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Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines.
The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and
advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and
thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing
innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust
strategies have been recently devised, including the bioorthogonal strategy, which enables selective
modification. This review offers a comprehensive survey of recent advancements in the modification of
mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies,
encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The
review concludes by addressing the present challenges and potential future opportunities in this rapidly

rsc.li/chemical-science expanding field.

1. Introduction

Mammalian cells (hereinafter referred to as “cells”), as natural
constituents of organisms, have been propelled into the spot-
light in the biomedical field, primarily due to their unique
characteristics, such as biosynthesis ability, communication
and interaction ability, and migration ability, among others.**
Over the past few decades, the manipulation of cells has
provided a powerful tool to enhance our understanding of the
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underlying mechanisms governing various biological behaviors
in basic research and has also promoted the development in
biomedical applications, such as medical diagnosis and cell-
based therapy.® For instance, mesenchymal stem cells (MSCs),
red blood cells (RBCs), and macrophages exhibit promising
capabilities as delivery vehicles to transport diagnostic mole-
cules or therapeutic agents.®® Immune cells, including T cells
and natural killer (NK) cells, have emerged as highly prominent
candidates for tumor immunotherapy owing to their specific
cytotoxicity against tumor cells while sparing normal cells.**
Despite these exciting achievements, the functions of natural
cells themselves are limited. The cell surface, also known as the
cell membrane, is a highly heterogeneous and dynamic milieu
comprising lipids, proteins, carbohydrates, and their
complexes, which governs numerous intracellular and
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extracellular processes." Simultaneously, the complex cell
surface provides plenty of opportunities for further modifica-
tion aimed at achieving particular functionalities, a process
referred to as cell surface modification. This process serves as
a powerful means to facilitate the biomedical application of
natural cells.”” One notable example is the universal blood,
which involves the modification of red blood cell surfaces to
impede the recognition of antigenic sites by antibodies, thereby
preventing immune responses caused by blood type
incompatibility.’***> Chemical manipulation of cell behavior
and function through modification of cell surfaces using
precisely synthesized and well-characterized synthetic mole-
cules, such as polymers, is a captivating area of research.'®
Various strategies have been devised for this purpose. While
several reviews have provided summaries of certain strategies,
there is a noticeable dearth of comprehensive discussions
specifically centered on the strategy of cell surface modification
using synthetic molecules.***®

Hence, this paper provides a comprehensive review of the
latest advancements in strategies related to the modification of
cell surfaces accompanied by a discussion on their biomedical
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applications, with a particular emphasis on developments from
2017 onwards. These strategies encompass a range of
approaches, including chemical covalent approaches, physical
techniques, and bioorthogonal methods for synthetic mole-
cules (Fig. 1). The synthetic molecules discussed include
specific functional groups, synthetic functional small mole-
cules, synthetic polymers, synthetic nanoparticles, synthetic cell
coatings, and synthetic DNA, among others. Lastly, the paper
discusses the existing challenges and potential future prospects
in this rapidly expanding field.

2. Chemical covalent modification

Chemical covalent modification is a strategic approach that
entails the utilization of the chemically reactive functionalities
found on the surface of the cell membrane. The cell membrane,
a multifaceted chemical structure composed of lipids, proteins,
carbohydrates and other components, offers a diverse array of
functional groups that can be employed for chemical covalent
binding." Previous researches have predominantly focused on
employing amine, thiol, and vicinal diol groups present on
amino acid residues within proteins or sugar residues as the
most frequently utilized groups (Fig. 2).>° The stable attachment
of synthetic molecules and the absence of cell pretreatment are
the primary benefits of this approach, making it a simple yet
effective method for modifying cell membranes. However, it is
widely recognized that directly modifying cell membranes with
reactive functional groups through covalent bonds can poten-
tially impair the functionality of membrane proteins and
subsequently impair cellular functions. Consequently, when
employing this strategy, careful attention must be paid to both
cell viability and effector functions.

2.1 Amine-mediated covalent modification strategy

Amine groups (-NH,) are mainly present at the lysine residues
of proteins and the N-terminus of polypeptide chains. They are
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Fig. 1 Mammalian cell surface modification strategies. (A) Chemical covalent modification strategies. (B) Physical modification strategies. (C)

Bioorthogonal modification strategies.

widely used for chemical modification of cell membrane
surfaces due to their ease of chemical covalent modification and
mild reaction conditions. The amine-mediated covalent
binding strategy can be achieved through two primary path-
ways: acylation or alkylation. Generally, these reactions exhibit
rapidity and selectivity, resulting in the formation of stable
bonds (such as amide or secondary amine bonds) and high
yields.

Among various kinds of reagents, N-hydroxysuccinimide
(NHS) ester is the most frequently used to covalently bind to -
NH, on cell membranes. Recently, Cai et al. modified human
umbilical vein endothelial cells (HUVECs) and human skin
fibroblasts (HSFs) with succinimide ester-methoxy polyethylene
glycol (NHS-mPEG), resulting in a significant enhancement of
cell migration ability and motility through reduction of the focal
adhesion area.”® In a separate study shown in Fig. 3A, Wang
et al. employed acrylic acid NHS ester (NHS-AA) to immobilize
vinyl onto cell membranes, followed by free radical polymeri-
zation to covalently attach polymers to the membrane.* After
subsequent ion exchange and electroless deposition (ELD), the
polymer-functionalized cells could be converted into metallic
biocomposites, which can be applied in the fields of biosensors,
electronics, and energy. Sulfo-NHS ester is a more suitable
reagent for covalent reactions with -NH, groups on the cell

© 2023 The Author(s). Published by the Royal Society of Chemistry

membrane due to its enhanced water solubility and negative
charge, which reduces the transmembrane permeability of the
sulfo-NHS ester. For instance, Jasiewicz et al. employed sulfo-
succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate
(sulfo SMCC), a heterobifunctional crosslinker, to modify
MSCs by covalently binding to the amines on the cell membrane
and subsequently decorating them with heterodimerizing
leucine zippers.”® In addition, sulfo-NHS-biotin was also
commonly utilized to modify the cell membrane where it serves
as a “bridge” and facilitates the decoration of the cell
membrane with cargoes through streptavidin-biotin
interaction.>*?° In addition to NHS ester derivatives, other types
of reagents have been developed for covalently binding to -NH,
including cyanuric chloride and benzotriazole carbonate.****

2.2 Thiol-mediated covalent modification strategy

Thiol groups (-SH), mainly located on the cysteine residues of
amino acids in proteins, are one of the most potent nucleo-
philes, stronger than amino groups. Thiol groups are frequently
employed for the covalent modification of cell membranes.
Maleimide derivatives, which form stable thioether bonds with
thiol groups through an energetically favorable Michael addi-
tion reaction, are the most widely used reaction reagents
because they exhibit high stability and chemoselectivity with

Chem. Sci., 2023, 14,13325-13345 | 13327
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Fig. 2

thiol groups. The significant advantage of this strategy lies in
the extensive availability of commercially accessible reagents
and linkers.

Early research was conducted by Irvine's team which focused
on surface modification of various cell types containing thiols.
They investigated the application of liposomes and liposome-
like nanoparticles containing maleimide terminal groups for
T cells, hematopoietic stem cells, and other cell surface
modifications.*>**® Recently, Wang et al. developed PEGylated
solid lipid nanoparticles functionalized with maleimide end
groups (SLN-PEG-Mal).** As is shown in Fig. 3B, by exploiting
the reaction between maleimide and sulfhydryl groups on the
surface of RBCs, the researchers successfully enhanced the
adsorption of modified nanoparticles onto RBCs, leading to
significant alterations in the properties and morphology of
RBCs. Moreover, these nanoparticle-loaded RBCs exhibited
a remarkable ability to be engulfed by macrophages, thereby
demonstrating promising potential for targeted drug delivery to
macrophages. Wang et al. utilized 2-iminothiolane (Traut's
agent), a thiolation reagent, to introduce extra free thiol groups
by capping primary amines with thiol groups. This allows them
to modify platelets with PD-L1 antibody, thereby reducing post-
surgical tumor recurrence and metastasis.*

Research has been conducted to combine maleimide with
other functional components in order to develop multifunc-
tional nanoparticles.*® For instance, Luo et al. synthesized
double-bound magnetic nanoparticles (DBMN) containing PEG-
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Illustration of chemical covalent modification through the reactions between functional groups on cells and synthetic molecules.

Mal, hyaluronic acid (HA), and Fe;0,.*®* Following a simple
incubation, DBMN was able to anchor onto the cell membrane
through a Michael addition reaction between the Mal compo-
nent and sulthydryl groups on the T cell surface, resulting in
magnetized T cells (DBMN-T). Under external magnetic field
guidance, DBMN-T exhibited excellent targeting ability. Addi-
tionally, HA could bind to highly expressed CD44 on tumor
cells, promoting recognition and killing of tumor cells.

In addition to the reaction between maleimides and thiols,
cell surface modification could also be achieved through the
exchange between disulfide bonds and thiols.**** Wayteck et al.
incorporated thiol-reactive phospholipids into liposome bila-
yers with a pyridyldithiopropionate (PDP) head group, which
was capable of forming reducible disulfide bonds with thiol
groups exposed on the cell surface, thereby enabling the cova-
lent coupling of liposomes.**

2.3 Vicinal diol-mediated covalent modification strategy

Vicinal diol groups are abundant on the cell membrane and
primarily originate from sialic acid (SA), mannose, and
galactose residues within glycoproteins and the extracellular
matrix. Phenylboronic acid (PBA) derivatives form unique
dynamic covalent bonds with vicinal diol groups of the cell
membrane and are affected by pH, making them of substan-
tial interest. However, only sialic acids can be efficiently
coupled to PBA under physiological conditions, while other
diol groups require alkaline reaction conditions with a pH

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Methods based on chemical covalent modification. (A) Schematic illustration of realizing polymer-assisted cell metallization by the use of
reactions between amino groups on cell membranes and NHS-AA.22 Copyright 2021, John Wiley & Sons, Inc. (B) Schematic illustration of
modifying RBCs with SLN-PEG-Mal through reactions between maleimide and thiol groups, leading to their engulfment by macrophages.®¢
Copyright 2023, Elsevier. (C) Schematic illustration of combining Py-phenylboronic acid (PBA) NRs to the cell membrane by vicinal diol groups
for two-photon imaging of cell surface sialic acids and PDT.*” Copyright 2021, American Chemical Society.

value higher than the pK, of PBA. Therefore, most studies
have focused on the reaction between PBA derivatives and SA
on the cell membrane surface. Tao and colleagues reported
a novel fluorescent polymer containing PBA through the
combination of multicomponent reactions (MCRs) with
reversible addition-fragmentation chain transfer (RAFT)
polymerization.**** Specifically, the Hantzsch reaction,
a classical four-component reaction, was carried out simul-
taneously with RAFT polymerization to create innately fluo-
rescent 1,4-dihydropyridine (1,4-DHP). The formed
fluorescent polymer is suitable for cell membrane conjuga-
tion and imaging through the interaction between phenyl-
boronic acid and sialic acid on the cell membrane. In our

© 2023 The Author(s). Published by the Royal Society of Chemistry

laboratory, we utilized a copolymer containing PBA groups to
modify silicon nanowire arrays which exhibited a high
capture capacity for cells overexpressing SA on the
membrane. This modification also allowed for high efficiency
of intracellular delivery of diverse biomacromolecules.*®
Additionally, overexpression of SA has been demonstrated in
various tumors, including lung, melanoma, colon, and breast
cancers.”” Consequently, the SA-PBA reaction was commonly
employed for tumor cell imaging, targeting, and
capturing.’”*** Li et al. developed self-assembled nanorods
of PBA-functionalized pyrene (Py-PBA NRs), which possess
a highly efficient and specific imaging feature of SA on the cell
membrane. Three cell lines with different expression levels of

Chem. Sci., 2023, 14, 13325-13345 | 13329
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SA were utilized to demonstrate this imaging ability. Addi-
tionally, the nanorods exhibited efficient generation of 'O,
under two-photon irradiation, providing potential possibili-
ties for tumor therapy (Fig. 3C).*” Furthermore, PBA deriva-
tives with low pK, values have been developed to enhance the
applicability of this strategy to cell species characterized by
low expression levels of sialic acids. A series of PBAs with
different substituents were synthesized, and it was demon-
strated that the introduction of electron-withdrawing groups,
such as fluoro and nitro, effectively decreased the pK, even to
4.2.%° However, it should be noted that the optimal binding
pH may not always exceed the pK, of PBAs, particularly in
complex multicomponent systems.*®

In addition to PBA derivatives, benzoxaborole (BA), a cyclic
hemi-ester of boronic acid, can also be utilized for cell surface
modification via the covalent reaction with vicinal diol.””
Morgese et al. have successfully modified supramolecular
polymers containing BAs onto the surface of human RBCs via
the covalent reaction between BAs and SA.*® The specific inter-
actions between functional copolymers and the cell surface
were further visualized in real time using total internal reflec-
tion fluorescence microscopy.

2.4 Other functional groups-mediated covalent modification
strategy

Carboxyl groups are abundantly present on the cell membrane,
mainly distributed at the residues of aspartic acid (Asp) and
glutamic acid (Glu) within membrane proteins, as well as at the
C-terminus of polypeptide chains. However, the modification of
membranes using carboxyl groups necessitates pre-activation of
these groups, typically employing an activator known as 3-
(ethyliminomethylideneamino)-N,N-dimethylpropan-1-amine
(EDC), which causes significant harm to mammalian cell
viability. Consequently, the utilization of carboxyl groups for
cell modification is often limited. Recently, Ma et al. developed
a novel probe (3-phenyl-2H-azirine) that effectively labeled
carboxyl groups on the surface of living cells. This presented
new possibilities for chemical modification utilizing carboxyl
groups present on the cell membrane.*

In addition to utilizing existing groups for direct modifica-
tion of the cell membrane, strategies have been devised to
convert commonly present but difficult-to-modify functional
groups into easily modifiable ones through mild oxidation or
reduction reactions on the cell surface under gentle conditions.
For example, researchers have found that a mild oxidation
reaction using NalO, can convert diols on cell surfaces into
aldehydes, which can be treated as active sites for subsequent
cell modification.®** Recently, Liu et al. proposed a novel cell
surface engineering platform using classical thiazolidine
chemistry to combine small molecules containing aminothiol
moieties with cells pretreated with aldehyde groups on their
surface by NalO,.**

Efforts have also been devoted to converting disulfide bonds
(S-S) on cell membranes to thiol groups and tris(2-carboxyethyl)
phosphine (TCEP) is a widely used mild reducing agent in this
strategy. Researchers have utilized the strategy to modify
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synthetic materials including chondroitin sulfate (CS), PEG,
mesoporous silica nanoparticles, and silver nanoclusters on the
cell membrane for a diverse range of applications.**”°

3. Physical modification

In addition to the chemical covalent binding strategy, physical
approaches such as hydrophobic insertion, membrane fusion,
electrostatic interaction, and layer-by-layer self-assembly offer
versatile and easy ways to introduce synthetic molecules to the
cell membrane while maintaining cellular physiology.

3.1 Hydrophobic insertion

The cell membrane skeleton is a phospholipid bilayer structure
allowing the spontaneous insertion of synthetic materials with
hydrophobic anchors or “tails” driven by the hydrophobic
effect.”*”®* The commonly used hydrophobic anchors include
lipids (phospholipids®***7**® and cholesterols®®?), alkane
chains®™® and oleyl chains.”"* They can be categorized into
single and multiple anchors based on the number of hydro-
phobic anchors. Shi et al. constructed a polyvalent antibody
mimic (PAM) for engineering NK cells with highly efficient
targeting, adhesion and Kkilling effects for tumor cells.” The
DNA initiator (DI) with a single anchor was displayed on the NK
cell membrane by the hydrophobic insertion approach. Subse-
quently, a DNA scaffold was synthesized and hybridized with
multiple aptamers in situ forming PAM-engineered NK cells.
Sun et al. reported a DNA-assisted bottom-up self-assembly
approach for achieving precise control over the lateral and
vertical distributions of T cell activation ligands on RBCs and
constructing RBCs-based artificial antigen presenting cells
(aAPCs) which could effectively activate and expand T cells.'””
DNA strands with a cholesterol end group were inserted into the
membranes by hydrophobic interaction and then bound with T
cell activation ligands through specific DNA hybridization as
well as biotin-avidin interaction. The vertical distributions of T
cell activation ligands can be easily manipulated by adjusting
the length of DNA strands, while the lateral distributions were
achieved through biotin-avidin interaction. The subsequent
study shown in Fig. 4 employed the approach to construct
lymphocyte-based aAPCs exhibiting homologous targeting
functionality for personalized cancer immunotherapy.'*® Zhao
et al. developed a surface-anchored framework for sheltering
the epitopes on Rhesus D (RhD)-positive RBCs.'”> RBCs were
modified with horseradish peroxidase containing a single oleyl
chain via hydrophobic insertion, thereby catalyzing the reaction
of H,0, to construct a polysialic acid (PSA)-tyramine framework
on the RBC membrane. The crosslinking framework success-
fully achieved transfusion of the modified RBCs to RhD-
negative recipients without eliciting immunogenicity, by effec-
tively balancing the modified fluidity of RBC membranes and
shielding of RhD antigens.

In addition to the single anchor, hydrophobic insertion
moieties with more anchors were developed. Niu et al. re-
ported the first effort for cytocompatible controlled radical
polymerization (CRP) techniques.”” Chain-transfer agents

© 2023 The Author(s). Published by the Royal Society of Chemistry
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with a two-tailed hydrophobic anchor, 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine (DSEP), were successfully
modified on the cell membranes with the hydrophobic
insertion strategy, thereby realizing polymerization to be
initiated directly in the live cell surface while maintaining
high cell viability. The strategy effectively enhanced the effi-
ciency of grafting polymers compared to the traditional
grafting-to methods and offered novel possibilities for
modulating cellular interactions.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Additionally, the method was also utilized for T cell
modification with liposomal nanoparticles, as described in
Hao et al's investigation.” The tetrazine (Tre) groups with
two-tailed lipids (DSPE) were inserted into T cells and
subsequently drug liposomes with bicyclo nonyne (BCN) were
modified on the cell membranes of T cells via click reaction
while preserving the intact functionality of T cells. A platform
(Fig. 5A) for cell membrane engineering with modular poly-
mers was developed by our group.” The study employed
cholesteryl-methacrylate as one of the monomers for

Chem. Sci., 2023, 14, 13325-13345 | 13331
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constructing modular polymers with multiple anchors
through one-pot RAFT copolymerization, along with deoxy-2-
(methacrylamido)glucopyranose (MAG) as a hydrophilic
monomer and adamantane carbonyl methacrylate (Ada) as
a guest monomer. In addition to the introduction of func-
tional molecules through host-guest units, the residence
time of the modular polymers could also be regulated on the
cell membrane by adjusting the content of cholesterol
modules.

The hydrophobic insertion strategy is considered a simple,
powerful, and less invasive approach for cell surface modifica-
tion. However, functional synthetic materials introduced to the
cell membrane surface through hydrophobic insertion are
prone to loss during membrane flow and endocytosis, thereby
limiting their long-term presence on the cell membrane. The
hydrophobic insertion moieties with multiple anchors may
offer a promising strategy for achieving relatively stable and
long-time modification.

3.2 Membrane fusion

Unlike the strategy of hydrophobic insertion into the cell
membrane through hydrophobic anchors, cell surface modifi-
cation is achieved through liposomes loaded with synthetic
materials or functional groups diffusing and mixing with the
cell membrane in the membrane fusion strategy.

Sarkar et al. developed a versatile platform technology for the
modification of cell membranes.'* Biotinylated lipid vesicles
were utilized for the incubation with MSCs, leading to the
attachment of biotin on the cell surface via vesicle fusion. The
biotin moieties serve as binding sites for subsequent ligands.
Yousaf and colleagues conducted a series of studies that utilized
the membrane fusion strategy to introduce chemical functional
groups onto the cell membrane.***® The prepared lipid, con-
taining either ketone or oxyamine molecules, underwent
spontaneous insertion and fusion into the cell membrane,
resulting in the modification of cells with either ketone or
oxyamine molecules for subsequent bio-orthogonal ligation
reactions.”? Additionally, the bioorthogonal molecules, ketone
or oxyamine, could also be modified onto different populations
of cells using the same method to regulate the cell-cell inter-
action and generate 3D tissue-like structures.'"* Following this,
the researchers employed a membrane fusion approach to
create and modify cell membrane surfaces with bioorthogonal
chemical molecules possessing diverse characteristics,
including photoresponsive and redox-responsive cleavage. The
primary emphasis of their investigation was on the utilization of
these modified cells in the field of three-dimensional tissue
engineering. Membrane fusion strategies have recently been
extensively used as a potent tool for modifying cell membranes
in various investigations.

Zheng et al. designed core-shell membrane-fusing lipo-
some (MFL) containing NK cell-activating glycans, Lewis X
trisaccharide (LeX), and loaded it into a thermosensitive
hydrogel which could be released responsively through the
tumor microenvironment. Subsequently, the released MFL
was fused with tumor cell membranes, realizing the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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modification of tumor membranes with Lex which could
enhance the anti-tumor effects."*® Shi et al. designed T-cell-
targeting fusogenic liposomes by conjugating ROS-
scavenging groups, 2,2,6,6-tetramethylpiperidine (TEMP)
and T-cell-targeting anti-CD3 F(ab’), fragments to the surface
of liposomes, in which TEMP groups were designed for
neutralizing ROS and protecting T cells from an oxidation-
induced loss of activity. In the meantime, the procedure
would result in paramagnetic transition of TEMP to TEMPO
molecules, allowing for the measurement of the in situ activity
of T cells, enabling a better understanding of engineering T
cells for cancer treatment.”* Lin et al. reported a liposomal
fusion-based transport (LiFT) strategy to anchor functional
DNA strands on the inner face of the cell membrane,
addressing the previous lack of suitable synthetic tools to
engineer the intracellular interior (Fig. 5B).'*® In subsequent
studies, the group combined membrane-anchored catalysts
with the previously reported LiFT strategy, through which
they were able to prepare the corresponding fusion liposome
catalyst through a simple strategy, achieving precise position
control of the catalyst on the cell membrane."”” The drug
molecules generated by this method may have higher drug
delivery efficiency than traditional methods using drug
delivery vehicles. Furthermore, by integrating targeting
motifs into the outer surface of liposomes, cell-specific
membrane engineering can be achieved for potential tar-
geted drug delivery.

3.3 Electrostatic interaction

Cell surface modification through electrostatic interactions is an
appealing strategy that capitalizes on the negative charge
conferred mainly by sialic acid residues in the carbohydrate
layer, along with the phosphatidylserine on the plasma
membrane. Cationic polymers such as polyethyleneimine (PEI),
poly-i-lysine (PLL) and chitosan (CS) are often utilized in the
strategy.'”"*® For instance, Choi and colleagues achieved the
development of silica coating on mammalian cells by modifying
PEI on the cell membrane through electrostatic interactions,
serving as a catalytic template for silicification.””® In a subse-
quent study, TiO, shells were developed for the cytoprotective
encapsulation of Jurkat T cells.” This method could effectively
protect the T cells in the shell while simultaneously preserving
their functionality, including cell division, juxtacrine interac-
tions and cytokine secretion. Upon administration into the
organism, the lymphocytes' therapeutic capabilities are effec-
tively reinstated through the rupture of the protective shell. The
TiO,-inducing peptide, (RKK),Dg (R: arginine, K: lysine, D:
aspartic acid), was deposited on the surface of Jurkat cells via
electrostatic interactions to facilitate the formation of bio-
inspired TiO, using titanium bis(ammonium lactato)dihydr-
oxide (TiBALDH) as a precursor. However, interactions with most
cationic polymers readily lead to the destruction of the cell
membrane, resulting in pronounced cytotoxicity and cellular
damage. To address this issue, cationic polymers can be modi-
fied with biocompatible molecules, such as grafting PEG or
alginate, to mitigate the detrimental effects on cell viability."*”
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Fig. 6 Methods based on layer-by-layer self-assembly. (A) Schematic illustration of MSCs nanofilms prepared using positively charged PLL,
negatively charged HA and RGD, and the functions exhibited by the modified cells.*?® Copyright 2017, American Chemical Society. (B) Schematic
illustration of mammalian cell nanoencapsulation conducted by LBL self-assembly between GA and GB, and subsequent thiol-maleimide
reaction. GSH could be added for on-demand release.*®® Copyright 2017, Elsevier.

Despite the overall negative charge of the cell membrane For instance, Thomsen et al. modified T cells with negatively
surface, a few cationic sites on the plasmalemma still exist charged degradable poly(lactic acid) (PLA) nanoparticles with
which can be modified with negatively charged materials.’*>**'  electrostatic adsorption."” Furthermore, the modification of
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negatively charged materials can be achieved through a syner-
gistic combination of electrostatic interactions, hydrogen
bonding and hydrophobic interactions.****** It is important to
note that the presence of a negatively charged cell membrane
hinders the uptake of negatively charged nanoparticles by cells.

3.4 Layer-by-layer (LBL) self-assembly

LBL self-assembly strategies have been developed on the basis
of electrostatic interaction and widely employed for the
construction of cell coatings, in which oppositely charged
materials are sequentially deposited onto the cell membrane
through electrostatic interaction along with hydrogen bonding,
van der Waals forces, etc.?"*>71?135147 As shown in Fig. 6A, Hong
and colleagues developed LBL self-assembled nanofilms for cell
surface modification of viable MSCs. Positively charged PLL was
layer-by-layer assembled with negatively charged hyaluronic
acid (HA) and arginine-glycine-aspartic acid (RGD) to fabricate
nanofilms, which not only provided biochemical signals but
also offered mechanical support for MSCs without interfering
with the stemness of MSCs."”” Subsequent studies have
demonstrated the successful construction of nanofilms on the
surface of human induced pluripotent stem cells (iPSCs) and
immune cells such as AML-12 cells and peripheral blood
mononuclear cells (PBMCs) via the LBL self-assembly
strategy.'****® Gels can be formed via LBL to coat or encapsu-
late cells. Chen and colleagues proposed a gentle approach
(Fig. 6B) to achieve the nanoencapsulation of individual
mammalian cells.** The gelatin coatings, which mimic the
extracellular matrix (ECM), are formed through LBL self-
assembly between positively charged gelatin type A (GA) and
negatively charged gelatin type B (GB) on the cell membrane
surface. Additionally, the outer layer of PEG was further con-
structed using thiol-maleimide click chemistry which could be
degraded on-demand by the addition of the reducing agent
glutathione (GSH). Subsequent studies involved the develop-
ment of an enzyme-responsive nano-coating for encapsulating
individual living cells, which was prepared through layer-by-
layer self-assembly of oppositely charged gelatin-poly(ethylene
glycol)maleimide and the incorporation of cysteine-
terminated peptide sequences (CGGPLGLAGGC) via click reac-
tion.™* Moreover, the peptide chain could undergo enzymolysis
upon exposure to high concentrations of
metalloproteinase-7 (MMP-7), which is frequently overex-
pressed in tumors, leading to the release of encapsulated cells.

matrix

4. Bioorthogonal modification

Despite the abundance of functional groups on the surface of
the cell membrane that are amenable to chemical covalent
modification, the utilization of non-specific covalent modifi-
cation strategies may have detrimental effects on the viability
and functionality of normal cells. Additionally, physical strat-
egies are limited by the short residence time of synthetic
molecules. In contrast, bioorthogonal chemistry offers a highly
efficient and selective approach that takes place within a mild

physiological environment, without disrupting intrinsic
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biochemical processes. This strategy represents a substantial
advancement in terms of both cell viability and the stability of
modifications. Here, we provide an overview of recent devel-
opments in the integration of metabolism with copper-free
click chemistry, Halo-Tag proteins, and enzyme-mediated
approaches.

4.1 Metabolic glycan labeling strategy

Since the pioneering work of Bertozzi and colleagues, who
introduced exogenous glycans into the cell membrane glyco-
calyx, there has been a gradual development of strategies for
metabolic glycan labeling to modify the cell membrane.*****° In
this strategy, unnatural sugars containing functional groups
such as azide, alkyne, thiol and alkene are internalized by cells
and the chemically reactive functional groups are “installed” on
the glycan residues on the cell membrane by metabolic
pathways.*****¢ In recent years, glycans containing azide groups
represented by N-azidoacetylmannosamine-tetraacetate (Ac,-
ManNAz) have gained the most widespread adoption with the
development of copper-free “click” azide-alkyne reactions due
to their high selectivity, synthetic simplicity and commercial
availability. Tomas and colleagues have conducted a series of
investigations on the cell surface modification with polymers
via the metabolic glycan labeling strategy.’®'*° In a recent
study, Tomas et al. who proposed the “engineering cells to
capture polymers” strategy incubated tumor cells with Ac,-
ManNAz for 96 hours to obtain azido-modified cancer cells
which could capture chemotherapeutic polymers covalently and
this strategy significantly augmented the concentration specif-
ically targeted towards the tumor cell membrane whilst opti-
mizing therapeutic efficacy by reducing systemic toxicity and
enhancing selectivity.”*® In addition to polymers, the metabolic
glycan labeling method effectively facilitates the modification of
nanoparticles on the live cell membrane which is an attractive
strategy for drug delivery.****** Zhou et al. successfully modified
an oligomeric proanthocyanidin loaded liposome on the
membrane of MSCs (MSC-Lipo-OPC) via metabolic labeling
combined with the click chemistry strategy (Fig. 7A).**® The
MSC-Lipo-OPC could control the progression of inflammation
due to the excellent abilities to scavenge free radicals and
effectively prevent the formation of radiation-induced pulmo-
nary fibrosis. Chen et al. developed polyvalent spherical
aptamer (PSA) engineered macrophages which could effectively
recognize tumor cells and inhibit tumor growth.'** PSA which
has superior affinity and specificity to tumor cells was con-
structed through covalent reaction of gold nanoparticles
(AuNPs) with AS1411 aptamer and DBCO groups, and was
subsequently modified on macrophage membranes via meta-
bolic labeling. Moreover, Lamoot et al. developed a 2-step click
strategy for achieving highly specific cell surface conjugation of
nanoparticles. In the study, cells were incubated with N-
azidoacetylmannosamine-tetraacetylated (Ac;ManN;) to
present azido groups on cell membrane (Fig. 7B)."** Subse-
quently, sulfo-6-methyl-tetrazine-dibenzyl cyclooctyne (Tz-
DBCO) was exploited as a “bridge” between azide-modified
cells and trans-cyclooctene (TCO) functionalized nanoparticles
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Fig. 7 Methods based on the metabolic glycan labeling strategy. (A) Schematic illustration of binding Lipo-OPC to MSCs which were pre-
incubated with Ac4,ManNAz and presented azido groups on the cell membrane.**® Copyright 2023, Elsevier. (B) Overview of the 2-step click
strategy for achieving highly specific cell surface conjugation of nanoparticles.'*? Copyright 2020, John Wiley & Sons, Inc.

to realize nanoparticle-engineered cells exhibiting extremely
low non-specific background binding.

In addition to in vitro applications for modifying cell
membranes, researchers have also conducted studies to achieve
this process in vivo.'**'** Wang et al. conducted an interesting
study by labeling and modulating DCs and regulating DC-T cell

13336 | Chem. Sci, 2023, 14, 13325-13345

interactions in vivo.'*® They synthesized Ac,;ManAz nano-
particles overcame the limitations of Ac;ManAz utilized in vivo
such as poor encapsulation and water solubility. The Ac,ManAz
nanoparticles and granulocyte-macrophage colony-stimulating
factor (GM-CSF) were loaded into an injectable alginate gel for
the purpose of realizing in situ recruitment and azide labeling of

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc04597h

Open Access Article. Published on 10 2023. Downloaded on 2025/11/3 16:32:26.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

dendritic cells. Dibenzocyclooctyne (DBCO)-labelled immuno-
modulatory agents, such as tumor antigens, adjuvants, and
cytokines could be modified on the DC membrane via click
chemistry in vivo thereby effectively enhancing the subsequent
T cell activation and tumor killing process. Additionally, Tu
et al. employed Ac,;ManAz nanoparticles for in situ labeling of
tumor cell membranes with azido groups, followed by the
binding of chlorin e6 (Ce6), a commonly used photosensitizer,
via click chemistry.'®* This approach effectively enhanced the
therapeutic efficiency of photodynamic therapy. Recently, Chen
and colleagues reported a cell-type-specific labeling approach in
vivo.** In this study, the cardiomyocyte was specifically labeled
without any interference from other cardiac cell types, which
provided a powerful tool for cell-type selective modification.
Gong et al. accomplished in situ PEGylation of CAR-T cells
through the utilization of the metabolic glycan labeling
strategy.'*® When the molecular weight of PEG reached 600 000,
it effectively hindered the intercellular interactions among CAR-
T cells, tumor cells, and monocytes, thereby attenuating the
secretion of cytotoxic cytokines and ameliorating the symptoms
associated with cytokine release syndrome (CRS).

Compared to the direct covalent binding with functional
groups on the cell membrane, the metabolic glycan labeling
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strategy effectively enhances the density of reactive sites on
cells, but it is a time-consuming process that can take several
days. The significant advantage of metabolic glycan labeling
combined with bioorthogonal reactions is that it transits cell
surface modification from nonspecific to specific, enabling cell
surface modification in situ and in vivo. This is still an emerging
field, with immense potential for further development and
expansion.

4.2 Halo-Tag protein

Halo-Tag protein (HTP) is an engineered protein derived from
the bacterial haloalkane dehalogenase, which selectively reacts
with alkanes containing a terminal chloride group (chlor-
oalkanes) forming a covalent bond.'*”**® Similar protein recog-
nition tags, such as SNAP tags'®® and ACP tags,"” could also be
utilized in cell surface modification, but they will not be
extensively discussed in this section. A two-step approach was
utilized in the HTP strategy: the expression of HTP on the
cellular membrane is achieved via genetic engineering methods
and further combined with cargoes containing the chlor-
oalkane. HTP is commonly used in protein isolation and puri-
fication, molecular imaging, molecular interactions etc. in most
reported studies and was first utilized for cell surface
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Fig. 8 Methods based on other bioorthogonal strategies. (A) Schematic illustration of displaying synthetic glycopolymers on Hela cell
membranes using HTP anchors.*”2 Copyright 2019, American Chemical Society. (B) Schematic illustration of Kell C-terminal sortase labeling with
GGG-carrying antigen peptides.*”®* Copyright 2017, National Academy of Sciences. (C) Schematic illustration of transferring biomacromolecules
to glycocalyx on the surface of living cells with fucosyltransferase.” Copyright 2018, American Chemical Society.
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modification by Pulsipher et al.*”* They proposed a long-lived
cell membrane engineering strategy utilizing HTP as an
anchor for modifying embryonic stem cells (ESCs) with heparan
sulfate (HS), which was covalently modified on the ESC
membrane and stayed for more than one week.

Subsequently, our group developed a series of studies via the
HTP strategy."”>”>'”® Tumor cells were modified with specific
glycopolymers via the HTP fusion technique combined with
RAFT polymerization (Fig. 8A). The glycopolymers that were
modified on tumor cells could bind to lectins on dendritic cells
or macrophages which effectively enhanced the tumor immune
response.’”” An interesting discovery was that the migration of
the tumor cells modified with glycopolymers could be affected.
Specifically, compared with the unmodified tumor cells, the
migration direction was altered and diffusion slowed down
which offered novel insights pertaining to the management of
cancer metastasis.””” A following study was carried out and we
constructed glycopolymers modified DCs via the HTP strategy.
Enhanced interactions were discovered between glycopolymer
modified DCs and T cells which effectively promoted the T cell
activation and proliferation, providing a novel approach to
designing more efficient DC vaccines."”®

The HTP strategy for cell surface modification is still in its
infancy. It is noteworthy due to the strong stability of binding
between HTP expressed on the cell membrane and its corre-
sponding ligand, thereby enabling sustained modifications that
persist for over a week, offering a suitable method for long-time
and stable cell surface modification. However, the imple-
mentation of HTP expression necessitates the manipulation of
gene transfection, a process that is intricate and time-
consuming, thereby inapplicable to certain challenging-to-
transfect cell types such as primary cells.

4.3 Enzyme-mediated strategy

Enzyme-mediated modification of cell membranes represents
a novel approach for in situ modification of candidate materials,
reacting with pre-existing structures on the cell surface under
the specific catalysis of enzymes. Specifically, certain enzymes
such as oxidoreductases (galactose oxidases'”), glycosyl-
transferases (sialyltransferases,'”®'”® galactosyltransferases, N-
acetyl-glucosaminyl transferases and fucosyltransferases'’**%),
transpeptidases (butelases and sortases'*'*'%)  trans-
glutaminases (TGases'®) etc. have been utilized for the modi-
fication of cell membranes, representing an appealing approach
due to their remarkable specificity and high yield. For example,
galactose oxidases can specifically convert the endogenous
terminal galactoses or N-acetylgalactosamine residues on the
cell surface into aldehyde groups, facilitating subsequent reac-
tions between aldehyde groups and aminooxy-functional
molecules.”” Glycosyltransferases are primarily utilized for the
modification of pre-existing sugars on cell membranes, thereby
facilitating the introduction of non-natural sugars. Moreover,
it's worth noting that in comparison to metabolic engineering
approaches, glycosyltransferases, particularly sialyltransferases
and fucosyltransferases, offer a novel method for introducing
greater kinds and intricacy of sugars on the cell membrane
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surface. In the presence of transpeptidases, molecules bearing
recognition motifs can be directly conjugated to either the N or
C termini of membrane proteins. For example, as shown in
Fig. 8B, Pishesha et al. reported a strategy for inducing antigen-
specific tolerance by utilizing the transpeptidase sortase to
covalently conjugate disease-associated autoantigens onto red
blood cells (RBCs), thereby attenuating the contribution of
major subsets of immune effector cells to immunity in an
antigen-specific manner."”® Li et al focused on fucosyl-
transferase and transferred bio-macromolecules to the glyco-
calyx on the surface of living cells, which represented faster
speed, better biocompatibility, and less interference to cells
(Fig. 8C)."”* Through this method, they constructed two anti-
body—cell conjugates, which exhibited significant improve-
ments in the process of targeting and killing anti-cancer
immune responses.

5. Conclusion and outlook

Modifying cell surfaces with tailor-made and well-characterized
synthesized molecules can effectively introduce novel func-
tionalities or manipulate cells. This offers a powerful tool to
overcome challenges encountered in cell-based biomedical
applications. In this review, we present a comprehensive over-
view of the latest advances in cell surface modification using
synthetic molecules. We summarize the typical strategies,
including chemical covalent modifications, physical alter-
ations, and bioorthogonal approaches (Table 1), along with the
advantages, disadvantages, and applicable conditions of each
strategy. The chemical covalent strategy offers a straightforward
and versatile approach for achieving stable and long-lasting
surface modification.'® However, the strategy has the poten-
tial to adversely impact cell activity and functionality. The
physical modification strategy provides a non-invasive and
cytocompatible approach. However, modifications achieved
through physical interactions, such as electricity and hydro-
phobicity, are relatively short-term and unstable. It is important
to note that the two methods mentioned above are non-specific,
lacking precision in cell surface modification and potentially
increasing the risk of adverse effects during practical applica-
tions. Therefore, bioorthogonal chemistry provides a valuable
strategy for the selective and highly biocompatible incorpora-
tion of synthetic molecules onto cell surfaces, even enabling cell
surface modification in vivo - a remarkable development.
However, the approaches used to introduce bioorthogonal
groups, whether via genetic engineering or metabolic engi-
neering, are time-consuming.

Despite notable advancements in the utilization of synthetic
compounds for cell surface modification, there remain unre-
solved challenges and prospects for further investigation. One
such challenge pertains to the inherent detrimental impact of
exogenous synthetic compounds bound to the cell surface on
cellular functionality, albeit with varying degrees of severity.
Hence, it is of utmost importance to meticulously choose
a suitable strategy for modifying cells, taking into consideration
the particular cell type and application scenarios. Subsequently,
it becomes imperative to assess and describe the condition of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 A summary of the advancements in strategies for the cell surface modification with synthetic molecules in this review

Strategy

Cell type”

Synthetic molecules modified on the cell surface

Chemical covalent
modification strategies

Amine groups (-
NH,)

Thiol groups (-SH)

Vicinal diol groups

Carboxyl groups
Convert diols into
aldehydes

Convert disulfide
bonds (S-S) to thiol
groups

Physical modification
strategies

Hydrophobic
insertion

Hydrophobic
insertion

Hydrophobic
insertion

HUVECs
C2C12 cells

MSCs

RBCs

T cells

Jurkat and NK cells
RBCs

DCs

B16 cells

T cells

L929 cells

MCF-7, HepG2 and HeLa
cells

B16 cells

HDFs

HepG2 cells

B16, AB22 and ZL34 cells
PC-3, DU145 and Jurkat
cells

MCF-7, HeLa and PC-3 cells
RBCs

MCF-7 cells

HDFs

HT29 and MDA-MB-231
cells

HepG2 cells

MCEF-7 cells

HelLa cells

Human iPSC-derived-MSCs
HepG2 cells

HelLa cells

NEs

HUVECs and HSFs

T cells

DCs and PC-3 cells
CCRF-CEM cells,
splenocytes, melanoma,
human MSCs and beta cells
RAW264.7 cells and L-O2
cells

Human T cells and B cells,
erythrocytes, hepatocytes,
1929 and HEK293T cells
MCF7, A549, LUDLU-1 cells
HelLa cells

MCEF-7 cells

SubT1 cells

MDA-MB-231 cells

NK cells,®* Jurkat, NK, and
Ramos cells,?® CCRF-CEM
cells,®” U937 cells,®
RBCs,'"” lymphocytes'®
MSCs

Th9 cells, 4T1 cells
Jurkat cells
3T3 cells

© 2023 The Author(s). Published by the Royal Society of Chemistry

PEG,*' biotin-streptavidin®?
Poly(methacryloyloxy)ethyltrimethylammonium chloride
(PMETAC)*

Heterodimerizing leucine,*® chitosan nanoparticles,** sialyl
Lewis X**

Biotin-streptavidin,*® PEG***'

Nanoparticles*>

Biotin-streptavidin®’

Nanoparticles®®

Bovine serum albumin (BSA) protein shells**

BSA protein shells*"**

Nanoparticles?®?3%3%39

Fluorescent polymer**

Pyrene derivative®”

Gadolinium DO3A amide*®

DEGMA or NVP polymers*®

BSA nanoparticles®

Contrast agents (Gd- and **Ga-DOTA-EN)>*

Sialic acid-imprinted fluorescent core-shell SiO, particles™

Polymer nanoparticles®*
Supramolecular polymers®®
Reactive probe®®
Biotin-streptavidin®
Maltol hydrazide®*

Dendrimer hydrazides®>

PEI conjugated with multiple hydrazide groups®
Peptide and protein®

p-Benzoquinone/ethylenediamine polymer®

ECM coating®®

DNA bridge complex-templated silver nanoclusters (DNA
bridge-AgNCs)®”

Fluorescent dye, polymer, and nanoparticles®
Liposomal stimulator of interferon genes (STING) agonists
PEG™

Tetrazine”*

Cucurbit[7]uril-based supramolecular polymer”*
Synthetic peptide”®

70

B-Cyclodextrin (B-CD) and adamantane (ADA)”’

Cell-penetrating peptide”®

Aptamer®®

DNAzyme,*”> DNA,** multicomponent polymer,”" aptamer,®
core-shell upconversion nanoparticles®

Fluorescein isothiocyanate (FITC),** core-shell upconversion
nanoparticles®

Biotin-PEG**

Nitrilotriacetic acid (NTA)®*

DNA

Hyperbranched polyglycerol (HPG) covalently modified with
vasculature binding peptides (VBPs)”

Peptides®*®

ssDNA”

Poly(oxanorbornene) block copolymers,”® PEG'**
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Table 1 (Contd.)
Strategy Cell type” Synthetic molecules modified on the cell surface
HepG2 cells Peptides,”® PEG'®°
RIN cells PEG'"
Fibroblast cells Ketone and oxyamine,"'*"'*"'® dialdehyde,'"”
hydroquinone'*”
NK cells Lewis X trisaccharide"®
T cells 2,2,6,6-Tetramethylpiperidine groups'*°
Hela cells DNA'®
Electrostatic HUVEC Poly-i-lysine (PLL)**
interaction Jurkat cells TiO, coating'**
hASCs Chitosan derivative'**
Hela, 3T3, and Jurkat cells  Poly(ethyleneimine) (PEI)"**
T cells PLA nanoparticles'*
Layer-by-layer (LBL) Hela cells Cationic gelatin and anionic gelatin'?*'?°
self-assembly MSCs PLL, hyaluronic acid (HA), and arginine-glycine-aspartic acid
(RGD),"*® gelatin,'*’ silk fibroin polyelectrolyte**
RBCs Chitosan-graft-phosphorylcholine, HA and PLL-PEG"**
DPCs Gelatin and alginate'®”
MING cells Gelatin and fibronectin (FN)"*®
L1929 cells Silk fibroin polyelectrolyte'*®
AML-12 cells and PBMCs PLL and HA™
T cells Chitosan and alginate'*”
iPSCs FN, heparin (Hep), and chondroitin sulfate (CS)**®
Bioorthogonal Metabolic glycan Jurkat cells Probes,"”" lipid nanoparticles,'®* polymer-antibody
strategies labeling strategy conjugates’®®
HEK 293T cells Probes"**

Metabolic glycan
labeling strategy

Halo-Tag protein

Enzyme-mediated
strategy

MCEF-7 cells
A549 cells

MCEF-7 cells

MSCs

Macrophages

DCs

4T1 cells

HelLa cells

B16 cells,’”® DCs,'’® Hela
cells'”?

B cells

NK cells

T cells

Mouse lung endothelial
cells

CHO cells

RBCs

HEK 293T cells

HeLa cells

B-CD and aptamer>®

Poly(hydroxyethyl acrylamide),"®” polycation,'*®
poly(hydroxyethyl acrylamide) (pHEA)"*®
Polycation>®

Antioxidant liposome'®°

Polyvalent spherical aptamer'®'

Antigens, adjuvants and cytokines'®®

Chlorin 6 (ref. 164)

Probes'®?

Glycopolymers

157

Biotin'”’
Bio-macromolecules,
ligands'®®
Bio-macromolecules’”*
Synthetic ligands and biotin'”®

174 Sialyl Lewis X and CD22-specific

Probes,'®! bio-macromolecules'”*
Probes,'®* peptide'”?

Probes™®*

Probes'®?

¢ Abbreviation for the full cell name or cell species: HUVECs: human umbilical vein endothelial cells; C2C12 cells: murine myoblasts; MSCs:
mesenchymal stem cells; RBCs: red blood cells; Jurkat cells: acute T-cell leukemia cells; NK cells: natural killer cells; DCs: dendritic cells; B16
cells: murine melanoma cells; L929 cells: mouse fibroblast cells; MCF-7 cells: human breast adenocarcinoma cells; HepG2 cells: human liver
cancer cells; HeLa cells: human cervical cancer cells; HDFs: human dermal fibroblasts; AB22 cells: mouse mesothelioma cells; ZL34 cells:
human mesothelioma cells; PC-3 and DU145 cells: human prostate cancer cells; iPSCs: induced pluripotent stem cells; HT-29: human colon
cancer cells; MDA-MB-231 cells: human breast cancer cells; NEs: neutrophils; HSFs: human skin fibroblasts; CCRF-CEM cells: human acute
lymphoblastic leukemia cells; RAW 264.7 cells: mouse leukemia cells of monocyte macrophages; L-O2 cells: human normal liver cells; HEK293T
cells: human embryonic kidney cells; A549 cell: human lung cancer cells; LUDLU-1 cells: human Caucasian lung squamous carcinoma cells;
SubT1 cells: human CD4 expressing T-lymphoblastoid cells; U937: histiocytic lymphoma cells; Th9 cells: helper T cell 9; 4T1 cells: mouse breast
cancer cells; 3T3 cells: mouse embryonic fibroblasts; RIN cells: mouse insulinoma cells; hASCs: human adipose-derived mesenchymal stem
cells; DPCs: dermal papilla cells; MING6 cells: pancreatic B-cells; AML-12 cells: human lung cancer cells; PBMCs: peripheral blood mononuclear
cells; CHO cells: Chinese hamster ovary cells.

the modified cells, encompassing cell viability, phenotype, and
associated functionalities. It is noteworthy that the cell surface
constitutes a dynamic membrane structure, wherein synthetic

molecules may undergo endocytosis or excretion by the cell.
Consequently, it is crucial to monitor the destiny of synthesized
molecules during and post cell surface modification. In

13340 | Chem. Sci,, 2023, 14, 13325-13345 © 2023 The Author(s). Published by the Royal Society of Chemistry
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practical scenarios, the presence of synthetic molecules on
cellular surfaces carries the potential for immune activation
and subsequent clearance by the immune system, thereby
considerably restricting their capacity to modify cell surfaces in
vivo. Consequently, it becomes crucial to implement suitable
adjustments to synthetic molecules to ensure their compati-
bility with in vivo applications. Additionally, a significant hurdle
lies in selecting and designing molecules that possess both
biocompatibility and augmented functionality for specific
applications. Determining the optimal chemical group, struc-
ture, and sequence becomes essential in this regard. Therefore,
the availability of databases serving as a toolbox for researchers
to facilitate informed molecule selection is highly desirable.

There are several possible avenues for future research. One
potential area of exploration is the development of more precise
and targeted methods for modifying cell surfaces. There is
a need to develop more proficient and potent methodologies for
the selective and highly biocompatible integration of synthetic
molecules onto cell surfaces. Furthermore, additional research
is necessary to gain a better understanding of the influence of
synthetic molecules on cellular functionality and to optimize
modification strategies tailored to specific cell types and
applications. An additional area of research that holds promise
for the future is the advancement of synthetic molecules that
possess improved biocompatibility and biofunctionality,
enabling their application in the modification of cell surfaces.
Notable examples of these molecules encompass functional
nucleic acids, targeting aptamers, and polymers characterized
by well-defined structures and chain sequences. The utilization
of artificial intelligence (AI) can be facilitated by the establish-
ment of databases containing comprehensive information
regarding ligand-receptor interactions specific to cells, as well
as the attributes associated with each modification technique.
This integration of AI can aid in the design of optimal,
customized molecules and the selection of appropriate
methods for modification.
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