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High-throughput screening, next generation
sequencing and machine learning: advanced
methods in enzyme engineering
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Enzyme engineering is an important biotechnological process capable of generating tailored biocatalysts

for applications in industrial chemical conversion and biopharma. Typical enhancements sought in

enzyme engineering and in vitro evolution campaigns include improved folding stability, catalytic activity,

and/or substrate specificity. Despite significant progress in recent years in the areas of high-throughput

screening and DNA sequencing, our ability to explore the vast space of functional enzyme sequences

remains severely limited. Here, we review the currently available suite of modern methods for enzyme

engineering, with a focus on novel readout systems based on enzyme cascades, and new approaches to

reaction compartmentalization including single-cell hydrogel encapsulation techniques to achieve a

genotype–phenotype link. We further summarize systematic scanning mutagenesis approaches and their

merger with deep mutational scanning and massively parallel next-generation DNA sequencing

technologies to generate mutability landscapes. Finally, we discuss the implementation of machine

learning models for computational prediction of enzyme phenotypic fitness from sequence. This broad

overview of current state-of-the-art approaches for enzyme engineering and evolution will aid

newcomers and experienced researchers alike in identifying the important challenges that should be

addressed to move the field forward.

1. Introduction

The pharmaceutical industry is rapidly moving from small
molecule therapeutics towards biologics. Among the various
classes of biologics under development, therapeutic enzymes
are gaining attention as molecular entities that can catalyze
specific chemical reactions inside the body to achieve a ther-
apeutic effect. Therapeutic enzymes can be delivered systemi-
cally as full proteins or incorporated into gene therapy vectors
to transduce target cells with specific functionality in vivo.
Antibody-targeted enzyme prodrug therapy1 and gene-directed
enzyme prodrug therapy2 both represent valuable therapeutic
strategies with significant potential in the clinic. In all of these
envisioned applications, understanding sequence-function
relationships of therapeutic enzymes will play a crucial role.

There is therefore an urgent need for improved methods for
molecular analysis and enhancement of therapeutic enzymes.
Naturally occurring enzyme sequences are typically not suitable

as biopharmaceuticals due to a general lack of stability, devel-
opability, and/or activity. In this context, molecular enhance-
ment by improvement of colloidal stability, catalytic turnover
rate, substrate binding affinity, and/or sensitivity to environ-
mental conditions are essential steps in enabling therapeutic
enzymes to reach their full potential. The establishment of
rapid design, build, test, and learn cycles and the analysis of
large-scale sequence-function relationships will be crucial for
the advancement of therapeutic enzymes towards clinical
translation.

Laboratory directed evolution is by now a well-established
paradigm for improving enzyme properties, having been
recently awarded a Nobel Prize.3 This process mimics natural
evolution by applying selection pressure on a library of genetic
variants of a parent enzyme sequence, and propagating pro-
teins with the desired function into subsequent generations,
which are then further subjected to diversification and pheno-
typic screening/selection. Despite the general success of
enzyme directed evolution, current technologies only scratch
the surface of the vast space of protein sequences. New meth-
ods for efficiently exploring productive sequence space, and
rapidly screening phenotypes are therefore as important as
ever. Recent commoditization of massively parallel DNA
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sequencing technologies (i.e., next-generation sequencing) are
further providing new capabilities for generating large datasets
of sequence-function pairings. The purpose of this review
article is to explore recent developments within several the-
matic areas of enzyme engineering with an emphasis on screen-
ing methods design and new workflows supported by next
generation sequencing and machine learning.

2. Multi-enzyme cascades as readout
systems

Many enzymes in nature perform reactions in which products
are not easily measured by available instruments at high-
throughput. However, a comprehensive toolbox of techniques
to measure enzymatic activity is essential for success in a
directed evolution campaign. Coupling the initial reaction to
one or more auxiliary reactions through a cascade can address
this challenge. The most common auxiliary reactions use other
enzymes, which in turn produce a measurable change of
absorbance or fluorescence. For coupled enzyme reactions
systems, typically the auxiliary enzymes need to be in excess
compared to the primary enzyme. In this way, the system can be
setup such that the rate-limiting step is the reaction performed
by the first enzyme. Under these conditions, the overall mole-
cule flux through the pathway reports the activity of the initial
enzyme.4 Measuring absorbance or fluorescence through
coupled reactions allows continuous monitoring of enzyme
activity, and enables simple identification of deviations in
activity such as lag period or a falling-off in reaction rate.5,6

In addition, in coupled enzyme assays it is necessary to take
into account the suitability of the environmental conditions
(temperature, pH) for all involved enzymes in the cascade.

As the need for the improved enzymes in various industries
has increased over the years, methods for activity detection in
enzyme engineering experiments have been fine-tuned. It has
become important that enzyme assays have high sensitivity and
are adapted to medium- and high-throughput screening cam-
paigns. The numerous examples of coupled assays used in
directed evolution and enzyme engineering outlined below
have demonstrated the versatility of enzyme cascades in this
context.

2.1 Enzyme cascades in library screening and directed
evolution

Enzyme cascades can be applied to produce detectable changes
in absorbance upon modification of cofactors7 and this process
can be used as a platform for enzyme engineering. For example,
this strategy was applied in a microwell plate assay to perform
directed evolution of lipases and esterases, where the product
of these hydrolases (acetic acid) acts as a substrate for an
enzyme cascade composed of four different enzymes. As a
result of this cascade, an increase in the 340 nm extinction
was detectable due to the accumulation of the cofactor NADH.8

Other molecules, such as Ellman’s Reagent, have also been
used for colorimetric output in a four-step enzyme cascade to

assess the activity of S-adenosylmethionine-dependent methyl-
transferases.9 In another example, Ortiz-Tena and colleagues devel-
oped a system where two reactions were performed by five different
enzymes, all coordinated into an enzyme-coupled reporter system
for the activity of sulfatases.10 In this case, the activity of the
sulfatase shifts the equilibrium of the first reaction, generating
GDP as a side-product. As a result, pyruvate phosphate dikinase,
pyruvate oxidase and horseradish peroxidase (HRP) in a subsequent
reaction were coordinated to produce Bindschedler’s green dye. The
sequential use of an oxidase followed by a peroxidase to create
either a dye or a fluorophore is well established and has been
combined in multiple ways, proving that robust and sensitive
enzyme cascades are a transferable tool among enzyme engineering
campaigns.

More recently, Begander and colleagues11 developed a simi-
lar two-step reaction scheme to assess the enzymatic activity of
a D-glycerate dehydratase. In this work, the second reaction
uses the same set of enzymes to convert pyruvate into Bindsche-
dler’s green dye. It is noteworthy that the key elements of a
previously built pathway were successfully transferred to a
screening system for a new target enzyme. This demonstrates
the capacity of enzyme cascades to widen the applicability of
pre-existing screening systems.

Other directed evolution experiments have not only used
multi-enzyme cascades to produce a readable output, but also
evolved multiple enzymes within a cascade simultaneously.
These directed co-evolution experiments targeted two cellulases
(an endoglucanase and a b-glucosidase) expressed from a single
operon in E. coli. The operon was targeted by error-prone PCR
to generate mutagenic libraries. Screening took place as a result
of co-expression, where the conversion of the insoluble sub-
strate to oligosaccharides was catalysed by the endoglucanase.
Subsequent activity of b-glucosidase produced glucose, which
was in turn used as a substrate to the glucose oxidase/HRP
cascade that produced a colorimetric dye.12,13 Most interest-
ingly, this experimental setup enabled screening for synergistic
effects between individual components in the cascade. The
enzymes were evolved individually and simultaneously, with
the latter approach proving more effective.

The development of microfluidic high-throughput screening
(HTS) methods to detect changes in absorbance is also of
special interest for enzyme evolution. The technique allowed
in vitro evolution of an L-phenylalanine dehydrogenase by
coupling its activity to a reaction that forms a formazan dye
through the oxidation of NADH. This work opens a window of
opportunity to evolve a wide range of enzymes with HTS
methods, which were previously unavailable.14 This system
does not use enzyme cascades directly coupled to the reaction
of interest, but instead relies on a tetrazolium dye for coupling,
an approach that allowed for a 25-fold improvement in detec-
tion when compared to direct NADH detection. This shows the
power of signal amplification and the applicability of coupled
assays within the setting of directed evolution in HTS
methods.14

Fluorescence-based detection is generally more sensitive
than absorbance-based detection, and much of the recent
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research has focused on creating fluorescent outputs from
enzyme-coupled reporter systems. For example, directed evolu-
tion of geraniol synthetase was enabled by the implementation
of an enzyme-coupled assay in vivo. Activity of this enzyme
resulted in the accumulation of the reduced cofactor NADH,
which served as a co-substrate for a secondary reaction cata-
lyzed by diaphorase, resulting in production of the red fluor-
escent compound resorufin.15 Such a strategy was used for
developing a HTS cellulase assay in which expressed variants of
cellulases were isolated in droplets together with their encod-
ing genes, the reaction substrate (i.e. carboxymethyl cellulose),
and the readout enzymes hexose oxidase and vanadium bro-
moperoxidase. The former enzyme is a promiscuous oligosac-
charide oxidiser which produces H2O2 whilst the latter is the
output enzyme producing a positively charged fluorophore in
proportion to H2O2 abundance.16,17 Enzyme coupling has also
aided the efficient engineering of highly stereoselective cyclo-
hexylamine oxidases using droplet-based HTS methods, where
horseradish peroxidase couples the activity of the oxidase with
the fluorogenic dye Amplex UltraRed.18

Another approach to enzyme HTS focused on selectively
labelling cell surfaces with a fluorophore in order to screen
active variants within a library. This strategy relies on cell-
surface display of active enzymes and a subsequent enzyme-
coupled assay that triggers labelling of the cell surfaces. Some
of the earliest examples of applying this HTS method to
directed evolution generated an enantioselective esterase by
displaying esterases and peroxidases on the cell surface of
E. coli. To do so, the different enantiomers were fluorescently
labelled and when the esterase was active, the fluorophore from
the substrate was released. This enabled the peroxidase to
covalently bind it to cell-surface proteins. Finally, the positive
variants were sorted using fluorescence activated cell sorting
(FACS).19 Further research adapted this technology to the yeast
S. cerevisiae and combined it with microfluidics to evolve
glucose oxidase (GOx). Cells expressing a library of randomised
variants of the enzyme were emulsified in single water-in-oil
microdroplets together with the substrate (glucose), a reporter
enzyme (HRP) and a fluorescent substrate for the reporter
enzyme (fluorescein tyramide), which was covalently linked to
the cell surface of yeast when hydrogen peroxide was produced
by GOx. After incubation with the enzyme cascade, the oil phase
was removed and the labelled cells were analysed using FACS.20

The use of microfluidics inhibited crosstalk and allowed the
use of a longer enzyme cascade without requiring the display of
both components. However, since the fluorophore had to be
covalently linked to the cell-surfaces, lower signal amplification
was observed.

Implementing enzyme cascades in evolutionary workflows
not only allows detection of a large variety of products but can
also amplify signals and provide easily detectable products with
a high signal to noise ratio.21 Moreover, the introduction of
cascades avoids the accumulation of products in the reaction
vessel and can mitigate issues such as product inhibition and
product toxicity.22 Furthermore, enzyme cascade readout sys-
tems can avoid the requirement of using chemically modified

substrate analogues, avoiding bulky fluorescent groups and
allowing enzyme variants to be screened on natural
substrates.23 Finally, multi-step enzyme cascades offer oppor-
tunities to increase screening throughput by in some cases
providing an optically readable output that can be evaluated at
higher speed and throughput than conventional chemical
analysis such as mass spectrometry or liquid chromatography.
Enzyme cascades when combined with novel reaction compart-
mentalization strategies have the potential to enable more
efficient evolution workflows. Based on these advantages, the
establishment of novel enzyme cascades can broaden the scope
of possible enzyme targets that can be screened and studied by
directed evolution.

3. Compartmentalization methods in
high-throughput screening

An essential feature for directed evolution is maintaining a
phenotype–genotype link through the screening process. For
pooled screening of binding proteins (e.g., antibodies), labelled
target biomarkers can be used to tag cells displaying variants of
the binder, however, for enzyme screening the persistent mole-
cular diffusion of substrate and product molecules away from
the biocatalyst creates a physical/chemical challenge that must
be overcome to achieve fidelity of the genotype–phenotype link.
In order to preserve this link, various reaction compartmenta-
lization strategies have been developed throughout the years.
One of the most widely utilized compartmentalization methods
is simple microtiter plate (MTP) screening, which depending on
infrastructure may allow analysis of 104 variants per day.
Recently, a fully automated robotic platform was described
for MTP library screening of four different enzymes, which
increased throughput 2 to 3 fold compared to manual handling
of clones.24 However, with the recent rise of ultra-HTS methods,
medium-throughput MTP technologies are becoming outdated.
Bacterial and eukaryotic cells with their natural membranes
can also serve as natural compartments, and these approaches
were first exploited for HTS and used in many enzyme directed
evolution campaigns, some of which will be explained in
detail in the following sections. However, beyond MTP and
membrane-separated cells as compartments, artificial reaction
compartments in the form of single and double emulsions have
emerged for entrapment of cells25 or in vitro translation/
transcription (IVTT) machinery to produce the enzyme of
interest and physically colocalize genotype and phenotype26

(Fig. 1a and b).
Beside these well-established compartments used in HTS,

new methods are regularly being developed to increase
throughput and sensitivity of the screening process. Some of
the more recent examples include screening in microcapillary
arrays,27 microbeads,28 or liposomes.29 Microcapillary array
screening offers the advantage of cell spatial separation com-
parable to MTP platforms but with significantly higher
throughput. This method uses a sorting method based on a
pulsed ultraviolet laser, and extracts cells from a microcapillary
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with high selectivity and viability. The versatility of this screen-
ing method has been shown in the engineering of binders,
fluorescent proteins and enzymes. The authors point out
several distinctions between high-throughput FACS-based
screening and microarray capillary screening. Some of them
include the possibility of distinguishing enzyme variants based
on reaction kinetics instead of a single point fluorescent
intensity, as well as the possibility of direct cell imaging and
decoupling cell analysis and sorting.27

3.1 Cells as natural compartments

The use of microbial cells, typically bacteria or yeast, as natural
compartments for enzyme directed evolution campaigns has
been explored going back many years. The main advantages
that cell compartments bring are a direct genotype–phenotype
link, ease of manipulation, and ease of recovery of selected
clones. Despite these advantages, there are a number of limita-
tions associated with the use of cells as sole natural compart-
ments for high-throughput screening. One limitation is that
typically the substrate must readily pass through the cell
membrane. Modified substrates can be used for such purposes,
but as the saying goes ‘‘you get what you screen for’’,30 and
using a substrate that is structurally as close as possible to the

final desired or natural substrate is critical. In these campaigns,
conversion of the membrane-permeable substrate into product
by a single enzymatic turnover or multi-enzyme reaction cas-
cade should give a readable signal, preferably by modulating
cell fitness (e.g., live/die-based selection) or generating a fluor-
escent signal. Furthermore, the product should not diffuse out
of the cell.

Recently a FACS-based HTS system using E. coli cells as natural
compartments was reported for monoamine oxidase, where all the
above-mentioned considerations were made.31 Sadler et al. used an
acetylated fluorescein derivative as an indirect reporter probe that
could diffuse into the cell, where the intracellular esterases cleaved
acetyl groups leaving the probe susceptible to oxidation in a
presence of H2O2 and endogenous peroxidases. This approach
generated a fluorescent compound (Fig. 1c) that served as the signal
for single-cell sorting. This screening method was shown to be
versatile, and many different substrates could be screened using the
same assay. A similar approach was used for directed evolution of
P450 BM3 monooxygenase, in which 7-benzoxy-3-carboxycoumarin
ethyl ester underwent intracellular de-esterification and subsequent
dealkylation by P450, forming a fluorescent coumarin derivative.32

In developing approaches that leverage appropriate sub-
strate/product pairs, linking fluorescent protein expression to

Fig. 1 Examples of compartmentalization methods for high-throughput screening. (a) Aqueous droplet entrapping a gene and an in vitro translation/
transcription (IVTT) mixture for expression of cellulase A2 (CelA2) which converts fluorescein-di-b-D-cellobioside (FDC) to fluorescein. (b) Aqueous
droplet entrapping a yeast cell expressing glucose oxidase (GOx) on the surface which, produces H2O2 for subsequent reaction with horseradish
peroxidase (HRP) and covalent labelling of the cell with tyramine-fluorescein. (c) Intracellular expression of monoamine oxidase (MAO-N) oxidizes
(S)-(�)-alpha-methylbenzylamine (AMBA) producing H2O2. Carboxy-2,7-dichloro-dihydrofluorescein diacetate (C-H2DCFDA) is cleaved by intracellular
esterase, generating carboxy-2,7-dichloro-dihydrofluorescein (C-H2DCF) which is oxidized to fluorescein by an intracellular peroxidase in the presence
of H2O2. (d) A GFP reporter is down-regulated by expression of a repressor (ArgR) in the presence of L-arginine (L-Arg), or upregulated with induced
expression of arginine deiminase (ADI) that depletes L-Arg. (e) GOx expressed on the yeast surface triggers encapsulation of the cell in a fluorescent
alginate hydrogel in presence of HRP and glucose.
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enzyme activity can simplify and increase the throughput of
screening assays. One such example was demonstrated in the
work of Chen et al., in which the authors developed a screening
platform based on ligand-mediated eGFP expression.33 They
constructed a 2-vector E. coli expression system, where one
vector carried the enzyme of interest (arginine deiminase) and
the other vector carried the genes for eGFP (expressed under
argG promoter) and argR which acts as a repressor of the argG
promoter in presence of arginine. This system relied on the
competitive conversion/binding of arginine between arginine
deiminase and the arginine repressor. When inactive or low
activity enzyme variants were expressed, arginine bound to
argR and together they repressed eGFP biosynthesis, while
expression of high-activity enzyme variants depleted arginine
resulting in an increase in eGFP biosynthesis (Fig. 1d).

One more example of fluorescent protein expression linked
to enzyme activity was reported by Sanchez and Ting34 for
directed evolution of TEV protease toward increased kcat. They
expressed TEV protease in the yeast cell and used a TEV
cleavage sequence linked to the transcription factor, which
was subsequently released and translocated to the nucleus to
start transcription of a reporter protein, citrine. This screening
method for TEV protease differed from a previous method
reported by Yi et al.,35 who screened a TEV-P library for
substrate specificity using yeast surface display. Yi applied
endoplasmic reticulum (ER) sequestration, which allowed for
simultaneous expression and localization of both enzyme and
substrate library in the ER, followed by substrate surface dis-
play upon enzyme cleavage.

Another screening strategy relying on yeast surface display
was developed for the directed evolution of bond-forming
enzymes36,37 such as microbial transglutaminase, an enzyme
with potential for antibody–drug conjugate synthesis. Deweid
et al.37 displayed microbial transglutaminase on the yeast sur-
face and used intrinsic lysine residues to form an isopeptide
bond with a biotinylated oligopeptide. This scheme led to
enzyme auto-labeling which enabled the screening of mutant
libraries using increased selective pressure by reducing sub-
strate availability.

Fluorescent proteins are not necessarily only used as repor-
ters for enzyme activity, but their applicability as carriers for
non-canonical amino acids in library screening of p-cyano-L-
phenylalanyl aminoacyl-tRNA synthetase (pCNFRS) has been
shown in the work of Kwok et al.38 The authors used a strain-
promoted azide–alkyne click (SPAAC) reaction to distinguish
superfolder GFP with incorporated p-azido-L-phenylalanine
(pAzF), and based on the reaction selectivity they successfully
evolved pCNFRS to preferentially incorporate pAzF from the
mixture of pAzF and p-cyano-L-phenylalanine (pCNF).

3.2 Cell-free artificial compartments

Artificial reaction compartments in the form of single (water-in-
oil) or double (water-in-oil-in-water) emulsions have emerged as
an alternative to cellular compartmentalization for the evolu-
tion of enzymes. This approach is advantageous for enzymes or
substrates that are toxic to the cell.39 These aqueous

compartments are able to colocalize genotype and phenotype,
and provide the possibility to segregate DNA for translation
in vitro to synthesize the enzyme of interest, thus eliminating
the need for cell translational machinery.40 One of the first
FACS based high-throughput screenings of enzyme libraries in
double emulsions was conducted by Mastrobattista et al.26 They
evolved the protein Ebg into an enzyme with significant b-
galactosidase activity using a fluorogenic fluorescein-based
substrate, which after enzyme conversion was entrapped in
the aqueous compartment. The separation of droplets by an oil
phase is meant to prevent signal cross-talk. However, cross
diffusion between droplets for emulsion-based systems is one
limitation when choosing a substrate. Differently from cell
compartmentalization, here neither the substrate nor product
should diffuse across the oil phase. A similar fluorogenic
substrate was used for in vitro high-throughput screening of a
randomized cellulase library, which yielded a cellulase variant
with a 13.3-fold increase in catalytic activity (Fig. 1a).41 In this
work, the authors analyzed the influence of different emulsifi-
cation techniques like stirring, homogenization and membrane
extrusion for homogeneity of droplets in size and shape.

The challenge of emulsion polydispersity has been
addressed using well-controlled microfluidic-based emulsion
production methods. Microfluidic systems allow for highly-
controlled water-in-oil droplet emulsification, and allows
reagent addition by droplet fusion or micro-injection followed
by droplet sorting.42 Fallah-Araghi et al. used a microfluidic
system to compartmentalize single genes of b-galactosidase
and amplify them by PCR before fusing the droplets with an
IVTT mix and a fluorogenic substrate. Although microfluidic
sorting rates can in some cases be 10-fold lower than typical
FACS sorting rates, microfluidics offer a high level of control
over the reaction volumes and conditions. Combining
microfluidic-based water-in-oil and later water-in-oil-in-water
emulsions with FACS sorting can significantly improve the
speed of sorting as well as the enrichment factor.43

Microfluidic droplet-based screening relies typically on
fluorogenic substrates, or alternatively on fluorescent reporter
protein expression, an approach called affinity-fed translation
(AFD).44 By using an enzyme that produces an amino acid, it
was possible to control the expression of a reporter protein in
an aqueous droplet with IVTT. The sensitivity of screening was
improved by expressing the enzyme of interest and reporter
protein simultaneously. Very recently a novel detection method
was also introduced that coupled microfluidic screening and
sorting with mass spectrometry,45 which is very powerful as it is
chemically generalizable.

3.3 Cells entrapped in artificial compartments

Parallel to the development of cell free artificial compartments
for the directed evolution of enzymes, progress in the compart-
mentalization of whole cells in emulsions has also been
made.25 Entrapping whole cells in artificial compartments
can produce higher numbers of enzyme molecules per droplet
(B104 compared to B102 that are typically obtained using
IVTT). With a higher number of molecules, sensitivity of the

ChemComm Feature Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

02
5/

10
/1

7 
10

:3
9:

04
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cc04635g


2460 |  Chem. Commun., 2022, 58, 2455–2467 This journal is © The Royal Society of Chemistry 2022

assay and selection are significantly enhanced, despite the low
signal-to-background ratio. Using such an approach, Aharoni
et al. evolved serum paraoxonase with negligible thiolactonase
activity to a variant with approximately 100-fold increased
catalytic activity compared to the wild type enzyme.

Analogous to substrate diffusion into the cell, researchers have
investigated substrate delivery through the oil phase into aqueous
droplets to precisely control the start of the enzymatic reaction and
minimize background fluorescence for highly active enzymes.46,47

One of these works developed fluorescence droplet entrapment
(FDE) substrates for three classes of enzymes (phosphotriesterases,
esterase and glucosidases).47 The authors investigated the hydro-
phobicity of fluorogenic substrates in terms of permeability through
water-in-oil-in-water emulsions, cell membranes, and diffusion out-
side the inner aqueous droplets using log D values as an evaluation
parameter. In their work, Ostafe et al.46 used a substrate delivery
system for glucose oxidase expressed on the yeast surface. Yeast cells
were entrapped in water droplets and b-octylglucoside was added to
the primary emulsion, where it underwent enzymatic cleavage by
externally added b-glucosidase generating glucose. After the glucose
became available for glucose-oxidase, cells harboring active variants
were covalently labeled with fluorescein-tyramine and extracted
from the emulsion droplets. Extraction of the covalently labeled
cells simplified the FACS analysis compared to sorting water-in-oil-
in-water double emulsions. Further improvements in screening
enzyme variants with higher catalytic efficiency instead of the overall
activity could be obtained by normalizing fluorescent signals to the
expression levels of the enzyme. Normalization was done with either
antibody labelling of the enzymes expressed on the cell surface,46 or
using co-expression with a reporter gene.48,49

Microfluidic approaches are also compatible with high-
throughput screening and enzyme evolution using whole cells
in droplets and emulsions.18,50,51 Cell recovery and post-
screening analysis is more straightforward than for IVTT sys-
tems, with all the benefits that microfluidic emulsification
brings. One of the first successful fluorescent activated droplet
sorting (FADS) experiments with whole cells was conducted on
a model library of b-glucosidase expressed in E. coli,52 which
was later used for sorting of the horseradish peroxidase library
expressed on the yeast surface, enabling discovery of an enzyme
variant with nearly diffusion-limited catalytic efficiency.53

Besides fluorescent detection, absorbance activated droplet
sorting (AADS) was developed and validated for whole cells in
microfluidic droplets by sorting a phenylalanine dehydrogen-
ase library.21 Absorbance as a detection method can signifi-
cantly extend the scope of enzymatic assays that can be used in
directed evolution, despite the lower sensitivity (compared to
fluorescence) afforded by short microscale path lengths.

3.4 Cell encapsulation in hydrogels

Emerging technology for high-throughput enzyme screening
based on whole cells relies on encapsulation in fluorescent
hydrogels, as reported by our group and others.54,55 High-
throughput screening in hydrogels was firstly introduced by
Pitzler and colleagues for the directed evolution of phytase in
E. coli cells.54 Their screening system used an enzymatic

phytase/glucose oxidase cascade in which H2O2 produced by
glucose oxidase reacts with Fe2+ ions to produce hydroxyl
radicals. Hydroxyl radicals can then initiate copolymerization
of N-vinyl-pyrrolidone, poly(ethyleneglycol)-diacrylate, and
fluorescent Polyfluor 570 on the E. coli cell surface, creating a
shell around the cell. Using hydrogel encapsulation, the
authors were able to differentiate between active and inactive
cells, and thereby evolve the phytase and isolate a variant with
31% increased catalytic activity for non-natural fluorescent
substrate and 5% increased catalytic activity toward phytic
acid. The same technology was used for directed evolution of
esterase, lipase and cellulase using glucose derivatives as
substrates.56 Even though the applied screening system was
shown to be adaptable for different classes of hydrolases, the
use of non-natural substrates can lead to false-positive variants
and should be taken with caution.

In a work from our group, we developed hydrogel-based enzyme
activity assays using Fenton chemistry to generate polymerization
initiators.57–59 To adapt these approaches to library screening, we
developed a hydrogel encapsulation system for screening GOx
libraries expressed on the yeast surface for increased enzyme activity
and stability.60 Cells expressing active enzyme variants were encap-
sulated in fluorescent alginate carrying phenol moieties that poly-
merized in the presence of H2O2 and HRP (Fig. 1e). By screening for
variants that could encapsulate the cells following exposure to a
denaturing agent, variants with higher stability and activity could be
sorted and isolated by FACS. The main advantage of this system is
that it allows screening of enzyme libraries in a pooled fashion.
Since the radicals generated to initiate the polymerization reaction
have limited stability in biological media, the polymerization
remains localized to the cell surface. This represents a reaction-
based compartmentalization approach and enables one-pot library
screening, greatly increasing throughput. Other bottlenecks in
throughput including transformation efficiency and FACS deter-
mine the ultimate throughput of such systems. This hydrogel high-
throughput screening represents the first system used for the direct
screening of enzyme stability by flow cytometry, obtaining GOx
variants with 13 to 15% increased thermal stability compared to the
wild type enzyme. In addition, several advantages were shown when
the alginate hydrogel was used for cell encapsulation compared to
the previously described method based on Fenton chemistry.54

Alginate hydrogels are thick and robust, protecting the cells from
osmotic lysis and allowing size-based filtration of encapsulated
cells.55 Besides, the reaction mixture doesn’t require multiple
monomer and polymer components, but a single fluorescent poly-
mer. Future work in our group on HRP-mediated alginate polymer-
ization is focusing on screening for alternative reaction chemistries
using enzymatic cascades that generate H2O2 as the final reaction
product.

4. Next-generation approaches in
enzyme engineering

Well-defined library construction methods combined with
thorough phenotypic characterization can shed light on
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structural and biophysical properties of enzymes, report func-
tional consequences of altered residues, and predict their
natural evolutionary trajectories. Over the years the optimiza-
tion of screening methods based on multi-enzyme cascades as
readout systems and the development of adequate compart-
mentalization strategies to guarantee the genotype–phenotype
linkage have favoured a higher processivity in testing enzyme
variants therefore facilitate a more systematic and complete
investigation of enzyme sequence landscapes. Relatively
recently the field of enzyme engineering started also to take
advantage of the revolutionary advancements in DNA sequen-
cing technologies giving rise to very powerful workflows for the
study of enzyme properties by combining the use of high
efficiency screening and next-generation DNA sequencing.
Below we give a brief summary of prior works that made use
of systematic scanning-based mutagenesis approaches coupled
with medium to high-throughput screening for the study of
enzymes. We also include a further subsection to describe
recent studies combining the use of high efficiency screening
and next-generation sequencing for the investigation of various
enzyme properties.

4.1 Systematic investigation of enzyme sequence landscapes

The availability of automated robotic systems paired with
controlled mutagenesis protocols allowed, already several years
ago, a noticeable boost in mutant libraries quality and screen-
ing efficiency leading to a more comprehensive investigation of
enzyme sequences and properties. In this class of experiments,
enzyme variants are typically tested individually in MTPs at
medium throughput.

One of the first comprehensive mutagenesis scans on an
enzyme was presented by Gray and colleagues, who screened
variants of a dehalogenase enzyme using a multi-well plate
assay to identify single mutants with higher thermostability.61

Since then, analogous screening workflows were applied to the
detection of stability enhancing mutations of other enzymes
such as xylanase62,63 and phytase64 and similarly to the study of
enantioselectivity of a nitrilase catalyst by combining an MTP
assay with mass spectrometry.65 Recently Fulton and colleagues
reported a systematic study on a lipase A to determine the effect
of single mutations on its detergent tolerance.66 Another lead-
ing example of linear scanning of sequence space supported by
MTP screening was presented by Van der Meer and
colleagues.67,68 In this work, single mutants of the enzyme 4-
oxalocrotonate tautomerase (4-OT), a promiscuous catalyst of
carbon–carbon bonding reactions, were screened for enhanced
Michael-type addition activity and improved enantioselectivity.
In addition, selected mutations impacting the enantioselectiv-
ity of the catalyst were combined, favoring the expression of
multiple mutant variants producing products with further
improved enantiopurity.

Typically, the first comprehensive scanning mutagenesis
methods applied to enzymes focused mainly on the investiga-
tion of catalysts that could provide direct survival advantages or
detectable phenotypic changes making the screening of the
variant library compatible with high throughput technologies

(i.e. plate survival assays and single cell sorting) without any
further adaptation required. Pioneering works were the pub-
lication of a nearly complete functional map of the T4 lysozyme
generated by amber suppression and tested through a plating
plaque-forming assay.69 Several other works focused over the
years on the study of beta lactamase TEM-1 enzyme that
provides resistance against B-lactam antibiotics conveying sur-
vival advantage as the selection mechanism.70–72 Other recent
examples include mutagenic scanning studies on VIM-2 lacta-
mase that involved scanning-based library construction meth-
ods combined with NGS,73,74 as outlined below.

4.2 High-throughput screening and next-generation
sequencing, a winning combination

Along with the design and implementation of new tailored
high-throughput screening methods, advancements in DNA
sequencing technologies have significantly impacted the state
of the art in enzyme engineering and in vitro evolution. Deep
mutational scanning (DMS) is a method that couples high-
throughput screening and high-throughput DNA sequencing
technology to enable a thorough investigation of protein fitness
landscapes. DMS consists of three main steps. First, system-
atically designed gene libraries encoding target protein variants
are synthesized, validated through sequencing and used for
expression of protein variants (Fig. 2a). Next, cells or synthetic
compartments carrying the variants are screened using an
appropriate method that assays the phenotypic function of
the protein. Finally, the DNA library is retrieved from both
input and post-screening/selection populations and its con-
tents revealed through massively parallel next-generation
sequencing (NGS).75 The frequency of each variant based on
the NGS read count is quantified and its enrichment statistic is
calculated by comparing its abundance before and after the
screening/selection step. Sequences containing mutations with
positive effects are expected to be enriched in the post screen-
ing/selected population, while enrichment ratios of one or
lower are found for sequences with neutral or negative pheno-
typic effects. Finally, according to the nature of the screening
methods adopted, the enrichment ratios are normalized and
converted to fitness scores that together generate a compre-
hensive overview of the protein fitness landscape (Fig. 2b).
Collectively, the massive amount of data generated in such an
experiment is extremely helpful for decoding complex
sequence-function relationships and lays the foundation for
the design of informed libraries to accelerate protein
engineering work.

DMS requires the analysis of several thousands of variants in
a single campaign. For the evolution of binders, this approach
has become quite common, relying on methods such as cell
surface, ribosome and phage display as expression platforms to
enable DMS. However, for enzymatic reactions the compara-
tively lower throughput of enzyme screening assays has
resulted in fewer reports of the application of DMS. For some
enzyme screening methods, the requisite library sizes for DMS
(typically on the order of 104 variants) are still too large.
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Nevertheless, almost a decade ago the first investigation of
an enzyme fitness landscape supported by deep sequencing
appeared in literature.76 The authors targeted TEM1 beta
lactamase and screened mutant libraries of the enzyme
through selection on agar plates containing a fixed concen-
tration of antibiotic. Sequencing of selected variants revealed
positions with different inclinations to accept amino acid

changes without impacting the enzyme activity. Along the same
lines, Firnberg and colleagues reported mutational scanning of
TEM-1 by screening a nearly comprehensive single-mutant
library at 13 different ampicillin concentrations, thereby gen-
erating a detailed overview of the effects of each amino acid
substitution on the overall protein fitness at different levels of
selective pressure.77 Moreover, the authors analyzed and

Fig. 2 Systematic investigation of enzyme fitness landscapes through deep mutational scanning. (a) A systematically constructed mutant library of a
target sequence is generated through site saturation mutagenesis and validated through DNA sequencing. The enzyme variants represented in the library
are visualized on a sequence space map. (b) Enzyme variants are expressed and tested using high-throughput screening or selection methods. The DNA
material is extracted and an enrichment value is calculated for each variant by comparing its abundance in the population before and after screening/
selection. Depending on the screening method, enrichment factors are converted into fitness scores in various ways. Finally, the effect of each single
amino acid mutation on the properties of the target enzymes is represented in a thoroughly informative fitness landscape map. Hotspots indicated
regions of productive sequence space that can be used in future library designs.
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reported effects of silent DNA mutations on the stability and
functionality at both RNA and protein levels, a novel aspect
addressed later on in other works.78,79 Starita and colleagues
adopted an auto-ubiquitination assay of phage displayed var-
iants to explore the fitness landscape of E3 ubiquitin ligase.80

By deep-sequencing the library before and after selection, the
authors found 25 single amino acid mutations that enhanced
activity. Many mutations were located far from the catalytic site,
and would have been difficult to predict using classical focused
or random approaches for enzyme engineering at active site
and first shell residues.

In work combining microfluidic approaches and DMS,
Romero and colleagues developed a microdroplet encapsula-
tion method for single cells expressing glucosidase variants
that they coupled with fluorescence sorting. This DMS work
revealed the effect of amino acid mutations on enzyme fitness
and, by screening the mutant library following thermal stress,
the authors discovered mutations enhancing enzyme
thermostability.81

Coupling survival or growth rate of the host (i.e., selection) is
also readily combined with DMS-based readout methods for
characterizing phenotypic fitness. Klesmith and colleagues
developed a microbial strain able to grow on levoglucosan as
the sole organic source by linking the activity of the investi-
gated enzyme, levoglucosan kinase, to the fitness of the host
organism.82 Similarly, the activity of an RNA guided endonu-
clease was linked to the survival of microbial cells through
inducible expression of a toxic DNA gyrase inhibitor, which
served as a selection system that was then used for DMS of a
CAS9 enzyme.83

DMS was also specifically applied to the study of sequence
determinants that impact protein solubility. TEM-1 and levo-
glucosan kinase activities were abolished through site directed
mutagenesis and the effects of mutations on translation and
folding of the proteins addressed. By coupling these new data
to previous findings on activity for the same catalysts the
authors built a fitness landscape including both properties
and confirmed that shared mutations impacting positively both
activity and solubility in an enzyme are rare.84

With the large datasets provided by DMS, researchers have
begun to address more fundamental questions about enzyme
function and evolution, such as how substrate choice can
impact evolutionary trajectories of enzymes or how the evolu-
tionary trajectory is influenced by the strength of the selective
pressure. Along this line of research, Melnikov and colleagues
demonstrated how the fitness landscape of an enzyme varies
significantly depending on the nature of the selection system.
They constructed 6 parallel fitness landscapes of a Tn5
transposon-derived kinase that confers resistance to antibiotics
and used 6 structurally distinct substrates at increasing con-
centrations for the selection.85 The authors identified protein
residues responsible for orthogonal activity on different sub-
strates without any additional support from structural or
in silico analyses. Furthermore, TEM-1 beta lactamase was
again used as a model enzyme by Stiffler and colleagues to
study the connection between evolvability and robustness of a

fitness landscape. By exposing a comprehensive single mutant
library of TEM-1 to selective pressure at increasing concentra-
tions of its natural substrate ampicillin as well as on a new
substrate cefotaxime, the authors concluded that the robust-
ness of a sequence (i.e. its capacity to accept and tolerate
mutations without impacting the function) strongly depends
on the strength of the selection used and that its divergent
evolvability towards the use of new substrates is facilitated at
lighter selective conditions rather than under strong selective
pressure.86 This intuitively makes sense under the considera-
tion that most mutations are neutral or deleterious.

A key interest among protein biochemists is to gain a deeper
understanding of how enzymes encode substrate specificity.
Several directed evolution campaigns have been successful in
tuning or changing substrate specificity of catalysts. Never-
theless, these works typically explore mutations in the vicinity
of the substrate binding pocket and ignore mutations at distal
residues. In recent work, Wrenbeck and colleagues applied
DMS to study the fitness landscape of an amide hydrolase,
linking its activity to the growth rate of the host cells and
screening a nearly comprehensive single mutant enzyme library
using three different amides as substrates.78 This work showed
that mutations beneficial for a specific substrate are often not
proximal to the catalytic site, once more demonstrating the
advantages of systematic scanning methods such as DMS in
comparison to random or rational approaches. Furthermore
the authors concluded that screening of an enzyme mutant
library using different substrates produces unique fitness land-
scapes with profound differences, emphasized even more when
molecules with significant structural divergence are used.

Currently, DMS supported by NGS and high-throughput
screening platforms represent the most advanced pipelines to
engineer enzymes and explore enzyme sequence and function.
Nevertheless, the application of these methods to the study of
enzymes suffers from a mismatch in throughput, with state-of-
the-art NGS throughput surpassing the best and fastest screen-
ing methods by several orders of magnitude. In fact, while we
have witnessed over the past years steady advancements in
quality and efficiency of sequencing technologies, no striking
breakthroughs have been registered for the development of
equally important high-throughput screening for many cate-
gories of enzymes. This throughput bottleneck has motivated
the development of computational and machine learning
approaches that can be trained on limited experimental data
and interpolate accurate phenotypes from input sequences, as
described below.

5. Machine learning in enzyme
engineering

Machine learning and big data analysis techniques are compu-
tational methods suited to address the challenge of navigating
the vastness of protein sequence space. For this reason enzyme
engineers have started to regularly use those methods to
improve the outcome of directed evolution and enzyme
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engineering campaigns.87–97 Machine learning can improve the
efficiency of downstream experimental studies thereby adding
value and complimenting purely experimental bioengineering
approaches. Moreover, the exponential increase in DNA
sequencing throughput presents a significant opportunity to
combine state-of-the-art computation and machine learning
with large biological datasets in an attempt to learn
sequence-function maps in protein sequence space.

The generic pipeline of a protein engineering campaign sup-
ported by machine learning consists of the generation of experi-
mental data representing sequence-phenotype pairs, and training a
statistical or machine learning model to predict phenotypes from
input sequences never assayed before. The phenotypic property of
interest can be chosen from several features, including catalytic
properties,98,99 substrate affinity, stability,100–102 and expression level
in the host organism. Prominent examples of machine learning
assisted protein engineering include membrane channel
engineering,103,104 protein structure prediction105,106 and protein–
protein interactions.107–109 Although we cannot hope to comprehen-
sively cover this exciting and rapidly developing field in this review,
we would like to outline below some basic considerations in
applying machine learning with a focus on appropriate methodol-
ogy for enzyme engineering.

In order to apply machine learning to enzyme engineering,
the amino acid sequences need to be converted and repre-
sented by numerical arrays. Different methods are available to
accomplish this task, from the tabulations of single amino acid
physical parameters (solubility, charges, pKas, etc.) to combina-
tions of such parameters such as in AAindex,110 a collection of
indices, mutation matrices and statistical protein contact
potentials; or T-scale,111 which uses principal component ana-
lysis to reduce the dimensionality of topological and structural
data of 135 amino acids. Another successful and well estab-
lished method, because of its simplicity, is to convert each
amino acid into bit-based vectors that can be more (one-hot
encoding) or less sparse (binary numbers). Representations of
amino acids can even be actively learned in so-called
embeddings.112

Next, a model typology needs to be selected/chosen accord-
ing to the nature of the problem. If the fitness function studied
behaves in a continuous and ungroupable space, a regression
model may be appropriate. Otherwise, if the discrimination
between different fitness categories of the studied population is
well defined, the model of choice would be a classifier. An
approach could be to start with the implementation of simple
linear models and move to more complex ones if non-linearity
is needed to describe the system under study.

Another aspect to consider for the establishment of the ML
workflow is the quantity of data that needs to be processed.
Kernel based methods such as support vector machines are well
suited for handling hundreds of data points while neural
networks are more suitable if the amount of data is in the
order of hundreds of thousands or even millions of experi-
mental sequences.

A key step consists of the separation of the data into
different sets. The set referred to as the training set includes

the majority of the data (usually 70–80%) and is used to train
the model and learn the best parameters in order to predict the
response variable of interest. The second set referred to as the
validation set is the second most populated one (20–10%) and it
allows a balance of the complexity of the model, known as the
hyper-parameters. This is crucial to avoid underfitting, where
the true behavior of a system is not described sufficiently, as
well as overfitting, where the model fits the training set
extremely well but fails to generalise to other points. Last but
not least, it is important to save a small portion of data
(B10%), which must never be used during the training, to test
the goodness of the model to interpolate and, eventually,
extrapolate to unexplored sequence space. After the generation
of a working trained model, in silico screening of a large
number of different candidate sequences not present in the
initial dataset can be used to evaluate and rank candidates.
Subsequently, the best candidates discovered in silico can be
synthesised in the lab and characterized, and eventually
included in future iterations of model training. This approach
can ultimately lead to massive savings in resources, money and
time. For further explanations on model heuristics and exemp-
lary case studies, we refer the reader to the work of Yang and
colleagues.113

An early theoretical work from Fox114 reported application of
partial least square (PLS) regression coupled with genetic
algorithms to improve directed evolution outcomes. Similarly
another PLS based algorithm was implemented in more recent
work by Cadet and colleagues94 where researchers processed
the data with Fast Fourier Transformation (FFT) and used PLS
to develop a predictive model for the improvement of epoxide
hydrolase.

The technique used by Romero and coworkers115 involved
optimizing thermostable and active P450 enzymes using a
Gaussian process. Specifically, they fit a model using a library
containing 261 sequences. Using this model, they were able to
identify and synthesize a variant with a B9 1C improvement in
thermal denaturation temperature when compared to a pre-
viously engineered variant obtained by classical directed evolu-
tion. The Gaussian process has the advantage of including
uncertainty in regions that were not explored experimentally,
however it is computationally expensive and training time
scales poorly for large datasets.

6. Conclusions and outlook

Enzymes will continue to play an important role in biocatalytic
production of high-value chemicals and directly as biopharma-
ceutical therapeutics in the years to come. The extremely high-
level specificity and catalytic activity of biological enzymes as
compared to non-biological catalysts enables the salient
features of living systems, and these unique properties remain
enticing for scientists and engineers to harness for artificial
purposes.

We have identified several trends representing state-of-the-
art modern methods for enzyme engineering and evolution
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including concepts such as novel reaction cascades for readout,
approaches to reaction compartmentalization to achieve a
genotype–phenotype link, and systematic scanning mutagen-
esis and deep mutational scanning approaches for generating
mutability maps. Improvements in ultrahigh-throughput
enzyme screening technology and DNA sequencing have signifi-
cantly increased the amount of experimental data that can be
obtained from directed evolution experiments, however, big
data is extremely costly and time consuming to obtain. The
availability of computational tools such as machine learning to
extract the most value from these datasets will acquire more
importance with time as screening capacity, DNA sequencing
throughput and computational power increase. In such a
scenario, machine learning approaches will considerably
improve directed enzyme evolution by substantially lowering
time and resources needed to achieve a desired activity level, or
by significantly increasing the performance of enzymes that are
engineered at a fixed cost level. By manipulating genes encod-
ing catalytic enzymes, protein engineers can push these mole-
cules to new levels of fitness and stability and help them reach
their full potential.
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49 J. Santos-Aberturas, M. Dörr, G. S. Waldo and U. T. Bornscheuer,
Chem. Biol., 2015, 22, 1406–1414.
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