

Fuelling your energy research

Energy & Environmental Science

Agenda-setting research in energy science and technology

Chair of the Editorial Board

Jenny Nelson, Imperial College London, UK Impact factor 2021: 39.714, median time to first decision (peer reviewed articles only): 46 days*.

rsc.li/ees

EES Catalysis

Exceptional research on energy and environmental catalysis

Editor-in-Chief

Shizhang Qiao, University of Adelaide, Australia Median time to first decision (peer reviewed articles only): 24 days*. rsc.li/ees-catalysis

Sustainable Energy & Fuels

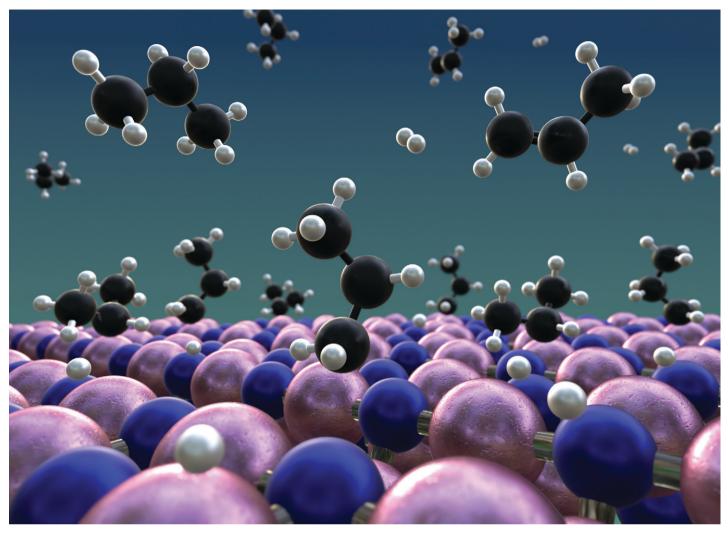
Driving the development of sustainable energy technologies through cutting edge research

Editor-in-Chief

Garry Rumbles, National Renewable Energy Laboratory and University of Colorado Boulder, USA Impact factor 2021: 6.813, median time to first decision (peer reviewed articles only): 28 days*.

rsc.li/sustainable-energy

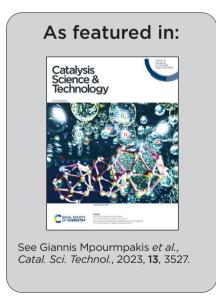
Energy Advances


Embracing research at the nexus of energy science and sustainability

Editor-in-Chief

Volker Presser, Leibniz Institute for New Materials, Germany Median time to first decision (peer reviewed articles only): 32 days*. rsc.li/energy-advances

Submit your work today


rsc.li/energy

Showcasing research from Professor Giannis Mpourmpakis' laboratory, Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pennsylvania, United States.

Multiscale modeling reveals aluminum nitride as an efficient propane dehydrogenation catalyst

In this collaborative work between University of Pittsburgh and Chalmers University of Technology, computational chemistry calculations were combined with microkinetic modeling and revealed that AIN efficiently converts alkanes to olefins. This study elucidated very complex hydrocarbon dehydrogenation mechanisms and showed that concentration of reaction intermediates on the catalyst surface can play a key role on the preferred mechanism. In addition to providing fundamental understanding of complex reactions, this work aids experiments by identifying catalysts that reduce energy intensity for the conversion of light hydrocarbons from shale gas.

