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Machine learning assisted binary alloy catalyst
design for the electroreduction of CO2 to C2

products†

Zachary Gariepy,a Guiyi Chen,a Anni Xu,a Zhuole Lu,a Zhi Wen Chen*a and
Chandra Veer Singh *ab

The carbon dioxide reduction reaction (CO2RR) has become one of the most important catalytic

reactions due to its potential impact on global emissions. Among the many products this reaction yields,

C2 products are the most valuable due to their potential use as hydrocarbon fuels. For the efficient

conversion of CO2 into C2 products, however, further work needs to be done on understanding the

reaction pathway mechanisms and ideal catalytic surfaces. Herein, we gain insight into the C2 pathway

through a combination of Density Functional Theory (DFT) and machine learning (ML) by studying the

adsorption of *COCOH on eight different types of Cu-based binary alloy catalysts (BAC) and

subsequently discover the ideal BAC surfaces through configurational space exploration. 8 different ML

models were evaluated with descriptors for elemental period, group, electronegativity, and the number

of unpaired d orbital electrons. The top performing models could successfully predict the adsorption

energy of *COCOH on Cu-based BACs to within 0.095 eV mean absolute error (MAE). The most

accurate models found Cu/Ag and Cu/Au BACs with 2–3 atom nanoislands on the surface and high

Ag/Au density subsurfaces had the most favorable reaction energy pathway which corresponds with the

weakest *COCOH adsorption energies.

1. Introduction

For the past decade, climate change has been a major topic for
scientific research. Global-scale environmental degradation has
proven to have severe impacts on human health, wildlife and
ecosystems.1,2 This has prompted large amounts of research
into the carbon dioxide reduction reaction (CO2RR) in an
attempt to reverse the catastrophic damage our environment
has incurred. One promising pathway to this goal that has
recently emerged is the conversion of CO2 into energy rich
hydrocarbons for use as a renewable fuel.3–6 This pathway is
attractive because it not only offers an economic replacement
for traditional fossil fuels, but also provides a potential pathway
to sustainable energy sources.5–7

There are still hurdles before a sustainable energy architec-
ture can be realistically implemented. The stable nature of CO2

under ambient conditions makes the decomposition of CO2

into C and O2 require 395 kJ mol�1 of energy which is very
costly and current methods yield mixed products such as
HCOOH, CO, CH3OH, C2H4,C2H5OH and CH4 due to the multi-
step nature of the CO2RR.8–11 Regardless, the products consist-
ing of two or more carbons (C2+ products) deserve more
attention because they can more readily be used as reactants
for fuel production and polymerization.12

Both experimental and computational studies suggest C2+

products start with two carbons simultaneously bonding to the
catalytic surface (bidentate).14 In particular, the Cu(100) facet
has been shown to be highly favorable for this dimerization due
to its low onset potential in non-acidic environments.14 For the
bidentate CO2RR pathway to win over auxiliary monodentate
reactions, a close to ideal electrocatalyst will have to be used.13

Although Cu(100) is known to be the best monometal for the
dimerized CO hydrogenation pathway to C2+ products, few
studies have tried pushing this CO2RR pathway further through
elemental additions and *COCOH adsorbate studies.14 Among
the many families of electrocatalysts, transition metals are
commonly studied because of their unique electronic structure
and active electrons in metallic bonds.15,16 With the addition of
a second metal, the ligand effect and ensemble effect are
introduced.17,18 The influence of one can hardly be separated
from the other since the extra atom changes the electronic
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structure and surface ensemble at the same time.19 Nonethe-
less, studies find the ensemble effect contributes significantly
more than the ligand effect in the improvement of reactivity
and selectivity.17–19 In the current research landscape, binary
alloy catalysts (BACs) have been studied for single carbon
products by generating databases of various intermediates
(CO, CHO, COH) along with stoichiometric optimizations but
no work has been done on elucidating the link between
*COCOH adsorption, a key intermediate in the pathway
towards C2+ products and high performing BACs.20,21

In this paper, we report on the design of BACs through the
curation of a 1600 datapoint DFT generated dataset to train
machine learning (ML) models on. With the trained model
which best understands the complex intermingled influences
of the bidentate adsorption pathway for the CO2RR, adsorption
energy (Eads) predictions were made on 8000 random BAC
structures. The reliability and generalizability of the ML models
were tested on tertiary alloy catalysts (TACs) to propose new
complex catalysts. The top performing BAC candidates were
further studied to elucidate factors correlating Eads *COCOH to
favorable reaction energy pathway surfaces.

2. Methods
2.1. DFT calculations

All adsorption energy DFT calculations were performed using
Quantum Espresso (QE) with the Perdew–Burke–Ernzerhof
(PBE) type ultrasoft pseudopotential (USPP).22,23 The Cu(100)
surface consisting of 4 layers of (3 � 4) Cu atoms (48 atoms in
total) and 10 Å of vacuum, was calculated with a kinetic energy
for wavefunction cutoff of 57 Ry, charge density cutoff of 326 Ry
and Gamma-centered 2 � 2 � 1 k-points mesh. The k-points
mesh was chosen based on a convergence test which deter-
mined a Gamma-centered 2 � 2 � 1 mesh to be the most
computationally efficient and accurate parameter for high
throughput Eads calculations (Fig. S1, ESI†). The convergence
criteria was set to under 10�6 Ry. The Cu(100) surface was
chosen for its activity, favored C2 pathway for the CO2RR and
loose packing order of the surface. During geometry optimiza-
tion, only the adsorbate (*COCOH) and top 2 layers were
allowed to be freely relaxed, while the bottom 2 layers were
fixed. The intention of fixing the lower layers was to simulate
the bulk versus surface morphology of a BAC where the surface
atoms were afforded greater degrees of freedom to relax com-
pared to the bulk layer.24 The exact adsorption energy of
*COCOH can be defined as:

Eads, *COCOH = E*COCOH/Cu alloy – ECu alloy – E*COCOH

(1)

where E*COCOH/Cu alloy is the total energy of an adsorbed
*COCOH molecule on the Cu alloy surface; ECu alloy is the
energy of Cu alloy slab; E*COCOH is the energy of the isolated
adsorbate *COCOH molecule.25 Since the *COCOH is highly
unstable in vacuum, the energy of E*COCOH is not obtainable

and was substituted as the vacuum energy of substituent
molecules shown in eqn (2):26,27

Eads, *COCOH = E*COCOH/Cu alloy – ECu alloy

– [2*ECO/vacuum – (1/2)*EH2/vacuum] (2)

where ECO/vacuum is the total energy of CO molecule in vacuum
and EH2/vacuum is the energy of a H2 molecule in vacuum to
ultimately calculate *COCOH adsorption energies.28–31 When
comparing the Eads of *COCOH on pure Cu(100) calculated by
other computational groups against this works method, the
importance of adsorbate orientation becomes evident. There
was a B0.8 eV difference in Eads between monodentate and
bidentate adsorption geometries (Fig. S2, ESI†).32 Literature
reference for *COCOH adsorption is limited but the references
available calculated the Eads of *COCOH on Cu(100) through
the typical slab model method with a monodentate *COCOH
orientation (eqn (3)). This method was not used in order to
specifically study the bidentate CO dimerization route towards
*COCOH products.32

Eads, *COCOH = E*COCOH/Cu alloy – ECu alloy – E*COCOH/vacuum

(3)

Additional charge density difference and Bader charge ana-
lysis calculations were performed on specific Os datapoints
which exhibited special geometric configurations. These calcu-
lations were performed using the Vienna Ab initio Simulation
Package (VASP) with a 4 � 4 � 1 k-points mesh and same
pseudopotentials as the Quantum Espresso calculations. Bader
charge analysis calculations were performed using the Henkel-
man group’s publicly available scripts.

The models of Cu-based alloys were constructed by ran-
domly changing the 13 Cu atoms nearest to the adsorbate into
another metal element at 4 positions in the top layer and 9
positions in the second top layer with a 20% possibility
(visualization shown in Fig. S3, ESI†). One of eight noble metals
(Ru, Rh, Pd, Ag, Os, Ir, Pt, Au) was selected to replace the Cu
atoms at these 13 positions to generate the 1600 datapoint
dataset. The Cu alloys investigated in the study were not given
adsorbate migration or synthesis feasibility considerations.
Datapoints were only removed if the adsorbate was unstable
on the adsorption site.

To test the generalizability of the ML models, 3 tertiary alloy
structures underwent the same *COCOH Eads calculations as
the BAC database. Since the atomic substitutions in the lattice
were minimal compared to the overall system size, lattice
parameter re-calculations were not performed and assumed
to be the same as the BACs.

To draw a stronger correlation between *COCOH adsorption
energies and BAC surfaces, reaction energy calculations were
performed following the dimerized *CO hydrogenation route
towards *COCOH. A weak, moderate, and strong Eads BAC was
randomly selected for free energy calculations done through
VASP. The same k-points and potentials used in the charge
density difference and Bader charge simulations were used for
the reaction energy calculations.
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2.2. Machine learning architecture and feature engineering

The target value predicted by the ML models was adsorption
energy of *COCOH in eV. In order to accurately predict this
label using a set of descriptors suitable for random datapoint
generation, the selection of descriptors had to be purely
chemical.33–35 The reason DFT calculated descriptors could
not be used is because the configurational space exploration
required the random generation of datapoints with minimal
computational cost. Thus, the group, period, electronegativity
and unpaired d orbital electrons (Nied) of the 13 nearest
neighbor elements were selected. The addition of the novel d
orbital electron descriptor improved MAE performance by 0.02–
0.04 eV MAE and was shown to have the strongest correlation to
Eads of the 4 descriptors used. This was likely due to the deeper
comprehension the ML models could derive on the ligand and
ensemble effects in metal systems.36–38

Based on previous ML publications for catalyst design, the
following 8 popular regression models were evaluated for
performance: linear regression (LR), kernel ridge regression
(KRR), Gaussian kernel-based support vector machine (SVM),
gradient boosted regression (GBR), decision tree (DT), random
forest (RF), extra tree regression (E_tree), and neural network
(NN).33,39,40 The training, validation and test sets were split
80%/10%/10% using sklearn’s train_test_split package. The
performance and accuracy of the models in predicting the
adsorption energies of the testing sets were evaluated using
the mean absolute error (MAE) and root-mean-square error
(RMSE) in eV between the predicted energies and true energies
(Fig. S4, ESI†). Initial model exploration was conducted using
scikit-learn and all machine learning prediction and configura-
tional space exploration was done using TensorFlow 2.0 Keras
API.41,42 The best-performing models were a multilayer percep-
tron NN, extra tree, and random forest regressor which
obtained accuracies on the scale of B0.095 � 0.04 eV MAE.
For all reported test set MAE values, the reported value was the
average of 5 dataset shuffle and retrains. Feature importance
analysis was performed based on the average correlation
between a given descriptor and Eads for each of the 13 atom
locations.

The NN had 3 hidden layers with a total of 8204 trainable
parameters. The models optimal MAE values were obtained
with an Adam optimizer (learning rate = 0.01), dynamic learn-
ing rate callback, and mean-squared-error (MSE) loss function
to minimize outlier inaccuracy. The model was trained for 3000
epochs and the lowest validation MAE model weights were then
returned for future optimization. Each layer used a relu activa-
tion function aside for the final layer which utilized a linear
activation function. The size of the NN was chosen through a
parametric sweep of different NN architectures ranging from
1–4 hidden layers with 8–64 nodes each. The top performing
models underwent hyperparameter optimization for later use
in the optimization studies.

The Extra tree regressor used for fitting the dataset had no
limit to the tree depth, a minimum of 2 samples to split a node,
100 trees, and was optimized for mean squared error. The

random forest model used the same hyperparameters as the
extra tree regressor.

For each model, the descriptor representation of each data-
point starts as a 2D array where each of the 13 rows represented
one of the 13 nearest neighbor atoms and each of the 4
columns represented the corresponding atoms elemental
descriptors. The order of the columns was group, period,
electronegativity then Nied. The 13 � 4 2D array would lastly
be flattened into a 52 element vector for model training and
prediction. This architecture allowed for rapid generation of
random datapoints and extrapolation to newer material sys-
tems not apart of the original training set such as 3 element
tertiary alloys.

To benchmark the descriptor based NN models against top
performing graph based models, the Atomistic Line Graph
Neural Network (ALIGNN) developed by K. Choudhary was
trained on the dataset.43 Default hyperparameters were utilized
and all geometric structures were converted into VASP readable
POSCARs for training.

2.3. Configurational space exploration for the discovery of
optimal adsorption surfaces

Borrowing from the Monte Carlo idea of random sampling, this
study obtained adsorption energy predictions of catalyst sur-
faces without extra DFT calculations through the use of a NN.
1000 random BAC’s for each of the 8 element combinations
were generated with the same method as the initial 1600
datapoint dataset. The 8000 newly generated surface predicted
Eads values are compiled in Fig. S5 (ESI†). This approach
allowed the ML model to identify the ideal elements for BAC
CO2RR bidentate pathway.16,19 The adsorption energy distribu-
tion for the predictions dataset resembled a normal distribu-
tion far more than the DFT calculated dataset due to the
difference in sample size (o200 vs. 1000). Additionally, each
binary alloy possessed a large peak at �2.8 eV which is a
statistical artifact originating from the randomly generated
structures of pure Cu possessing 0 atom substitutions.

Because the models were capable of performing Eads predic-
tions from descriptor based input structures without any DFT
data required, the models generalizability and transferability
were evaluated through an extrapolation study to 3 element
tertiary alloys. The same random sampling method was used
but for each randomly generated structure, 2 sequential ran-
dom element substitutions would be performed instead of 1. 3
TACs predicted to have weak, moderate and strong Eads were
compared against DFT calculated Eads values to gain a quanti-
tative measurement of the NNs generalizability.

3. Results and discussion
3.1. Bidentate adsorption

As shown in eqn (2), to obtain the adsorption energies of
*COCOH on the Cu-based BAC, the energy of isolated adsorbate
*COCOH (E*COCOH), energy of gaseous H2 (EH2/vacuum) and
energy of gaseous CO (ECO/vacuum) were calculated. The resulting
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Eads, *COCOH was within the range of �1.62 eV to �4.87 eV. A
unique geometry arising from energy minimization occurred for
the Cu/Ir, Cu/Os, Cu/Rh, Cu/Ru binary alloys (Fig. 1a). The
*COCOH molecule has a 30–45 degree rotation between the CO
bonds along the C–C axis. The exact angle between the dimers
varied from datapoint to datapoint however there were 2 clear
trends that emerged. Firstly, this geometric rotation only occurred
when two non Cu atoms were adjacent to each other, directly
below the *COCOH adsorbate and surrounded by mostly Cu. This
is likely because the bidentate adsorption sites were ideal for C but
not O and thus the bonds were rotated to obtain electron orbital
stabilization from neighboring Cu atoms. Notably, the adsorption
site atoms were the elements with the largest numbers of unpaired
d orbital electrons, suggesting this non-planar geometry may be
linked to the ensemble effect.

Bader charge analysis and electron density differences
revealed a unique electron depletion occurring on the C
attached to OH compared to typical *COCOH geometries
(Fig. 1b and c). Additionally, the substrate atoms directly below
the adsorbate possessed more positive Bader charges as
opposed to typical geometries which accumulated electron
charge. The largest difference in Bader charges was observed
on the C atom attached to OH which was 0.1 electrons less than
typical geometry conformations. This electron accumulation
was present for the majority of non-planar *COCOH adsorbates
regardless of Eads (Fig. S6, ESI†). The Adsorption energy of these
sites varied significantly across the entire datasets Eads range
and the configurational space exploration considered these
specific substrates as some of the more stable BACs possible
for Ru, Rh, Ir, Os. When comparing the Bader charge difference
of 3 non-planar *COCOH adsorbates to a planar *COCOH
adsorbate, the non Cu atoms directly below the *COCOH
molecule are observed to have the most significant positive
charge difference (Fig. S7, ESI†). This charge is likely taken
away from the C atom attached to OH, contributing to the non-
planar conformation.

The distribution of Eads for the different elements varied
greatly and showed a strong correlation to the Nied of the
element Cu was combined with (Fig. 2).

To link the adsorption energy of *COCOH to catalytic
performance, reaction energy calculations conducted on 3
BAC systems composed of Cu/Ag, Cu/Rh, Cu/Os BAC with weak,
moderate, and strong ML predicted Eads values were studied.
The strong correlation between unpaired d orbital electrons of
the alloyed element and adsorption energy is also inversely
present for reaction energy (Fig. 3a). Although the stronger
adsorption energy BACs (such as Cu/Os) observe much less
intermediate migration potentially leading to higher surface
coverage and simultaneous adsorbate conversion, the potential
limiting step (PLS) between dimerized CO adsorbates and
dimerized CO/COH adsorbates is the largest of the 3 types of
systems (1.06 eV) (Fig. 3a and b). The second largest PLS was
observed in the moderate Eads structure between the dimerized
CO/COH to *COCOH step (0.98 eV). For the strong and mod-
erate *COCOH Eads structures, free energy calculations indicate
dimerized CO is the most stable adsorbate intermediate
whereas the weak Eads structure becomes more stable as the
C2+ reaction progressed towards *COCOH. This suggests the
weak Eads structures are optimal for dimerized CO conversion
to *COCOH (Fig. 3a). This type of ideal reaction surface is likely
related to the large migration both CO adsorbates undergo for
hydrogenation and ultimately bidentate bonding. The hydro-
genation of CO for the weak Eads structure migrates toward a
hollow site before ultimately forming bidentate *COCOH with-
out requiring significant energy or re-arrangement.

3.2. Machine learning prediction of Eads

The multilayer perceptron NN showed great accuracy when
tasked with predicting the adsorption energy of *COCOH
across a wide range of values (0.095 eV MAE) (Fig. 4a and b).
The ML models also gained the majority of its insight from the
number of unpaired d orbital electrons (Os, Ir, Ru, Rh) (Fig. 4c).

Fig. 1 (a) Top down view of unique *COCOH adsorption conformations on Cu/Os BACs relative to the adsorption energies, (b) charge density
difference and Bader charge values of a non-planar *COCOH adsorbate, (c) charge density difference and Bader charge values of a typical planar
*COCOH adsorbate.
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The strong influence of the unpaired d orbital electron count is
best demonstrated by performing a descriptor correlation to Eads.
By taking the average correlation between each descriptor for each
of the 13 atoms, it is revealed that Nied had the largest correlation
followed by period, group and electronegativity (Fig. 4d).

Due to the outstanding accuracy of the NN and its ability to
accurately predict outliers, this model can be considered an
alternative option to predict BAC adsorption energies that is
magnitudes cheaper and faster from a computational perspec-
tive than DFT. This model can also be applied with minimal
preparation on other systems, serving as a more universal and
explorative tool in early stage catalyst design than simulations
or experimentation for BAC materials.33

When compared against the ALIGNN model, the descriptor
based NN performed comparably. The ALIGNN model obtained
an MAE of 0.06 eV MAE. This improvement likely came from
the model consideration of adsorbate bond angles and intera-
tomic distance descriptors embedded in the graph neural net-
works edges. The B0.04 eV difference suggests the descriptor
based NN successfully captured the majority of catalytic
dynamics which can be derived from the material systems
chemical properties. Although the ALIGNN model yielded a
more accurate prediction, this model was ultimately not used
because of graph neural networks incapability to perform this
works exhaustive compositional space exploration. Since graph
neural networks consider atomic distances, the inputs require
information gained from DFT minimized structures which
makes random datapoint generation exponentially more costly
than the descriptor based array method detailed in Section 2.3.

Since the descriptor based NN was shown to capture the
majority of the chemical factors influencing Eads-*COCOH with

Fig. 2 Adsorption energy distribution of the ML predicted BACs ordered

from lowest Nied count (top) to highest Nied count (bottom).

Fig. 3 (a) Free energy along the dimerized CO hydrogenation reaction pathway towards *COCOH with the potential limiting step indicated. The grey pathway
corresponds to a randomly sampled weak *COCOH Eads BAC (Cu/Ag), the metallic grey pathway is the moderate *COCOH Eads BAC (Cu/Rh) and the purple
pathway is the strong *COCOH Eads BAC (Cu/Os). (b) The adsorbate migration associated with each step of the reaction pathway shown in (a).
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high data efficiency (Fig. S8, ESI†), 3 additional TACs were
simulated and compared against the NNs Eads prediction
(Fig. 5a). The 3 sample points were chosen randomly from 3
ranges of adsorption energies (weak, moderate, strong Eads) to
quantify the models ability to extrapolate to more complex
systems across the entire range of *COCOH adsorption ener-
gies. The absolute error (in eV) for the predicted adsorption
energies compared to DFT values was 0.18, 0.15 and 0.22 eV for
the weak, moderate and strong adsorption energy TACs. The
weak TAC possessed 2 Pd substitutions and 2 Pt substitutions
whereas the moderate and strong TACs possessed 2 Rh and 2 Pt
substitutions (Fig. 5b). For each structure, the model showed a
consistent small bias towards over-estimating *COCOH stabi-
lity but can still be considered highly transferable due to the
low error associated with each prediction. The models transfer-
ability is further highlighted by the strong Eads TACs geometric
configuration. The majority of the training dataset had the
*COCOH adsorbate resting on dual bridge sites but with the
strong Eads TAC, the adsorbate rotated towards dual top site

adsorptions. Although this rotation resulted in the highest
absolute error, the difference between this error and the
models test set MAE is B0.1 eV which is acceptably small
considering the molecular rotation the adsorbate underwent.

3.3. Optimal machine learning predicted surfaces

Au and Ag possessed the weakest adsorption surfaces on
average and were the only alloys to have an average adsorption
above �2.55 eV in addition to having some of the smallest
ranges of adsorption energies (Table 1). For the bidentate
pathway, these elements are likely the best candidates accord-
ing to the reaction pathway shown in Fig. 3b. According to L.
Ou, the co adsorption of COCO* and H* on Cu(100) is �4.12 eV
and the Eads of *COCOH on Cu(100) is �3.85 eV.32 To favor the
formation of *COCOH over co-adsorption, it is likely necessary
to have a BAC with weaker CO Eads so that the endergonic step
of hydrogenating dimerized CO does not slow reaction kinetics.
For the 5 BACs with lower Nied counts, the mean *COCOH
adsorption energies ranged from (�2.67 eV) – (�3.15 eV) with

Fig. 4 (a) Adsorption energy distribution of the entire *COCOH dataset, (b) parity plot with dotted lines outlining 1 standard deviation error,
(c) adsorption energy distribution by element Cu is alloyed with, (d) Pearson correlation value of each descriptor averaged across all 13 nearest atoms
to the adsorbate.
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similar ranges and possessed a correlation to the amount of
unpaired d orbital electrons the alloyed element possessed,
making them strong BAC candidates for optimal *COCOH

formation. For the 3 elements which possessed the most stable
Eads structures and highest Nied counts (Os, Ir, Ru), the sub-
stitution locations which resulted in the most negative adsorp-
tion energy predictions were almost identical (Fig. 6a). The
maximized surfaces all possessed 2–3 atom nano-islands on the
surface beneath *COCOH with a large amount of subsurface
alloyed elements. This suggests that the adsorption of *COCOH
onto a highly stable BACs is likely influenced by high energy
valence electron interactions of the subsurface atoms donating
to the top site surface atoms in order to produce favorable
bidentate adsorption configurations for *COCOH molecules.
For the other moderate-high Nied count BACs, the most stable
Eads configurations were similar. The lowest Nied count BACs
(Cu/Au and Cu/Ag) had inverse influences on *COCOH stability.
For these BACs, the most stable configurations arose with

Fig. 5 (a) Parity Plot of all BAC test points and the 3 tertiary alloy systems (b) DFT calculated *COCOH Eads distribution with the 3 tertiary alloy systems
visualized at their respective DFT calculate Eads values.

Table 1 ML prediction statistics and relation to unpaired d orbital
electrons

Element
Mean
(eV)

Range
(eV)

Most stable
datapoint (eV)

Number of unpaired
d orbital electrons

Ru �3.23 2.55 �4.50 3
Rh �3.15 1.99 �4.27 2
Ag �2.40 1.09 �2.72 0
Au �2.52 1.45 �2.98 0
Ir �3.33 2.79 �4.84 3
Os �3.38 3.52 �4.98 4
Pd �2.67 0.54 �2.97 0
Pt �3.01 1.55 �4.02 1

Fig. 6 (a) ML predicted surface compositions for lowest possible predicted adsorption energy. Blue atoms are Cu, other atoms are labeled above the
composition (b) ML predicted surface compositions for highest possible predicted adsorption energy. Blue atoms are Cu, other atoms are labeled above
the composition.
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minimal surface islands and a smaller amount of subsurface
substitutions (Fig. 6b). The least stable configurations out of all
BACs came from large nano-islands of Ag/Au, suggesting these
elements may be suitable additives if the objective is to desta-
bilize the adsorption of *COCOH and facilitate conversion of
dimerized CO towards *COCOH.

4. Conclusions

In the current work, a machine learning configurational space
exploration framework was discussed for the bidentate electro-
catalytic CO2RR on Cu based BACs. Using DFT, the adsorption
energies of *COCOH on 1600 randomly configured Cu-based
SAA surfaces were calculated to use as a dataset for supervised
ML models. 8 regression models with 80/10/10 train/val/test
splits with 3 chemical descriptors and 1 quantum descriptor
were evaluated. Analysis and interpretation of the top perform-
ing NN predicted structures provided 3 key findings:

1. Cu/Au and Cu/Ag alloys have the weakest adsorption
energy on average for *COCOH and the best reaction energy
pathway for C2+ products. Although Au/Ag are costly, it is
possible to maximize catalytic efficiency of the BACs by synthe-
sizing nano-islands of the metal on the surface.

2. Metals with high counts of unpaired d orbital electrons
are the most stable surfaces for *COCOH with moderate PLS
values for the bidentate CO2RR pathway. The strongest adsorp-
tion surfaces came from Ru/Ir/Os BACs with 2-3 atom nano-
islands directly beneath the adsorbate with high densities of
substitutions on the subsurfaces.

3. There is a clear correlation with Nied and Eads *COCOH. The
relation between Nied and reaction energy steps is inversely
related to Eads *COCOH and the top performing BACs possessed
the lowest amounts of unpaired d orbital electrons which
resulted in unique surfaces where *COCOH was more energe-
tically favorable than dimerized CO.

This work provided the first ever ML informed look into BAC
design for optimal *COCOH adsorption energies. Having the
current work as a major step towards the effective conversion of
CO2 into hydrocarbon fuels, additional studies are still neces-
sary. Future efforts should be directed towards studying the top
performing BACs (Cu/Au, Cu/Ag) in addition to the more
complex TACs studied in this work. This future direction will
provide insight into reducing the material cost of bidentate
electrocatalysts along with understanding the role subsurface
alloying plays in improving electrocatalytic performance.
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