C,T,) to realize
high-performance NO;RR-to-NH; conversion, which showed
a maximal FE of 95% and a corresponding yield rate of
5.39 mg h™! mg.,. ' at a potential of —1.2 V versus reversible
hydrogen electrode (vs. RHE). Besides, the catalyst exhibited a
stable activity over 6 cycles and 40-h long-term electrolysis.
Impressively, when examined in a flow cell, the catalyst deliv-
ered a notable high current density of —1200 mA cm ™2 at a low
potential of —1.51 V vs. RHE, accompanied by a yield rate of
123.5 mg h™" mg.,. ', implying the potential application for
NH; synthesis. Moreover, in-depth simulations revealed that
the phosphorus dopants can dramatically optimize the reactivity
of Ti sites and reduce the energy barrier, accounting for excellent
NO;RR performance.

The synthetic procedure is illustrated in Fig. 1a, where the
Ti3AlC, raw materials were first etched using a mixture of LiF
and HCI, and then the residue was further annealed in the
presence of NaH,PO, to generate P-Ti;C,T,. The representative
scanning electron microscopy (SEM) images of Ti;C,T, and

water.
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Fig. 1 (a) Schematic of the synthesis of P-TizC,T,. (b)—(d) SEM, TEM and

HRTEM images. (e) EDX elemental mapping images. (f) XRD patterns.

(g9) High-resolution P 2p XPS spectrum.

P-Ti;C,T, are shown in Fig. S1 (ESI{) and Fig. 1b, respectively,
which clearly present sheet-like morphology, indicative of a
large surface area. This favors the exposure of active sites and
mass transfer during the electrolysis. The transmission elec-
tron microscopy (TEM) image in Fig. 1c confirms the multilayer
lamellar structure. The high-resolution TEM (HRTEM) image
reveals atomic crystal fringes with a size of 0.51 nm corres-
ponding to the (002) plane of Ti;C,T, (Fig. 1d). Meanwhile, the
energy-dispersive X-ray (EDX) images in Fig. le manifest
the uniform distribution of Ti, P, and O on the surface of the
nanosheet.

Further, the X-ray diffraction (XRD) patterns were collected
and are displayed in Fig. 1f, which show characteristic peaks of
the typical Ti;C,T, MXene, in line with previous reports.
Compared to pristine TizC,T,, the (002) peak of P-Tiz;C,T,
slightly shifts to a small angle, suggesting an increased lattice
spacing.>* Moreover, applying X-ray photoelectron spectroscopy
(XPS) measurements, the survey spectrum in Fig. S2 (ESI{) also
revealed the presence of the P element in P-Ti;C,T,, conform-
ing to the results of EDX (Fig. 1e). The high-resolution P 2p
spectrum (Fig. 1g) could be deconvoluted into two peaks at
134.4 and 135.1 eV, corresponding to P-O-Ti and P-O bonds,
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respectively.”* Besides, as observed in the Ti 2p XPS spectrum
of P-Ti;C,T,, the peaks at 454.8, 455.7, 456.5, and 458.3 are
ascribed to Ti-C, Ti*", Ti*", and Ti-O, respectively (Fig. S3,
ESIt).”* Additionally, the O 1s XPS spectrum was deconvoluted
into three peaks (Fig. S4, ESIt), which are interpreted as those of
Ti-0 (531.7 eV), Ti-Oy (532.8 eV), and C-Ti~(OH), (534.0 eV).”° The
results further confirm the thriving synthesis of P-TizC,T,.
In addition, the optimal P content in P-Ti;C,T, was determined
to be 5.8 wt% according to the XPS results (Fig. S5, ESIt).

Next, the NO3RR activity of the as-prepared samples was
checked by using a three-electrode configuration in a neutral
electrolyte (0.5 M K,SO, + 0.1 M KNOj3). The optimal catalyst
loading was found to be 0.15 mg cm™? (Fig. S6 and S7, ESI?).
The linear scanning voltammetry (LSV) curves were first stu-
died, and the results revealed that P-Ti;C,T, delivers larger
current densities as compared to Ti;C,T, (Fig. 2a). This sug-
gests a higher NO3;RR activity on P-Ti;C,T,. In addition, the
current densities of P-TizC,T, obtained in the blank electrolyte
are lower than those in NO; -containing electrolyte (Fig. S8,
ESIT), implying that P-Ti;C,T, can effectively catalyze the
reduction of NO;~.>” The absorbance of the dilute electrolyte
was measured by a reported indophenol blue method.”®*° As a
result, FEs exhibited a volcanic trend in Fig. 2b and ¢ due to the
existence of a competitive hydrogen evolution reaction (HER),?®
which achieves a maximal FE of 95% at —1.2 V vs. RHE, larger
than that on TizC,T, (81% at —1.1 V vs. RHE). Meanwhile, it can
be seen that the FEs for NH; production are above 80% over the
wide potential range, which indicates that the HER is inactive.
More importantly, the measured NH; yield rate of P-TizC,T,
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Fig. 2 (a) LSV curves in NO3™ -containing electrolytes in an H cell. (b) and
(c) The obtained FEs and yield rates for TizC,T, and P-TizC,T,. (d) The
IH NMR spectrum. (e) Cycling stability.
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reached 5.39 mg h™' mg.,. ', significantly higher than that
of pure Ti;C,T, and most of the currently reported catalysts
(Table S1, ESIT). When tested in a dilute electrolyte, P-Ti;C,T,
presents the highest FE of 90% at —1.1 V vs. RHE (Fig. S9, ESIT).

Subsequently, the by-products of NO,™, N,H,, and H, are
displayed in Fig. S10-S12 (ESIt), which shows that the FEs for
NO,  and N,H, are negligible, revealing the superior selectivity
of NO3;RR-to-NH; on P-Ti;C,T,. To verify the origin of produced
NH;, isotopic labeling tests were performed and the results are
depicted in Fig. 2d, which show two characteristic peaks
corresponding to ">NH,", implying that the source of nitrogen
in the generated NH; is indeed from the reduction of NO;.*°
In addition, alternate electrolysis of the three-group cycles in
electrolytes with and without NO; ™ confirms that NH; is merely
produced from the NO3;RR rather than other contaminants
(Fig. S13, ESIt). Fig. 2e shows multiple cycling tests at —1.2 V
vs. RHE and no clear decay in FEs and yield rates is observed,
confirming the stable electrochemical activity of P-TizC,T,.
Besides, the current density presented little fluctuation during
the 40-h electrolysis (Fig. S14, ESIt). Furthermore, XRD patterns
and SEM and TEM images manifest the robustness of P-Ti;C, T,
(Fig. $15-S17, ESIY).

The results of double-layer capacitance demonstrated that P-
Ti;C,T, possesses a higher active surface area compared to
Ti;C,T, (Fig. S18, ESIt), indicative of more exposed sites for the
NO;RR. Nyquist plots further confirmed an improved efficiency
for ionic transport and a low resistance for charge transfer
(Fig. 19, ESI%).

The large-scale NH; production is vital for the commercia-
lization of the NO;RR.*3"3? In this case, we further examined
the NO;RR activity of P-Ti;C,T, in a flow cell and the results are
depicted in Fig. 3. Clearly, P-Ti;C,T, drives the current densities
to —1000 and —1500 mA cm ™2 at —1.30 and —1.51 V vs. RHE,
respectively, obviously superior to that of pure Ti;C,T, (Fig. 3a).
The corresponding FEs at different current densities are depicted
in Fig. 3b and reach the highest FE of 92% at a current density
of —1000 mA cm ™2, and the yield rate achieves a maximum of
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Fig. 3 (a) LSV curves in a flow cell. (b) and (c) FEs and yield rates at
different current densities. (d) Stability test at —1000 mA cm™2.
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123.5 mg h™" mg.,.~ " at —1200 mA cm > (Fig. 3c), comparable to
the best results (Table S2, ESIT). Besides, the obtained yield rate at
the optimal potential in a flow cell is obviously larger than that in
an H cell, while the FEs are comparable (Fig. S20, ESIY).

Next, the NO3RR stability of P-Ti;C,T, was assessed and the
result showed that no notable discrepancy in FEs was observed
after 70-h electrolysis (Fig. 3d), suggesting that P-TizC,T, is
chemically stable as a catalyst during the reduction process.

To gain an in-depth insight into the NO;RR enhancement of
phosphorus-doping, density functional theory (DFT) calcula-
tions were conducted. As depicted in Fig. 4a, the introduced
phosphorus facilitates the adsorption of NO;~ (AE,,) with a
large value of —1.61 eV as compared to a pure Ti;C,T, surface
(—1.53 eV), implying P-Ti;C,T, offers a strong affinity to the
reactant.>** The phosphorus-doping also promoted the charge
transfer between NO;~ and the catalyst surface, and the Bader
analyses indicated that a charge of 0.63 e~ is transferred from
P-Ti;C,T, to the adsorbed NO;™ (Fig. 4b). Based on these, NO;~
can be adsorbed and activated energetically preferred on the
P-Ti,C,T, surface.*®

Then, the energy barrier for the competitive HER was
considered and the results are shown in Fig. 4c. As expected,
P-Ti;C,T, had a higher H* free energy (0.14 eV) than Ti;C,T,
(0.02 eV), indicative of the inhibition of hydrogen generation
during the NO;RR process. Moreover, the DFT results show that
the potential-determining step (PDS) on P-Ti;C,T, corresponds to
*NO, + H + e° — *NO,H with an energy barrier of 1.02 €V
(Fig. 4d), while after phosphorus-doping, this barrier could be
greatly reduced to 0.41 eV, suggesting that dopants are responsible
for the NO;RR enhancement,?” as revealed by the above experi-
ments. It is also found that the subsequent elementary reactions
follow a spontaneous exothermic process. Combined with experi-
mental and theoretical analyses, we could infer that the excellent
NO;RR performance indeed originates from heteroatom doping.

In summary, P-Ti;C,T, proved to be an advanced NO;RR catalyst
for NH; synthesis under ambient conditions. In neutral media, the
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free energy profiles for the HER and NOzRR.
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catalyst achieved a high yield rate of 5.39 mg h™" mg.. " and a
maximal FE of 95% with good cycling stability. More impress-
ively, when tested in a flow cell, the catalyst delivers an ampere-
level current density at a low working potential, accompanied
by a high NH; FE, strongly suggesting the promising applica-
tion in future large-scale NH; production. Based on the DFT
studies, doping phosphorus atoms into Ti;C,T, can offer
abundant active sites and modulate the electronic structure,
efficiently promoting the adsorption and activation of reactants
and intermediates and thereby lowering the NO;RR energy
barrier. In our work, an efficient catalyst is developed for the
NO;RR-to-NH; conversion at high current densities, which may
be helpful for massive NH; production.
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