Bottom-up approaches to prepare ultrathin TiO2 nanosheets
Abstract
Atomically thin two-dimensional (2D) materials are promising platforms to explore the unusual physical and chemical properties in surface chemistry, various catalysis, and devices. Most 2D materials derive from inherently layer-structured compounds through top-down exfoliation, but it is usually challenging to directly prepare ultrathin nanosheets of non-layered materials. TiO2 contains at least 8 non-layered polymorphs, and some of them have found wide applications in heterogeneous catalysis, photocatalysis, solar cells, lithium-ion batteries, etc. In this review, we summarize typical bottom-up wet-chemistry synthetic systems of atomically thin TiO2 nanosheets. The synthesis protocols are discussed in groups of different phases, and the growth mechanisms are classified into three approaches of strong ligand confinement, layered intermediate, and templated synthesis.
- This article is part of the themed collection: ChemComm 60th Anniversary Collection