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explanations for molecules†
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An outstanding challenge in deep learning in chemistry is its lack of interpretability. The inability of

explaining why a neural network makes a prediction is a major barrier to deployment of AI models. This

not only dissuades chemists from using deep learning predictions, but also has led to neural networks

learning spurious correlations that are difficult to notice. Counterfactuals are a category of explanations

that provide a rationale behind a model prediction with satisfying properties like providing chemical

structure insights. Yet, counterfactuals have been previously limited to specific model architectures or

required reinforcement learning as a separate process. In this work, we show a universal model-agnostic

approach that can explain any black-box model prediction. We demonstrate this method on random

forest models, sequence models, and graph neural networks in both classification and regression.
1. Introduction

Deep learning has made signicant impacts in chemistry
because of its ability to regress non-linear relationships between
structure and function.1 Applications vary from computing
quantum properties2,3 to predicting chemical properties4,5 to
screening drug molecules.6,7 More specically, deep neural
networks that take in raw graph representations of molecules
have proven to be successful when compared with counterparts
based on xed descriptors in both regression and classication
tasks.8 Despite their empirical accuracy, neural networks are
black-box models; they lack interpretability and predictions
come without explanation.

Explainable articial intelligence (XAI) is an emerging eld
which aims to provide explanations, interpretation, and justi-
cation for model predictions. XAI should be a normal part of
the AI model lifecycle. It can identify data bias and model
fairness.9 Users are more likely to trust and use a prediction if it
has an explanation.10 Finally, it is becoming a legal requirement
in some jurisdictions for AI to provide an explanation when
used commercially.11,12 From a researcher's perspective, XAI can
also nd the so-called “Clever Hans” effects whereby a model
has learned spurious correlations such as the existence of
a watermark in images or an over representation of counterions
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in positive molecule examples.13 Despite these benets of XAI,
this is rarely a part of deep learning in chemistry.

Miller14 proposes a nomenclature within XAI that distin-
guishes between a prediction explanation, interpretability of
a model, and prediction justication. An explanation is a post-
hoc description of why a prediction was made by a model.15

Model interpretability is “the degree to which an observer can
understand the cause of a decision”.16 Finally, justication of
a prediction is a description of why a prediction should be
believed. Justication typically relies on estimated model
generalization error. Interpretable models are common in
computational chemistry – DFT, molecular dynamics, and
linear regression are inherently interpretable models. Justi-
cation is also routine, with almost all recent papers reporting
estimated generalization error on withheld test data or from
cross-validation. Explanation is rare, especially in deep learning
where no insight can be gained by inspecting model weights or
parameters.

There are four major approaches for explaining a prediction
from a black-box model:17 identifying which features contribute
the most,18–22 identifying which training data contributes the
most,23 tting a locally interpretable model around the predic-
tion,24 and providing contrastive or counterfactual points.25

Feature importance analysis provides per-feature weights that
identify how each feature contributed to the nal prediction.
These can be formulated as SHAP values,26 which are a method
of computed feature importance weights as a complete expla-
nation (i.e.,

P
wi ¼ f̂(x)).27 This is effective when working with

a sparse set of molecular descriptors, but when working with
thousands of descriptors, SMILES or molecular graphs, this can
impart little insight to the human understanding.14 A recent
study by Humer et al.28 introduced a model-agnostic visualiza-
tion tool named CIME for XAI based on feature attribution.
Chem. Sci., 2022, 13, 3697–3705 | 3697
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Fig. 1 An example of a counterfactual. The molecule on left was
predicted to have class of 0, no activity. With themodification shown in
teal, the molecule would be in class 1, active. This shows that the
carboxylic acid is an explanation for lack of activity.
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Their interactive web-app take in datasets and model predic-
tions to facilitate model interpretation. Authors use SHAP
values and Class Attribution Maps (CAM)29 to compute feature/
atomic attributions in their work. Local interpretable model-
agnostic explanations (LIME) provide an implicit “sparsica-
tion” relative to feature importance because the locally inter-
pretable model is a different model than the black-box model
being explained.24 For example, a two dimensional linear
regression could be the locally interpretable model. The spar-
sication arises because we can choose the features going into
the locally interpretable model and it can be induced by using
regularization when tting the locally interpretable model to
the black-box (e.g., using lasso regression).30 Although SHAP
values and LIME provide comprehensible explanations, a limi-
tation is that they are not actionable. For example a chemist
does not need to know contribution of each feature in a mole-
cule to answer the question “what changes will result in an
alternate outcome?”.31 This is the motivation behind our
approach. We believe this method will be a benecial tool in
real life applications. Therefore, some care must be taken in
choosing the locally interpretable model since it needs to t well
around the prediction and must be specically constructed for
the problem of interest.

Counterfactuals are a mature topic in philosophy and
mathematics.32–34 Reutlinger et al.33 argue that counterfactual
theories can be used to capture scientic explanations of casual
and noncasual nature – being more general than causality.
Woodward and Hitchcock32 dene a counterfactual explanation
as one that illustrates what differences to an event or instance
would generate a change in an outcome. Earliest theoretical
denition of counterfactuals was introduced by Kahneman and
Miller35 in 1986 to explain memory activation to with respect to
“what if scenarios”. Counterfactual thinking is now being
applied commonly in many elds such as psychology, nance
and deep learning.36–41 In our work, we use counterfactual
explanations to answer “what is the smallest change to the
features that would alter the prediction”.42 In other words,
a counterfactual is an example as close to the original, but with
a different outcome. “Your papers would be better cited, if you
had a better title”. The example here being a paper identical
except the new title and the outcome has changed: the paper is
better cited. Furthermore, it can be identied that counterfac-
tual explanations have deep roots in manipulability theories of
causation which try to exploit casual relationships for manip-
ulation.43 If a process is identied as a manipulation of an
event, then there must be a casual relationship between the
manipulation and the event.44 For example, if the surface
contact angle of a droplet of molecules changes when a certain
functional group is removed, then we can say that functional
group causes the molecule's hydrophilicity.

Another category of explanations is contrastive explanations
which explain a prediction by providing related examples of
features. Contrastive and counterfactual explanations are once
again conceptually similar, but should be distinguished.25 In
contrastive explanations, one tries to answer “why output X, but
not output Y?”45,46 rather than “why did output X happen?”. This
is similar to recovering the reasoning behind the correct answer
3698 | Chem. Sci., 2022, 13, 3697–3705
of a multiple choice question through the elimination of
incorrect options. Contrastive explanations generate explana-
tions by entertaining alternate outcomes whereas a counterfac-
tual explanation shows how to minimally modify our input to
get a different prediction.

In the domain of XAI, counterfactuals are intuitive to
understand and are sparse because they are as similar to the
original prediction as possible.14,42 Yet counterfactuals are hard
to generate because they arise from optimization over input
features – which requires special care for molecular graphs.47,48

Namely, molecular graphs are discrete and have valency
constraints, making gradients intractable for computation.
Here we propose a method that can generate molecular coun-
terfactuals for arbitrary models. Thesemolecular counterfactual
provide explanations that are sparse and composed of molec-
ular structures.

An example of a molecular counterfactual is shown in Fig. 1.
The lemolecule is inactive and the right is active. It shows that
the carboxylic acid could be made an ester to change activity,
giving insight into the reason why the lemolecule is not active.
The explanation is sparse and intuitive to those with a knowl-
edge of chemical structures. A related concept analogous to
counterfactuals is the idea of paired molecules,49 where similar
molecules with opposite activity are used to understand a class
of active compounds. According to Woodward50 counterfactuals
are only explanations in a space of alternate possibilities. These
possibilities help to realize dependencies between initial
conditions and outcomes. “They (counterfactuals) do this by
enabling us to see how, if these initial conditions had been
different or had chanced in various ways, various of these
alternative possibilities would have been realized instead”.
Therefore, while a counterfactual by itself is sufficient to explain
the model, expert knowledge and chemical intuition can
strengthen the conclusions.

Our approach to generating molecular counterfactuals is
built on the Superfast Traversal, Optimization, Novelty, Explo-
ration and Discovery (STONED) method which enables rapid
exploration of chemical space without a pre-trained generative
model or set of reaction rules.51 We expand chemical space
around the molecule being predicted (base), identify similar
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Overview of MMACE. The input is a molecule to be predicted.
Chemical space is expanded and clustered. Counterfactuals are
selected from clusters to find succinct explanation of base molecule
prediction.
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molecules with a changed prediction (counterfactuals), and
select a small number of these molecular counterfactuals with
clustering/Tanimoto similarity. This method works because we
represent molecules as SELF-referencIng Embedded Strings
(SELFIES) and any modication to a SELFIES is also a valid
molecule.52 An overview of this process is shown in Fig. 2.
Despite SELFIES generating only valid molecules in the sense of
satised valencies, some of the molecules can involve carbo-
cationic or have unusual rings. Thus we also explore restricting
the alphabet of tokens used in STONED. Finally, we propose an
alternative approach that obviates this problem by only
proposing experimentally available molecules. This method is
an enumeration of chemical space around the base molecule by
performing a similarity structure search in the PubChem
database.53
1.1 Comparison to existing work

Recent progress in applying XAI methods to graphs, like
molecular graphs, is reviewed in Yuan et al.54 Our method,
called Molecular Model Agnostic Counterfactual Explanations
(MMACE), produces counterfactual explanations. Counterfac-
tuals are challenging due to the numerical problems associated
with both neural networks gradients and working with graph
neural networks (GNNs).55 There have been a few counterfactual
generation methods for GNNs. The counterfactuals-
GNNExplanier from Lucic et al. uses graph edge operations
and a relaxed model prediction function to propose counter-
factuals and was found to do well on graph datasets.47 Graph
edge operations cannot be used on molecular structures
because the majority of graph operations will violate valencies.
This method also requires model gradients with respect to
input, which may not be possible for models outside of neural
networks. Our method works on descriptors, graphs, SMILES,
and SELFIES features. MMACE does not require gradients,
enabling its use on machine learning methods like random
forest classication or support vector machines.

Numeroso et al.48 proposed a molecular explanation gener-
ator that is closer to our work. They use a reinforcement
learning agent to generate counterfactuals, which ensures that
© 2022 The Author(s). Published by the Royal Society of Chemistry
proposed counterfactuals are reasonable molecules. Our
method does not require training a counterfactual generator
because all molecules resulting from STONED are valid
compounds.51 This negates the need for a generative counter-
factual maker and greatly simplies the method.
2. Theory

A deep learning model takes in as input a set of feature vectors
(x), and outputs a prediction, denoted as f̂(x) or ŷ. The true value
of the property being predicted by the model is denoted as f(x),
or y. For chemical applications, x is typically a representation of
a molecule, which can be a string (SMILES or SELFIES), a set of
chemical descriptors, or a molecular graph. Programs including
Mordred56 and DRAGON57 can be used to compute chemical
descriptors, such as electronegativity or molecular weight, for
each molecule. A molecular graph can consist of a node feature
vector and an adjacency matrix. The node feature vector
provides information on the type of atoms (e.g., C, H, O, N)
present in the molecule and the adjacency matrix provides
information on the edges between each node, or which atoms
are bonded together.1 Together, the node feature vector and
adjacency matrix can be used as a molecular graph input to
a graph neural network model.58

A counterfactual x0 is specic to the example of interest x,
where we have made a prediction f̂ (x). A counterfactual is the
explanation of x and dened by the solution to the following
constrained optimization problem42

minimize d
�
x; x

0�

such that f̂ ðxÞsf̂
�
x
0� (1)

where x is the feature vector of our prediction, d(x, x0) is
a measure of distance between features, and f̂ (x) is our model.
The counterfactual optimization problem is a function of x, so
that each time a new prediction is made the counterfactual is
also updated.

Eqn (1) is dened for classication tasks. However, this
equation must be modied for regression tasks. Instead of
nding a conversion in a label, with eqn (2) we nd counter-
factuals that result in an increase or decrease in the prediction.
Here D is a problem specic hyperparameter which denotes the
change in value.

minimize d
�
x; x

0�

such that
���f̂ ðxÞ � f̂

�
x
0�
���$D

(2)

In this work, distance is computed with Tanimoto similarity
of ECFP4 molecular ngerprints.59 We use Tanimoto similarity
as the similarity metric because it is considered the “gold
standard” in molecular distance measurements.60 Furthermore,
Nigam et al.51 state that impact of ngerprint type in STONED
algorithm isminimal asmost molecular representations tend to
store the same information content.

In principle, this optimization problem could be solved by
computing a gradient Vx f̂ (x). However, there are complexities
of computing gradients with respect to x because it may be
Chem. Sci., 2022, 13, 3697–3705 | 3699
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Fig. 3 Counterfactual for negative example of blood–brain barrier
random forest model. Similarity is computed from Tanimoto similarity
of ECFP4 fingerprints.65 Red indicates deletion relative to base mole-
cule and teal indicates modification. Counterfactuals show that the
removing or modifying carboxylic acid group is the simplest way to
make this molecule pass the blood–brain barrier.
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a molecular graph, a SMILES string, or descriptors which then
propagate derivatives to the molecular structure (although see
recent progress specically with SELFIES61,62). Instead, previous
for counterfactual generation have relied on perturbing x using
graph transformation operators47 and reinforcement learning.48

Both these methods have the disadvantage that they can
generate chemically infeasible structures, although Numeroso
et al.48 can generate good candidate molecules with sufficient
training. Our innovation here is to use the STONED SELFIES
method51 which rapidly explores local chemical space around
a point by exploiting the surjective property of SELFIES: every
SELFIES string is a valid molecule. Krenn et al.52 introduced
SELFIES to overcome one of the major limitations in SMILES63

that, they do not always correspond to valid molecules. The
STONED protocol consists of string insertion, deletion, and
modication steps that can generate thousands of perturba-
tions of x that are valid molecules and close in chemical space.
This requires no training, is independent of features (e.g.,
molecular graphs, SMILES, descriptors), and requires no
gradients.

3. Methods

An overview of our method is shown in the schematic in Fig. 2.
We use the STONED method as described in Nigam et al.51 to
sample chemical space. Briey, a starting molecule is encoded
into SELFIES and successive rounds of token deletion,
replacement, and insertion is done to generate modications of
the starting molecule. This process relies on the surjective
property of SELFIES. As in Nigam et al., we limit the number of
modications to the starting SELFIES to ensure we stay local in
chemical space. Additionally, starting diversity is improved by
exploiting the fact there are multiple non-canonical starting
SELFIES. Unless otherwise stated, 3000 modied SELFIES are
generated with at most 2 token modications (mutations). The
available tokens (alphabet) for insertion/modication in the
STONED algorithm are modied here to use a restricted subset
of “intuitive” tokens. Specically, all positively and negatively
charged atoms except O� were removed and the available
elements were restricted to B, C, N, O, S, F, Cl, Br, I. We call this
the “basic” alphabet. This alphabet can be modied and is
discussed further in the results.

RDKit was used for molecule processing, including con-
structing molecular graphs, drawing molecules, validating
input structures, and computing ngerprints.64 The scores used
in STONED were the Tanimoto similarity59 of EFPC4 (ref. 65)
ngerprints.

STONED generates a set of molecules around the molecule
from which we are predicting (base molecule). To generate
counterfactuals, we apply the optimum condition in eqn (1). To
generate multiple counterfactuals, clustering is done using
DBSCAN66 with parameters 3 ¼ 0.15 and minimum 5 samples
per cluster. The distances used for clustering d ¼ 1 � s, where s
is pairwise Tanimoto similarity. The most similar molecule
from each cluster which satises the counterfactual condition is
selected and a further reduction by similarity is done if fewer
counterfactuals are requested than clusters. DBSCAN infers
3700 | Chem. Sci., 2022, 13, 3697–3705
cluster numbers using the 3 ¼ 0.15 parameter, which is in units
of similarity.

The STONED algorithm does not guarantee the experimental
stability of the generated molecules although they are valid
(with respect to valency). As an alternative, we use a PubChem
similarity search53 to populate the chemical space. This
approach is similar to STONED method except we query Pub-
Chem database rather than generate novel molecules. The same
similarity measures are used. This allow us to explore chemical
space with only synthetically feasible molecules.

4. Experiments
4.1 Blood–brain barrier permeation prediction

Predicting if a molecule can permeate the blood–brain barrier is
a classic problem in computational chemistry.67 The most used
dataset comes from Martins et al.68 It is a binary classication
problem with molecular structure as the features. State-of-the-
art performance is 0.955–0.988 receiver-operator characteristic
area under curve (ROC-AUC) depending on model type and
molecular structure featurization.67 To test MMACE on this
dataset, we developed a random forest model as implemented
in Scikit-learn69 using molecular descriptors as features. The
descriptors are computed with Mordred.56 A 20% train/test split
was done and the ROC-AUC was computed as 0.91 (see Fig. S1†
for ROC curve).

Fig. 3 shows a negative prediction from the trained blood–
brain barrier classier. The molecule should not pass the
blood–brain barrier. The counterfactuals show what could
make the negative example cross the blood–brain barrier,
including removing the carboxylic acid (counterfactual 1,3) or
changing to an alcohol with additional alkane chains (coun-
terfactual 2). Based on these counterfactuals, the explanation of
why this molecule cannot cross the blood–brain barrier is due to
the carboxylic acid group. In words: “This molecule will not
cross the blood–brain barrier. It would cross the blood–brain
barrier if the carboxylic acid were removed”.

4.2 Small molecule solubility prediction

Solubility in water plays a critical role in drug design.70 Thus,
there are many previously developed machine learning
tools47,71,72 to predict solubility. Solubility is also an intuitive
concept that is taught in introductory organic chemistry, thus
© 2022 The Author(s). Published by the Royal Society of Chemistry
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providing a good setting to test MMACE.We used solubility data
from Sorkun et al.,73 which consists of organic and organome-
tallic molecules. Solubility of the molecule in water is measured
in log molarity.

We predict solubility of a given molecule using a gated
recurrent unit (GRU) recurrent neural network (RNN)74 imple-
mented in Keras.75 RNNs are a standard approach in natural
language programming tasks because of their ability to handle
long sequences and model long-range correlations. Thus, they
are commonly used in chemistry applications with SMILES
sequences.76,77 In our regressionmodel, we use SELFIES because
it matches the representation used in MMACE. However, using
SELFIES over SMILES does not necessarily translate to better
supervised learning performance.78

A 10% to 10–80% test–validation–train data split was done.
The data, which are specied in SMILES, were canonicalized
and converted into SELFIES and training was done for 100
epochs with the Adam optimizer79 with a learning rate of 10�4.
The correlation coefficient on test data is 0.84 and state-of-the-
art performance is 0.80–0.93.80 Additional model details are
listed in the ESI.†

As this task is regression, we use eqn (2) to account for either
an increase or decrease in solubility. We use a value of 1 for D in
eqn (2). Fig. 4 shows counterfactuals generated for a given base
molecule. Increase or decrease in solubility is annotated in the
counterfactuals. These counterfactuals can be used to explain
what functional groups are most important for solubility of the
base molecule. According to Fig. 4, the ester, hydrogen bond
acceptors, and alkane chain length are contributing reasons for
the solubility. The diversity of counterfactuals comes from the
DBSCAN clustering, as seen in the principal component anal-
ysis projection of chemical space.
4.3 HIV activity prediction

Since the rst reported case in 1981, the AIDS epidemic has
killed 36 million people. According to aid,81 currently 1.2
million people in the US have tested positive for HIV (human
Fig. 4 Chemical space for solubility predicting RNN model. This is
a principle component analysis of chemical space from Tanimoto
similarity distances. Points are colored by solubility. Counterfactuals
are annotated.

© 2022 The Author(s). Published by the Royal Society of Chemistry
immunodeciency virus) which causes AIDS. Although there is
no cure for HIV, antiretroviral therapy (ART) reduces mortality
and transmission of HIV.82 However, effectiveness of ART is
limited due to toxicity and cost of treatment.83 This means there
is still a need for new drugs. Additionally, the National Institute
of Allergy and Infectious Diseases has made a systemic study of
compounds that can inhibit HIV resulting in large compound
datasets. These two facts make predicting potential new HIV
drugs a frequently studied task in computational chemistry.67

We use a binary classication approach to test MMACE to
screen compounds based on their ability to inhibit HIV. The
data was downloaded as processed in a Kaggle competition.84

This dataset was prepared by the Drug Therapeutics Program
(DTP) for AIDS antiviral screening for more than 40 000
compounds.85 We use a graph convolutional network (GCN)86

implemented in Keras75 for molecular featurization and stan-
dard dense layers for classication based onmolecular features.
The inputs to this GCN are the molecular graphs generated with
canonicalized SMILES using RDKit soware.64 However, in the
original dataset only 3.5% of the molecules were labeled HIV
active. When class imbalances are present, generating coun-
terfactuals for the minor class is easier because the counter-
factuals are members of the major class. However, in the
alternate case it may require many changes to get a counterfac-
tual and the model may have worse predictive performance on
these minor class counterfactuals. Therefore, to address the
imbalance between the labels, we used the class weighting
technique. A 10% to 10–80% test–validation–train data split was
done. The model gains an ROC-AUC of 0.793 aer training for
only 30 epochs. See Fig. S3 in ESI† for ROC curve. State-of-the-
art performance is 0.945–0.993.87 For more information on
this GCN architecture please refer to ESI.†

Fig. 5 illustrates the top 3 counterfactuals generated from the
trained model. The base molecule which is used here is HIV
active. Based on the generated counterfactuals, it can be
explained that the terminal diamide group has a signicant
contribution to the HIV activity of this molecule. For example if
the terminal amide group is converted to a tertiary amine, then
the base molecule will not be active (counterfactual 1). Addi-
tional counterfactuals for the same base molecule are provided
in the Fig. S4† and reinforce the importance of the diamide
group. This shows how chemical reasoning can now be applied
to black box predictions through counterfactuals.
Fig. 5 Counterfactuals for positive example of GCN model for clas-
sifying HIV activity. Similarity is computed from Tanimoto similarity of
ECFP4 fingerprints.65 Teal indicates the modifications to the base
molecule. Counterfactuals illustrate which modifications make the
base molecule HIV active.
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Fig. 7 The effect of STONED alphabet choice counterfactuals from
RNN solubility model. Although each counterfactual has the same
similarity, the molecules are increasingly unusual. The basic alphabet
provides a balance of intuitive counterfactuals and enough tokens to
explore chemical space.
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4.4 Effect of MMACE parameters

There are three main parameters to choose in MMACE: the
number of molecules to sample, the number of mutations, and
the choice of alphabet. The number of molecules to sample is
restricted by the speed of inference of the model being evalu-
ated. Fig. S6† shows that increasing the number of molecules
sampled (sample size) increases the number of similar mole-
cules (>rbin 0.7 Tanimoto) as expected, but it begins to saturate
aer 10 000 samples as duplicates become more common.
Based Fig. S6,† we selected a default sample size of 3000 which
balances the diversity of chemical space and the number of
model inference calls. The models from the experiment section
are generally fast enough but majority of time is spent on
ngerprint calculation. However, other users of MMACE may
have more expensive models and desire fewer samples.

Now, we examine the effect of the other two parameters on
our RNN model for predicting solubility. There is no direct
relationship between number of SELFIES mutations and the
similarity. Fig. 6 shows a histogram of molecules arising from
STONED as a function of the mutation number from the solu-
bility prediction model. One mutation provides a range of
similarities, although few above 0.80 similarity. However,
similarity between the base and counterfactuals decreases
drastically when the allowed number of mutations increase.
Even at three mutations, the majority of molecules are dissim-
ilar and cannot be used for counterfactuals. At ve mutations,
there are almost no molecules that are comparable with the
base molecule. Thus, one and two mutations combined are
recommended in MMACE. Fig. S5† illustrates the top counter-
factual for a selected base molecule for 1,3,5 allowed mutations.
It can be seen that when the allowed mutations are 5, the
generated counterfactual molecule is drastically different from
the base molecule.

The effect of the alphabet choice is shown in Fig. 7. Three
counterfactuals are shown that are more soluble than the base
molecule. In the basic alphabet, recommended for MMACE, we
can see that the change to the ester group is reasonable
although the carbon–sulphur double bonds are fairly
uncommon in nature. In the next example we use the “training
data” alphabet which is derived from all unique tokens in the
training data. This results in a top counterfactual with a cop-
per(II) ion. Although the absolute change in predicted label is 1,
it provides little understanding about why the original molecule
Fig. 6 The effect of mutation number on Tanimoto similarity of
generated molecules from RNN solubility model. Increasing mutation
number reduces number of similar molecules from which counter-
factuals can be generated.

3702 | Chem. Sci., 2022, 13, 3697–3705
is not more soluble. Finally, the SELFIES alphabet without
cation/anions removed can propose counterfactuals simply by
ionizing atoms. This does not provide understanding, as these
extreme molecules provide little intuition about the base
molecule. Although this could be framed as an example of out
of distribution predictions, the point of MMACE is to explain
predictions and thus we desire an alphabet that results in
human interpretable counterfactuals. This is necessarily
subjective, but this example shows a limited alphabet provides
simpler explanations. Thus, we recommend the basic alphabet
in almost all cases. One exception may be organometallic
molecules, where exchanging a metal in a counterfactual may
be helpful for understanding.
4.5 PubChem derived counterfactuals

We examine using PubChem on the blood–brain barrier
permeation prediction task with the Gleevec molecule. It is
known that Gleevec weakly penetrates the blood–brain barrier.88

Fig. 8 shows the counterfactuals derived from the PubChem
database. The two counterfactuals are structurally similar to the
base molecule except the substituted functional groups in the
nitrilo group. Based on this result we can conclude the tertiary
amine of the pyridine plays a vital role in blood–brain barrier
permeation. Although the Tanimoto distance between the base
and counterfactuals are higher when compared with STONED
method, we are able to generate counterfactuals which are
experimentally stable by querying the PubChem database.
5. Discussion

Counterfactuals are human interpretable explanations
composed of molecular structures that explain model
Fig. 8 PubChem53 derived counterfactuals from the blood–brain
barrier permeation prediction.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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predictions. Counterfactual generation has been a difficult task
as it requires feature optimization. The MMACE method over-
comes this limitations by enumerating chemical space. Key
advantages of MMACE method are that it requires no gradients,
training, or additional data to generate per-prediction expla-
nations. Furthermore, MMACE is independent of the model
architecture used for classication and regression tasks.
Enumerating chemical space was done with the STONED
SELFIES method51 due to the surjective property of SELFIES.52

Furthermore, we explored using the PubChem database to
restrictively expand the chemical space with only experimen-
tally feasible molecules during counterfactual generation.

To illustrate the model-agnostic nature of MMACE we test
our method on three different model types and three datasets.
In the rst experiment we use a random forest model which
classies blood–brain barrier permeation of molecules based
on the database by Martins et al.68 In the second experiment we
have selected a regression problem that predicts solubility of
small molecules using an RNN. Unlike in the previous binary
classication experiment which nds counterfactuals with
a change in the labels, here we generate counterfactuals which
both increase and decrease solubility. In our third experiment,
we use a GNN for binary classication of HIV activity of labeled
data from the drug therapeutics program.85 Furthermore, we
have analyzed the effect of three MMACE parameters in coun-
terfactual generation. Based on our ndings, we draw the
following conclusions; (1) the number of molecules sampled is
limited by the inference model while a higher number is better
(2) one or two mutations in counterfactuals are recommended
(3) the basic alphabet with only B, C, N, O, S, F, Cl, Br, I atoms is
recommended.

6. Conclusions

AI is causing a seismic shi in chemistry research. Despite the
accuracy of AI models, they almost never have interpretations.
Thus it can be difficult to understand and trust experiments
derived from AI models. This work proposes a universal
explainer for any black-box model without requiring training
data and regardless of model type. This is based on counter-
factuals, which are interpretable explanations composed of
molecular structures. To illustrate the model-agnostic nature of
MMACE we tested our method on three different model types
and three datasets.
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