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To date, most of the prevailing organic hole-transporting materials (HTMs) used in perovskite solar cells
(PVSCs), such as spiro-OMeTAD and PTAA, generally require a sophisticated doping process to ensure
their reasonable hole-transporting properties. Unfortunately, the employed dopants/additives and the
associated oxidation reactions have been shown to deteriorate the long-term device stability seriously.
The exploitation of efficient and stable dopant-free HTMs is thus strongly desired for PVSCs. However,
effective molecular design strategies for dopant-free HTMs are still lacking. Thus far, only a few of them
yielded comparable performance to their doped counterparts, while their synthetic costs are still high. In
this work, a new class of cost-effective small molecule dopant-free HTMs have been developed using
readily available fluoranthene as the structural framework. The structure—property correlation of the
fluoranthene-based HTMs was carefully investigated by tuning their structural geometry (linear vs.

branched), connection between electron-donating and electron-withdrawing moieties (single bond vs.
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Accepted 4th June 2019 ethylene), and the substitution position of the methoxy side-groups (para- vs. meta-). As a result, the
optimized molecule, FBA3, was demonstrated to serve as an efficient dopant-free HTM in a conventional

DOI: 10.1039/c95c01697] PVSC to deliver an impressive power conversion efficiency of 19.27%, representing one of the best cost-
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Introduction

Since their debut in 2009," organic-inorganic hybrid perovskite
solar cells (PVSCs) have made an impressive achievement and
the record power conversion efficiency (PCE) has exceeded 23%
recently.”> With such great performance, more recent research
focus pertaining to PVSCs has been shifted to their long-term
operational stability in order to fulfill further commercial
applications,>* because perovskites have shown to possess poor
stability under external stimuli such as light, moisture, oxygen,
and heat. Besides using device encapsulation to address such
a disadvantage, more fundamental approaches including
composition engineering and interface engineering have been
vigorously developed in recent years aiming to intrinsically
enhance the materials' robustness.”™®
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effective dopant-free organic HTMs reported thus far.

It is worth noting that the employed charge-transporting
layers (CTLs) also play a critical role in affecting the overall
stability of the derived PVSCs.> For example, the commonly
used electron-transporting material (ETM), titanium dioxide
(TiO,), has been shown to engender photodegradation of
perovskite materials under ultraviolet light, thereby deterio-
rating the device performance.' Meanwhile, the prevailing
organic/polymeric hole-transporting materials (HTMs), such as
2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9’-spirobi-
fluorene (spiro-OMeTAD, Fig. 1) and poly(triarylamine) (PTAA),
have also been demonstrated to be unfavorable for long-term
operational device stability owing to the required ionic doping
process.>*® Although the doping indeed improves the charge
transport properties of HTMs, the used dopants/additives, like
bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) and 4-
tert-butylpyridine (¢BP), are very hygroscopic and deliquescent
and the oxidation process is generally associated with unde-
sired ion migration/interactions. All these factors contribute to
an inferior long-term operational stability of the derived
PVSCs.'"*?

On one hand, using inorganic HTMs to replace the organic
counterparts seems to be a feasible solution to address this
shortage since they generally possess higher hole mobility and
chemical stability than the latter.’® Nevertheless, most of the
inorganic HTMs require harsh processing conditions that are
incompatible with perovskites, which impedes the fabrication
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Fig. 1 Chemical structures of spiro-OMeTAD and the studied fluo-
ranthene-based HTMs.

of efficient PVSCs especially for the n-i-p device configuration.
Compared to inorganic materials, organic semiconductors
generally possess milder processing conditions and have
a much better flexibility in the molecular design."**® Therefore,
their optoelectronic properties could be effectively tailored
through synthetic manipulation. It is worth noting that some
recent studies have developed HTM-free PVSCs based on
a carbon electrode; however, all of them seem to compromise
the resultant efficiency.” As a result, the development of
dopant-free HTMs is urgently desired to solve the stability issue
caused by the doped HTMs. To date, only a few dopant-free
HTMs have been reported to show comparable PCEs to doped
spiro-OMeTAD,**** which reveals that effective molecular
design strategies for dopant-free HTMs are still lacking.

The dopant-free HTMs exploited thus far, including both
small molecules®*?® and polymers,*~* are mainly based on the
donor-acceptor (D-A) type design. For example, Sun et al.>*?*
and Yang et al.>”?*® have independently reported a series of A-
D-A type small molecule dopant-free HTMs using two
dimensional benzo[1,2-b:4,5-b'|dithiophene derivatives (2D-
BDT) as the donor moiety to realize efficient PVSCs (PCE >
17%). Meanwhile, Park et al. prepared a new class of 2D-BDT-
based D-A type conjugated polymers to serve as efficient
dopant-free HTMs.”**' On the other hand, the branched
structure has also been successfully adopted in designing
efficient dopant-free HTMs.**° By integrating these two
molecular strategies, Nazeeruddin et al. developed a new class
of star-shaped D-A type dopant-free HTMs using quinolizino
acridine (FA) and triazatruxene as the core moiety to yield
a high PCE of 19.03%.%>*' Note that, despite these achieve-
ments, all of those top-performing dopant-free HTMs devel-
oped so far are derived from complicated m-conjugated
scaffolds requiring tedious synthesis and purification, such as
BDT,**" quinolizino acridine (FA),** triazatruxene*! and so on,
making their synthetic costs too high to be used for wide-
spread applications. Therefore, it motivates us to develop
high-performance dopant-free HTMs with low synthetic
complexity for scale-up to afford a good balance between effi-
ciency, stability, and materials cost.
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To find out the inherent regularity of designing low-cost but
high-performance dopant-free HTMs, we herein develop a new
class of fluoranthene-cored HTMs (Fig. 1) and systematically
investigate their structure-property correlation. The fluoranthene
unit is selected as the main structural framework due to its several
promising advantages including low price, highly planar struc-
ture, easy functionality, and good thermal/electrochemical
stability.*>** Moreover, the unique central cyclopenta-fused ring
endows the fluoranthene with an electron-deficient character,*
which thereby can be used as an electron-withdrawing core to
construct various D-A type HTMs.***” Herein, we functionalize the
fluoranthene moiety with methoxy-substituted triphenylamine
(TPA) units on the 3-, 8- positions or 3-, 8-, 9- positions to form
a linear and star-shaped structure, respectively. In addition, the
connection between the TPA units and the central fluoranthene
core (single bond vs. ethylene) as well as the substitution posi-
tions of methoxy groups in the TPA units (para- vs. meta-) are also
tuned to elucidate how these structural variations affect HTM
properties and the resultant performance in PVSCs.

Results and discussion

Notably, we have previously used fluoranthene as the core
structure to synthesize BTF2 (Fig. 1), which exhibits a very low
lab synthetic cost of 11.41$ per g.** Unfortunately, owing to its
high-lying highest occupied molecular orbital (HOMO) level
(—4.8 eV) and low hole mobility of 2.13 x 10~° em> V!
BTF2 cannot serve as an efficient dopant-free HTM to realize
high-performance PVSCs. On this basis, we further designed
a new synthetic strategy based on the typical Diels-Alder reac-
tion (Scheme S1t), by which electron-withdrawing cyano groups
were introduced into the fluoranthene core that not only down-
shifts the HOMO level (~5.02 eV) but also improves the hole
mobility (>10™* cm® V™' s7"). Consequently, while serving as the
dopant-free HTM in an n-i-p planar PVSC, the dicyano-
fluoranthene-cored BTF4 (Fig. 1) could deliver a much higher
PCE of 18.03% than BTF2 (10.45%).%®

Note that replacing diphenylamine with TPA units could be an
alternative approach to down-shift the HOMO level by weakening
the material's donating ability.*® This molecular design has also
been proven as an effective approach to increase the hole
mobility as a result of enhanced w-7m interactions.*>* In this
manner, we prepared FBA1 and FTA1 with linear and branched
structures, respectively, wherein the para-methoxy substituted
TPA units are connected with fluoranthene through a single
bond. Meanwhile, the ethylene connection between TPA units
and the fluoranthene core was also employed to afford linear
FBA2 and branched FTA2, with the purpose of increasing the
molecular planarity to improve the intermolecular -7 interac-
tions. Besides the linking bridge, the meta-methoxy substituted
TPA units were also utilized to prepare FBA3 in parallel with FBA2
consisting of the para-methoxy substituents. As compared to the
para-methoxy substituted TPA, the meta-methoxy substituted TPA
could further lower the HOMO level of the derived HTMs
according to an inductive effect.”*> Through these different
structural modifications, we thus are able to conduct a systematic

This journal is © The Royal Society of Chemistry 2019
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structure-property investigation to provide valuable insights for
designing efficient dopant-free HTMs.

The synthetic route of FBA1-3 and FTA1-2 is shown in
Scheme S2, while the experimental details are described in the
ESI.f The synthesis is really straightforward, only involving two-
or three-reaction steps under mild reaction conditions. As
shown, by controlling the bromination of fluoranthene, 3,8-
dibromofluorene (1) and 3,8,9-tribromofluoranthene (2) can be
readily obtained, which then underwent a typical Pd-catalyzed
Suzuki or Heck-coupling reaction with different functionalized
TPA units (3, 4 and 7) to yield the desired linear HTMs (FBA1-3)
and branched HTMs (FTA1-2), respectively. All these new
molecules were well-characterized by spectroscopic methods,
and gave satisfactory data (see the ESI for the detailst). The
material costs are estimated following the referenced method®
(see details in Tables S1-S5t). As shown in Table 1, most of
them exhibit relatively low lab synthetic costs from 12.55$ per g
(FBA1) to 86.1$ per g (FTA2), which are much lower than the
commercial price of spiro-OMeTAD (170-475$ per g),>* attrib-
uted to the facile synthesis with simple purification processes.
The highest synthetic cost of FTA2 is mainly due to its low
isolated yield (15.7%) caused by a large loss during purification.

Fig. 2 illustrates the density functional theory (DFT)-opti-
mized structures of these new fluoranthene-based HTMs. After
introducing ethylene linkages, the torsional angles between the
fluoranthene core and the attached phenyl groups can be
significantly decreased. This is particularly pronounced for the
angle setting on the 8 position of the fluoranthene core, from
32.9° (FBA1) to 2.4° (FBA2) and 3.0° (FBA3), respectively. These
results thus suggest that the ethylene connection between the
TPA units and fluoranthene core could make the structure more
coplanar, which would be beneficial to hole transport. On the
other hand, larger torsional angles on the 8 and 9 positions of
fluoranthene are observed after forming the branched struc-
ture. As seen, from FBA1l to FTA1, such a torsional angle
increases from 32.9° to 51.2°, while from FBA2 to FTA2, it
increases from 2.4° to 23.1°. We speculate that this possibly
arises from the steric interactions between the neighboring TPA
units on the 8 and 9-positions of fluoranthene.

The thermal properties of these new fluoranthene-cored
HTMs were measured using differential scanning calorimetry
(DSC, Fig. 3a) and thermogravimetric analysis (TGA, Fig. S1at),
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Fig.2 The DFT-optimized geometrical structure of the studied HTMs.

and the related data are summarized in Table 1. All the HTMs
show high thermal stabilities, with the 5% weight loss tempera-
tures (T4s) over 370 °C. For an ideal HTM, a high glass transition
temperature (Ty) is often required to maintain a robust film
morphology during device fabrication and operation.’” As seen,
most of our prepared HTMs show high T,s with the highest one
of 110 °C, being comparable to the value of spiro-OMeTAD. It is
interesting to note that there is a clear correlation between the
molecular structure and the resulting T,s. The T,s were effectively
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Fig. 3 (a) DSC curves under nitrogen with a heating rate of 10 °C min.
(b) The absorption spectrain DCM solutions. (c) Corresponding energy
levels relative to spiro-OMeTAD and perovskite. (d) Color variation of
pristine fluoranthene-cored HTM films on a glass substrate before
(top) and after (bottom) exposure to I, vapor for 5 min.

Table 1 Relevant synthetic costs, photophysical properties and charge transfer properties of the studied HTMs

HTMs Cost* ($perg) Aol (nm) Ag”(hm) ES(eV) HOMOY(eV) T,°(°C) T4 (°C) Mobility? (em*V 's ™) ¢,"[ns] ©,"[ns]
BTF2 11.41 482 493 2.21 —4.80 — 411 2.89 x 107 2.45 16.37
FBA1 12.55 430 436 2.48 —5.00 85 371 8.91 x 107° 1.56 11.39
FBA2 40.50 473 474 2.24 —4.98 95 429 1.36 x 107* 1.67 10.44
FBA3 14.75 455 456 2.29 —5.07 78 429 212 x 107 1.10 8.90
FTA1 19.39 417 426 2.49 —5.00 110 435 4.83 x 107° 1.71 12.35
FTA2 86.10 463 466 2.21 —4.99 100 376 1.07 x 10°* 1.51 9.80

“ synthetic costs. ? Absorption maxima of low-energy bands in dichloromethane solutions and as thin films. ¢ Optical bandgaps calculated from
solution absorption edges. 4 Measured from electrochemistry experiments, Eyomos are calculated according to an equation of Eyopo = —(4.8 +
Eoy) €V. ° Glass transition temperature detected by DSC analyses under nitrogen with a heating rate of 10 °C min~'. / The 5% weight loss
temperature detected by the TGA analyses under nitrogen at a heating rate of 10 °C min~". ¥ Hole mobilities measured by the SCLC method.
k1, and 1, correspond to the fitted fast and slow decay lifetime, respectively, based on time-resolved PL measurements of bi-layered

MAPDI,Cl;_,/non-doped HTM films.

This journal is © The Royal Society of Chemistry 2019
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increased from 85 °C (FBA1) and 95 °C (FBA2) to 110 °C (FTA1)
and 100 °C (FTA2), respectively. This result indicates that the
branched structure possesses better thermal stability. The link-
ing bridge between the TPA units and fluoranthene core play
a less important role in affecting the resultant 7,. FBA2 exhibits
a higher T, than FBA1 possibly due to its more planar structure.
However, the meta-methoxy substitutions were found to decrease
the T, of FBA3 by ~17 °C in comparison with FBA2, possibly due
to the more asymmetric structure.

The absorption spectra of these HTMs in dichloromethane
solutions and as thin films are presented in Fig. 3b and S1b,{
respectively, with relevant data listed in Table 1. The lowest-
energy absorption band around 400-600 nm is ascribed to the
intramolecular charge transfer (ICT) interactions between the
TPA units (D) and fluoranthene core (A), while the localized -
m* transition of TPA units corresponds to other higher energy
absorption bands. As mentioned earlier, the diphenylamine
unit has a stronger electron-donating ability than the TPA unit.
Consequently, BTF2 shows the most red-shifted absorption
band compared to others. Due to the extended conjugation of
the ethylene linking bridge, the absorption maxima (Aps) of
both FBA2 and FTA2 exhibit a red-shift of ~40 nm when
compared with FBA1 and FTAL. Interestingly, when the linear
structures (FBA1/FBA2) are converted to the branched struc-
tures (FTA1/FTA2), there will be a blue-shift in A5, possibly due
to the more twisted structure of the latter that will make ICT
interaction less efficient. On the other hand, FBA3 exhibits
a blue-shifted A,,s compared with FBA2, which confirms the
electron donating ability of the meta-methoxy
substituted TPA unit relative to the para-methoxy substituted
one as discussed earlier. The optical bandgap (Ep, Table 1) was
calculated from the absorption edges in DCM solutions, with
the values from 2.21 eV to 2.49 eV. Moreover, all the materials’
film absorption spectra exhibit similar features to their solution
spectra albeit with a slightly red-shifted, broadened absorption
band, indicating the absence of aggregation.

The energy levels of these fluoranthene-cored HTMs were
characterized using electrochemical cyclic voltammetry (CV).
Their corresponding CV curves measured from the DCM solu-
tions are given in Fig. S3,f wherein most of them display
reversible oxidative processes, except for FBA3. Their HOMO
levels versus Fc/Fc' were determined based on the average
oxidation potentials or onset ones and are summarized in Table
1. Fig. 3c illustrates their energy-level alignment relative to
spiro-OMeTAD and perovskite. As expected, by replacing the
diphenylamine unit in BTF2 with the TPA unit, the resultant
HOMO level of FBA1 can be efficiently decreased by ~0.20 eV,
which is comparable to that of BTF4 with cyano-substitutions
on the fluoranthene core.*® While changing the linear structure
to the branched structure or changing the single bond linking
bridge to the ethylene linking bridge, the resultant HOMO levels
show a negligible variation. It is interesting to note that FBA3
possesses a deeper-lying HOMO level than FBA2, which is more
compatible with the valence band (VB) of the perovskite. This
result is similar to those reported in the literature®-**> and could
be attributed to the decreased electron-donating ability result-
ing from meta-methoxy substituents.

weaker
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The HOMO and lowest unoccupied molecular orbital
(LUMO) levels of these molecules were also simulated by DFT
calculations, with results shown in Fig. S4.f The LUMOs of all
HTMs are located mainly on the central fluoranthene core,
while the relevant HOMOs are almost distributed over the entire
T-conjugated system, particularly for linear molecules. These
results reveal a substantial overlap between the LUMO and
HOMO that will be beneficial to the generation of excitons and
hole transport.®>*® In addition, the trend of the calculated
HOMO levels is also in good accordance with those from CV
measurements. By introducing ethylene linkage or forming
branched structures, the calculated HOMOs of the corre-
sponding HTMs can be increased accordingly, while meta-
methoxy substituents are found to effectively reduce the calcu-
lated HOMO of FBA3 with a value of —4.86 eV.

The HTM's antioxidant capacity is also an important
parameter for the long-term stability of its derived device, which
is closely related to its HOMO level.”” To clarify this, we have
tested the chemical stability of these fluoranthene-cored HTMs
using I, vapor, given that the HOMO levels of ~5.0 eV for these
compounds are close to the oxidation potential of I /I;~ and the
reaction with I, from perovskites might occur at the associated
interface. As displayed in Fig. 3d, after exposure to I, vapor for 5
min, a notable color change from light orange to brown was
observed for the films of BTF2, FBA2, and FTA2 owing to their
higher-lying HOMO levels. In contrast, FBA1 and FTA1 films
only showed a slight color change. By considering that FBA2
and FTA2 only possess slightly higher HOMO levels (<0.02 eV)
than FBA1 and FTA1, the ready oxidation with I, of the former
could be partially due to the existence of unstable ethylene
groups. However, despite containing the ethylene groups, the
film of FBA3 remained its original color, showing the best
chemical stability among the studied HTMs. This result
strongly underlines the importance of the deep-lying HOMO
level for an ideal HTM.

The hole-transporting properties of these fluoranthene-
cored HTMs were evaluated by the space-charge-limited-current
(SCLC) method without adding any dopants in a device
configuration of ITO/PEDOT:PSS/HTMs/MoO,/Ag. The charac-
terized curves are shown in Fig. 4a, with the estimated hole
mobilities given in Table 1. As seen, the hole mobility (uy,) of the
studied compounds can be significantly improved by rational
structural modifications. In addition to BTF2 and FTA1, all the
compounds show respectable w;, close to or beyond 10™* cm?
V! s, exceeding the typical value of non-doped spiro-OMe-
TAD (~2 x 107% ecm® V™' s7').* This result indicates their
promising potential to serve as dopant-free HTMs in n-i-p
PVSCs. Note that, from BTF2 to FBA1 and FBA2, the u,s grad-
ually increased from 2.91 x 10> em®> V"' s7' to 8.91 x 107°
em?V's tand 1.36 x 10~* em? V' s'. Meanwhile, FTA2 also
exhibits a much higher u, than FTA1. These observations
therefore strongly manifest that both the replacement of
diphenylamine with the TPA unit and the introduction of the
ethylene linkage can effectively improve the hole-transporting
capability of the derived HTMs, largely due to enhanced -7
interactions. Furthermore, the meta-methoxy substituted TPA
units endow FBA3 with the highest u;, among the studied HTMs

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9sc01697j

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 04 2019. Downloaded on 2025/10/31 0:55:35.

(cc)

View Article Online

Edge Article Chemical Science
b ¢) 14
) —pPV )1 %m o)
= —PV/BTR2 i R s PV/BTF2
2 ——PV/FBAL k % s PV/FBA1
2 — PV/FBA2 z \x\% ° PV/FBA2
g —zm | N e
= S o s
£ E
=3
S z
T T T T T T 0.01 SRR Doy
720 740 760 780 800 820 840 0 30 60 90 120 150
Wavelength (nm) Time (ns)
Fig. 4 (a) The hole injection characteristics measured by the SCLC method based on a device structure of ITO/PEDOT:PSS/HTM/MoO,(10 nm)/

Ag. (b) Steady PL spectra and (c) time-resolved PL spectra of bare perovskite (PV) films and bi-layered perovskite films capped with different

fluoranthene-cored HTMs.

(2.12 x 107" em® V™' s7"), which is even comparable to that of
doped spiro-OMeTAD (4.87 x 10~* ecm® V' s7', Fig. S67).
Unexpectedly, we noticed that both FTA1 and FTA2 exhibit
decreased ups compared to FBA1 and FBA2; this might be due to
their weak intermolecular interactions in the solid-state caused
by their three-dimensional branched structure. These data thus
are consistent with those theoretical calculation results. As
demonstrated in Fig. 2, the ethylene linking bridge makes the
structure more coplanar to enhance intermolecular interac-
tions, while the steric effect derived from the substituents on
the neighboring 8 and 9 positions of the fluoranthene core
potentially reduces the intermolecular interactions of the
branched materials (FTA1 and FTA2).

To assess the hole transfer efficiency between the studied
compounds and perovskite, the steady-state photo-
luminescence (PL) spectra of the bi-layered MAPbIL,Cl;_,/non-
doped HTM films were examined as shown in Fig. 4b. As shown,
the PL of perovskites at ~780 nm was effectively quenched when
capped with different HTM layers. This result suggests that the
designed HTMs are capable of extracting holes from the
perovskite even in the absence of dopants. Notably, the
quenching efficiency follows a trend of FBA3 = FBA2 > FTA2 >
FBA1 > FTA1 > BTF2, which is highly consistent with mobility.
Time-resolved PL measurements were also conducted to study
their hole-extraction efficiency. As shown in Fig. 4c and Table 1,
after introducing HTM layers, the decay time of the corre-
sponding bi-layered films was significantly shortened in
comparison with that of the bare perovskite film (~49 ns).
Besides, the declining trend of the decay time is quite similar to
that of the PL quenching efficiency, and FBA3 shows the
shortest decay time of 8.9 ns. All these results confirm an effi-
cient hole transfer from the perovskite to the HTMs.

To realize an efficient n-i-p PVSC, besides respectable hole-
transporting capability, the HTMs need to form homogeneous
films atop the perovskite layer since a high quality HTM layer can
effectively reduce the interfacial charge recombination loss and
prevent the contact between the perovskite layer and metal
electrode.>**® To confirm their thin-film formation capabilities,
atomic force microscopy (AFM) images of the prepared fluo-
ranthene-cored HTM films atop the perovskite layer were inves-
tigated as shown in Fig. 5. In principle, the morphology is highly
related to the molecular structure of a molecule, in addition to
solubility and processability.>® As seen, from BTF2 to FBA1 and

This journal is © The Royal Society of Chemistry 2019

Fig. 5 AFM images of fluoranthene-cored HTM films atop perovskite
layers.

FBA2, the film quality was improved accordingly, accompanied
by a reduction of pin holes. On the other hand, the films of FBA3,
FTA1, and FTA2 showed a more uniform morphology. For FTA1
and FTA2, it can be easily rationalized by their more amorphous
state confirmed by their high T,s and weak intermolecular
interactions. Besides, their branched structure might also
contribute to the improved film-forming ability. As for FBA3, the
improved film morphology may be attributed to the fact that in
comparison with FBA2, the molecular symmetry can be further
destroyed due to meta-methoxy substitutions on the TPA units.>

To test the effectiveness of these prepared fluoranthene
derivatives as dopant-free HTMs, a typical n-i-p planar PVSC
was fabricated in a device configuration of ITO/Ce,/perovskite/
HTL/Mo0O3/Ag. The device fabrication details are described in
the ESL.f Shown in Fig. 6a is the cross-sectional scanning elec-
tron microscopy (SEM) image of the FBA3-based device, in
which the stratified device configuration can be seen obviously.
MAPbI,Cl;_, (MA: CH3NH;') was selected as the photoactive
layer instead of (FAPDI;), s5s(MAPbBTI3), 15 by considering that its
VB of 5.4 eV matches with the HOMO levels of our designed
HTMs much better. For comparison, a control device using
regularly doped spiro-OMeTAD as the HTM was also fabricated
with the same fabrication procedures.

The current density-voltage (J-V) curves of the champion
PVSCs measured under AM 1.5 G irradiation at 100 mW cm ™2
are shown in Fig. 6b and S7,7 and the related photovoltaic
parameters are summarized in Table 2. The processing solution

Chem. Sci,, 2019, 10, 6899-6907 | 6903
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(a) Cross-sectional SEM image of the complete PVSC device. (b) J-V curves of the champion PVSCs with different dopant-free HTMs and

doped spiro-OMeTAD. (c) Histograms of photovoltaic parameters. Environmental stability of PVSCs based on dopant-free FBA2, FBA3 and FTA2
and doped spiro-OMeTAD tested under simulated sunlight under nitrogen (d) or in ambient air with a humidity of 20—-30% (e).

concentration of each HTM was carefully optimized to achieve
the best performance (Fig. S81). Based on this new device struc-
ture, BTF2 yielded a higher PCE of 13.44% than the previously
reported value of 10.45%. Encouragingly, the PVSCs using the
newly prepared HTMs all show improved photovoltaic perfor-
mance compared to the control BTF2 device. This thus reveals
the success of rational molecular modifications in our design of
dopant-free HTMs. Impressively, the best performing PVSC with
a promising PCE of 19.27% was derived from FBA3, out-
performing the control devices (17.57%) using the doped spiro-
OMeTAD HTM. This result is also among the best for dopant-free
HTMSs reported thus far.”*** In addition, FBA2 and FTA2 also
delivered respectable PCEs of 18.70% and 17.73%, respectively.
The stabilized PCE and photocurrent of the champion PVSCs
using these dopant-free HTMs near the maximum power point
were also tested as shown in Fig. S9.f These results clearly
manifest the high reliability of our /-V curves and the absence of

current hysteresis, combined with results from those j-V curves
in forward and reverse scanning directions (Fig. S7t). Fig. S101
displays their corresponding incident photon-to-electron
conversion efficiency (IPCE) spectra, in which the integrated
short-circuit current density (Js.) values show good consistency
with the values obtained in the /-V measurements, affirming the
good reliability of these device results.

The histograms of device parameters of PVSCs are shown in
Fig. 6¢c. In general, the resulting V,.s are closely related to the
HOMO levels of HTMs."*"® As discussed earlier, by replacing
diphenylamine with the TPA units, the resulting HOMO levels can
be downshifted to be more compatible with the VB of perovskites.
This thereby enables significantly enhanced Vs from 5.2%
improvement (FTA1) to 13.5% improvement (FBA3). As seen,
despite exhibiting a high PCE of 18.7%, the FBA2-based PVSC
shows a limited V. value of 1.06 V. To further down-shift the
HOMO level and thus to increase the resultant V,., a slight

Table 2 Device parameters of MAPbI,Cls_,-based PVSCs using dopant-free fluoranthene-cored HTMs and LiTFSI/tBP doped spiro-OMeTAD

HTMs Voe (V) Jse (MA cm™?) FF PCE (%)

BTF2 0.96(0.96 + 0.02) 20.19(20.01 + 0.32) 0.693(0.667 + 0.021) 13.44(12.76 + 0.52)
FBA1 1.05(1.04 £ 0.01) 21.57(21.36 & 0.29) 0.742(0.729 =+ 0.014) 16.80(16.24 + 0.46)
FBA2 1.06(1.06 =+ 0.01) 22.32(22.03 + 0.33) 0.790(0.773 + 0.019) 18.70(17.97 + 0.55)
FBA3 1.09(1.08 =+ 0.01) 22.12(21.88 + 0.32) 0.799(0.781 + 0.019) 19.27(18.46 + 0.59)
FTA1 1.01(1.01 £ 0.01) 20.76(20.52 + 0.30) 0.723(0.703 + 0.017) 15.15(14.52 + 0.47)
FTA2 1.03(1.02 £ 0.01) 22.04(21.83 + 0.33) 0.781(0.765 + 0.015) 17.73(17.12 + 0.57)
Doped spiro- 1.07(1.06 £ 0.01) 21.24(20.95 + 0.37) 0.773(0.758 + 0.019) 17.57(16.83 + 0.65)
OMeTAD
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structural regulation on FBA2 was then carried out by changing the
para- into meta- methoxy-substitutions. As shown in Table 1, the
derived FBA3 shows a deeper-lying HOMO level than FBA2, thereby
enabling an increased Vo value up to 1.09 V without sacrificing
other parameters to deliver the highest PCE of 19.27%. Our results
therefore highlight the importance of the relative energy level
between the perovskite layer and HTMs for achieving high V.

The improvement in the J;. and fill factor (FF) has also been
demonstrated by fine-tuning the molecular structure. From
BTF2 to FBA1 and FBA2, the J,. value was enhanced from 20.19
mA cm ™ to 21.57 mA cm ™2 (6.8% improvement) and 22.32 mA
cm 2 (10.5% improvement), respectively, while the FF value was
enhanced from 0.693 to 0.742 (7.1% improvement) and 0.79
(11.4% improvement), respectively. This certainly originates
from their gradually improved hole mobility/hole extraction
ability and better film morphology as discussed earlier. After
forming a branched structure, the corresponding hole mobility/
hole extraction ability is reduced, and thus the obtained Js.s and
FFs are lower as compared to those of the linear HTMs. None-
theless, HTMs consisting of ethylene linking bridges show
better performance than other HTMs, indicating the effective-
ness of structural design towards dopant-free HTMs.

We finally compared the stability of PVSCs derived from
dopant-free HTMs (FBA2, FBA3, and FTA2) and doped spiro-
OMeTAD under the same aging conditions to check whether the
removal of ionic dopants can improve device stability. First, all
the un-encapsulated devices were tested under nitrogen to
exclude the influence of external moisture and oxygen. Therefore,
the effect of dopants on device stability can be the study focus. As
shown in Fig. 6d, after exposure to the simulated sunlight for 500
h, over 90% of the initial PCEs can be retained for all the dopant-
free devices, while the PCE of doped spiro-OMeTAD decayed to
75% of its initial value. Furthermore, we also checked the effect
of dopant-free HTMs with different T,s on the thermal stability of
the fabricated PVSCs under nitrogen. As shown in Fig. S11,7 the
dopant-free device based on FTA2 with a T, of 100 °C clearly
shows an enhanced thermal stability compared to that of FBA3
with a T, of 78 °C; when successively heating the devices at 80 °C,
90 °C, 100 °C and 110 °C for 20 min, the final PCE of the FTA2-
based device can retain 94.9% of the original PCE, while that of
the FBA3-based device is only 91.9%. Moreover, we found that
both dopant-free devices show much better thermal stability than
the doped spiro-OMeTAD control device during heating treat-
ments, indicating that the removal of dopants/additives can also
effectively enhance the thermal stability of resulting PVSCs given
the fact that the ¢-BP additive is a low boiling point solvent.

We further evaluated the stability of these un-encapsulated
devices in ambient air with a relative humidity of 20-30%. As
shown in Fig. 6e, all the tested devices showed a faster degrada-
tion than the case where they were kept under nitrogen. After
being stored for 180 h, the PCEs of the devices using dopant-free
HTMs and doped spiro-OMeTAD were degraded by 20% and 43%,
respectively. Furthermore we have tested the device stability in
ambient air with a high humidity of 80% as shown in Fig. S12.7
After being stored for 144 h, the PCE of the doped spiro-OMeTAD
device decayed to only 7% of its original PCE, while the dopant-
free devices can still retain 33-49% of their original PCEs after

This journal is © The Royal Society of Chemistry 2019
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being stored for 168 h. These observations therefore indicate that
the removal of dopants indeed improves the operational stability
of PVSCs. Nonetheless, we have to note that our device stability
against moisture is still imperfect. This is because the device
stability is not only related to the dopants/additives in the HTMs,
but also highly dependent on the HTM film quality atop the
perovskite layer, film morphology stability, and the interface
between the perovskite and HTM.® Actually, the dopant-free
devices based on FBA3 and FTA2 showed an enhanced stability
under high humidity conditions compared to that of FBA2, which,
we think, could be due to their better film quality atop the
perovskite layer as evidenced by AFM measurements (Fig. 5).

Conclusions

In summary, we developed a new class of small molecule
dopant-free HTMs using readily available fluoranthene as the
structural framework. By tuning the structural geometry, the
connection between the donor and acceptor and the substitu-
tion position of methoxy groups, the material structure was
carefully regulated and optimized with the purpose of studying
their impacts on molecular packing behaviors, thermal prop-
erties, photophysical properties and device performance. Our
results demonstrate the following important points:

(1) Replacing diphenylamine with triphenylamine as the
capping unit of D-A type HTMs can effectively down-shift the
HOMO levels and increase the hole mobilities of derived HTMs.

(2) Introducing ethylene as the connecting m-bridge can
marginally raise the HOMO levels but effectively increase the
hole mobilities of derived HTMs due to enhanced m-7 inter-
actions. However, it might result in a poor antioxidant capacity.

(3) In comparison with the linear structure, the branched
materials can considerably increase the T,s by over 20 °C and
enable better film quality atop the perovskite layer. However, it
might result in lower hole mobilities.

(4) meta-Methoxy substitution can be used as an effective
structural design strategy to down-shift the HOMO levels and
improve the hole mobilities of derived HTMs; however, this
design would decrease the thermal stability.

Based on this systematic structure-property study, the
inherent regularity governing the structure of dopant-free
HTMs has been demonstrated preliminarily. Our designed flu-
oranthene-cored molecules can work as efficient dopant-free
HTMs to realize high-performance n-i-p planar PVSCs associ-
ated with improved device stability. In particular, FBA3 with
a low lab synthetic cost of 14.75$ per g can exhibit an impressive
PCE of 19.27%, representing one of the best cost-effective
dopant-free organic HTMs reported thus far.
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