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Abstract7

Thermoelectric effects of ice play an important role in many natural and engineering phe-8

nomena. We investigate, numerically and analytically, the electrification of finite-thickness ice9

slabs due to an imposed temperature difference across them. When exposed to a temperature10

gradient, thermoelectrification involves a fast initial stage dominated by Bjerrum defects and a11

subsequent slow stage driven by ionic defects. The time scales of the first and second stages are12

derived analytically and correspond to the Debye time scales based on the density of Bjerrum13

and ionic defects, respectively. For a given ice slab, at steady state, the thermovoltage across14

it and the charge accumulation near its two ends depends strongly on its thickness, with the15

sensitivity of thermovoltage being more pronounced. The discrepancy between the computed16

thermovoltage and experimental measurements is analyzed. The analysis shows that, although17

thermoelectric effects in ice were discovered 50 years ago, significant gaps, ranging from bulk18

and interfacial properties of defects to measurement of thermovoltage, exist in their quantitative19

understanding that require further experimental and theoretical/computational studies.20
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1 Introduction1

In presence of a temperature gradient, an electrical potential difference can develop across an2

ice sample.1,2 For example, Latham and Mason discovered that, when a temperature difference3

was imposed across a 0.5 cm-thick cylindrical ice specimen, a thermovoltage V/∆T of ∼-2 mV/K4

is developed along the specimen, with the colder end being at a higher potential.1 The thermo-5

electrification of ice has been implicated in natural phenomena such as thunderstorm charging,3–8
6

and could potentially be exploited in engineering applications including electrostatic de-icing and7

energy harvesting.9 The kinetics of thermoelectric voltage and charge development, as well as their8

magnitude at steady state, often determine the contribution of thermoelectrification in natural9

phenomena and the effectiveness of harnessing thermoelectric effects in engineering applications.10

Therefore, there is a need to understand the electrification of ice both from the static and dynamic11

perspectives.12

Fundamentally, the electrification of ice originates from the separation of charge carriers. In13

undoped, crystalline ice, there are mainly two types of charge carriers due to the formation of14

defects. The first type of carrier is ionic point defects, H+ and OH− ions, which are formed by15

the transfer of a proton from one H2O molecule to a neighbouring molecule. The second type of16

carrier is the Bjerrum defects that are generated from the reorientation of water molecules that17

break the ice rule, with D (L) defects carrying a positive (negative) effective charge.10 These charge18

carriers not only determine ice’s bulk electrical and optical properties (e.g., conductivity) but also19

its interfacial properties (e.g., adhesion of ice to metal surfaces and reactivity of ice surfaces).11–18
20

The charge separation induced by a temperature gradient in ice is understood conceptually as21

follows. Because charge carriers are usually formed through thermal activation, a temperature22

gradient induces a density gradient of these carriers, which in turn leads to their diffusion toward23

the colder end of the ice. As the diffusivitiy of different carriers is different, such diffusion would24

initially cause a net current. This current causes charge accumulation at the cold and warm ends25

of the ice, which induces an internal electric field (and thus potential difference) across the ice.26

The induced electric field enhances the transport of slowly diffusing carriers and suppresses the27

transport of fast diffusing carriers, and eventually reduces the net current across the ice to zero.28

This process is similar to the generation of a diffusion potential and an ambipolar electric field in29

electrolytes.1,19
30

The above conceptual picture of thermoelectrification of ice has been formulated into quanti-31

2
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tative theories. The first model was proposed by Latham and Mason.1 Their model considers the1

diffusion and thermal diffusion of H+ and OH− ions, as well as their migration driven by an electric2

field. Due to a lack of knowledge of the mobility of Bjerrum defects at that time, the transport of3

these majority carriers was neglected, although a relative permittivity of 100 was used to account4

for their contributions to the dielectric screening in ice. Taking the diffusion coefficient ratio of5

DOH− and DH+ ions as DOH−/DH+ = 0.1 and the activation energy for the formation of H+ and6

OH− ions as Φ± = 1.2 eV, their model predicts a thermovoltage that is within 10% of the value7

measured in their experiments.1 Shortly after, Jaccard formulated an improved model by explicitly8

including the transport of majority carriers D and L.20 The transport of charge carriers formulated9

by Jaccard includes an extra term associated with the so-called configuration vector, which was10

recently shown to represent the polarization effects.21 An analytical formula for the thermovoltage11

was derived and it can reproduce the experimentally measured thermovoltage of around -2 mV/K12

reported by Latham and Mason by assuming that DOH−/DH3O+ � 1,22 and the mobility ratio13

of L and D defects is DL/DD ≈ 1.2.20 These assumptions, however, do not agree well with the14

more recent understanding of the transport properties of ionic and Bjerrum defects, e.g., it is now15

generally thought that DL/DD � 1.10 Since then, few theoretical and modeling studies on the16

thermoelectrics of ice have been reported.17

The pioneering works by Latham, Mason, and Jaccard advanced the fundamental understand-18

19 ing of ice’s thermoelectric behavior. Nevertheless, many important issues remain to be understood. 

20 First, the spatial distribution and relative magnitude of different charge carriers near the bound-

21 aries of a thermally electrified ice slab are poorly known. Second, how the finite thickness of ice 

22 affects its thermoelectric characteristics is not clear. These issues were not addressed in prior works 

23 because the boundaries of ice were not explicitly considered in them. Third, the transient dynam-

24 ics of thermoelectrification (e.g., the development of charge separation) and the underlying carrier 

25 transport have not been elucidated. Finally, the prediction of the thermovoltage formula developed 

26 in those work has not been scrutinized in light of different experimental data on the thermodynamic 27 

and transport properties of charge carriers in ice. These fundamental issues are also relevant to 28 

practical problems. For example, in response to a temperature gradient, the temporal development 29 of 

charge and the spatial distribution of different charge carriers near ice boundaries can affect the 30 

amount of charge that can be transferred when ice particles of different temperature collide, which 31 may 

contribute to the charge generation in thunderstorms.3,6,7 Further, the magnitude of the elec-32 trical 

potential and charge that develop across thin ice sheets or tiny icicles with a characteristic

3
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1 size less than several to a few hundred micrometers can determine what voltage must be applied 

2 to remove them from their substrates via electrostatic forces.9

3 In this work, thermally-induced charge separation in ice slabs of finite thickness is investigated 

4 both numerically and analytically. In Section 2, the physical and mathematical models for thermo-

5 electrification of ice are presented. In Section 3, the evolution of charge carrier distributions in the 

6 ice slab as well as the charge near each boundary of the ice slab contributed by different carriers 

7 are presented. The effects of the ice slab thickness on the thermoelectric charge and voltage are 

8 discussed next. The predictions of thermovoltage by existing analytical theories are then critically 

9 analyzed in light of our results. Finally, conclusions are drawn in Section 4.

2 Physical and Mathematical Models10

11 We investigate the thermoelectrification of an ice slab that has a thickness of W in the 12 x−direction 

and extends infinitely in the yz−plane. Before imposing the temperature gradient, 13 equilibrium is 

assumed throughout the ice slab and thus the ice is electrically neutral everywhere. 14 At t = 0, a linear 

temperature profile is imposed across the ice slab in x−direction, with the temper-15 ature at the left and 

right ends of the slab set to T (x = 0) = Tm+∆T/2 and T (x = W ) = Tm−∆T/2 16 where Tm is the 

temperature at its middle plane (x = W/2). We seek to elucidate the development 17 of charge separation 

and thermoelectric voltage due to the imposed temperature gradient. To this 18 end, the evolution of the 

densities of charge carriers due to an imposed temperature gradient in the 19 ice must be solved. The 

evolution of the density of a charge carrier i is given by

∂ni
∂t

= −Ṙi + Ġi −
∂ji
∂x

(1)

with ni and ji the number density and flux of a carrier i, respectively. The two terms Ṙi and Ġi20

refer to the annihilation and generation of defect pairs. Here, we consider four point defects D, L,21

H+, and OH− and they are denoted as i = D,L,+, and −, respectively. The term Ṙi accounts for22

the continuous annihilation of charge carrier i through recombination with other carriers (i.e., D23

with L or H+ with OH−). Following the mass action law, the recombination rate is given by24

Ṙq = Ṙm =
n+n−
n0

+τ±
, ṘD = ṘL =

nDnL
n0
DτDL

(2)

4
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where n0
i is the equilibrium density of carrier i. τ± and τDL are the recombination time constants1

for the ionic and Bjerrum pairs, respectively. n0
i is given by2

n0
+ = n0

− =
2

3
Noe

−Φ±
2kBT , n0

D = n0
L = Noe

−ΦDL
2kBT (3)

with No = 3×1028 m−3 the oxygen atom density in ice,10 kBT the thermal energy, and Φi the3

activation energy of defect i (note that Φ+ = Φ− = Φ±, ΦD = ΦL = ΦDL).10
4

The term Ġi in Equ. (1) accounts for the continuous generation of pairs of D/L and H+/OH−5

defects through thermal activation. Because the number of H2O molecule is orders of magnitude6

larger than the number of defects, Ġi can be taken as constants given by7

Ġ+ = Ġ− =
n0

+n
0
−

n0
+τ±

, ĠD = ĠL =
n0
Dn

0
L

n0
DτDL

(4)

The flux of the four charge carriers is described by the reinterpreted Jaccard equation:10,21
8

j+ = −D+
∂n+

∂x
+ µ+n+E +

µ+n+

e±

Φ

eDL
Pb (5)

9

j− = −D−
∂n−
∂x
− µ−n−E −

µ−n−
e±

Φ

eDL
Pb (6)

10

jD = −DD
∂nD
∂x

+ µDnDE −
µDnD
eDL

Φ

eDL
Pb (7)

11

jL = −DL
∂nL
∂x
− µLnLE +

µLnL
eDL

Φ

eDL
Pb (8)

where subscripts +, −, D, L denote carrier H+, OH−, D and L, respectively. Di (µi) is the diffusion12

coefficient (mobility) of carrier i. Di and µi are related by Di = µikBTm/|ei|, where ei is carrier13

i’s effective charge (eD = −eL = eDL and e+ = −e− = e±), while Tm is the temperature at the14

middle of the ice slab. Given that the temperature range considered in this work is small, Di and15

µi are taken as constant. E is the electric field and Pb is the polarization density. Φ is a factor16

that relates the change in entropy to the polarization density given by Φ = 8kBTrOO/
√

3, where17

rOO = 2.76 Å is the distance between two adjacent oxygen atoms in ice.10,23 As we have recently18

shown, the defect fluxes given by Eqs. (5-8) consist of the classical diffusion (the first flux term)19

and the transport driven by the electrical field and the polarization fields (the second and third20

flux terms).21
21

5
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The electric field and polarization density are governed by electrostatic laws1

−∂
2φ

∂x2
=
∂E

∂x
=
e±(n+ − n−) + eDL(nD − nL)

ε0ε∞
(9)

2

−∂
2χ

∂x2
= −∂Pb

∂x
= eDL(nD − nL − n+ + n−), (10)

3 where φ is the electric potential and Pb = ∂χ/∂x. In Eq. (9), ε∞ = 3.2 accounts for the electronic 4 

polarization effects of H2O molecules in an electric field.10 Note that while the right-hand side of 5 Eq. (9) 

includes both bound and free charge of all defects, that of Eq. (10) includes only the bound 6 charge of 

defects. As highlighted recently,21 a D (L) defect has only a bound charge of eDL = 0.38e 7 (−eDL = 

−0.38e), but a H+ (OH−) ion features both a free charge of e (−e) and a bound charge 8 of −eDL (eDL), 

resulting in an effective charge of e± = 0.62e (−e± = −0.62e).

9 The model given by Eqs. (1 - 10) is closed by the following boundary conditions and initial 

10 conditions:

ji|x=0 = 0 , ji|x=W = 0

∂φ

∂x

∣∣∣∣
x=0

= 0 , φ|x=W = 0

∂χ

∂x

∣∣∣∣
x=0

= 0 , χ|x=W = 0

(11)

11

ni(x)|t=0 = Noe
−Φi

2kBT (x) , φ|t=0 = 0 , χ|t=0 = 0 (12)

12 We note that the mathematical model given by Eqs. (1 - 12) neglects surface and interfacial 13 effects 

that can potentially affect the thermoelectrification process. For example, even in the 14 absence of a 

temperature gradient, an ice surface may be charged due to the different affinity of 15 different defects to 

the surface.24 Further, in the region close to an ice surface, defects can behave 16 differently from that in 

bulk, e.g., D defects can have activation energy smaller than those of L 17 defects, and their mobility is 

larger than that of L defects.15 These non-bulk effects are not included 18 in our model because the related 

mathematical model and parameters are not yet well established. 19 As we shall see, even with these 

effects neglected, the thermoelectrification exhibits rich physics. 20 Understanding such physics helps lay 

foundation for incorporating the more complicated surface 21 and interfacial physics in future studies of 

thermoelectrification.

6
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3 Results and Discussion1

We study the thermoelectrification of ice slabs with different thicknesses while keeping the2

temperature gradient ∆T/W at 30 K/m. Without losing generality, Tm is fixed at 253 K. The3

thermodynamic and transport properties of the charged defects play a crucial role in determining4

the thermoelectrification. These properties depend on the way the ice sample was prepared and5

the reported values vary considerably.10 Table 1 summarizes the parameters adopted here. Note6

that the activation energies and mobilities of defects are taken from Table 6.4 of Ref. 10, except7

that µD is set to 1/50 µL and ΦDL is taken as the median of the range of its plausible values8

(0.66-0.79 eV). These parameters are within the range of reported data for bulk ice in the literature9

(see Table S1 in the supplementary Information).10,25 Importantly, these parameters embody three10

key characteristics of the point defects in ice. First, because Φ± is 0.65 eV larger than ΦDL, the11

equilibrium density of D/L pairs at 253 K is 4.75× 106 times higher that of H+/ OH− pairs. This12

is consistent with the consensus that Bjerrum defects are the majority charge carriers in bulk ice,13

whose density is many orders of magnitude larger than that of ionic defects. Second, µ+ = 3.33µ− is14

consistent with the fact that the H+ ion is modestly more mobile than OH− ions. Third, µL = 50µD15

conforms to the generally accepted idea that, in bulk ice, L defects are more mobile than D.10 The16

effect of the charge carriers’ thermodynamic and transport properties on the thermoelectric voltage17

at steady state is separately discussed in Section 3.3.18

Table 1: Properties of defects in ice adopted in the calculations.

Parameter Value Ref. Parameter Value Ref.

µ+ 1×10−7 m2/(V·s) 10 ΦDL 0.75 eV -

µ− 3×10−8 m2/(V·s) 10 Φ± 1.40 eV 10

µD 4×10−10 m2/(V·s) - τDL 2×10−5 s 17

µL 2×10−8 m2/(V·s) 10 τ± 7×10−4 s 17

Below we first present the transient dynamics and subsequent steady state of the thermoelectri-

fication of a relatively thick ice slab, and then analyze the dependence of the thermoelectric voltage

and charge on the ice thickness. Unless mentioned otherwise, results are presented in dimensionless

form: the carrier density, length, and time are non-dimensionalized using the following reference

7
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scales:

nr = n0
D(Tm) lr = λDL =

√
ε0ε∞kBTm

2e2
DLn

0
D(Tm)

tr =
l2r
DL

(13)

where n0
D is the equilibrium density of D defects at ice slab’s middle plane. λDL is the Debye length1

defined based on the density of majority carriers (D and L defects) at ice slab’s middle plane. An2

intrinsic length scale of ice as an electrolyte is λDL. Another intrinsic length scale of ice is the Debye3

length associated with the minority carriers (H+ and OH− ions), λ± =
√
ε0ε∞kBTm/(2e2

±n
0
+(Tm)).4

tr is the Debye time scale of L defect. At Tm = 253 K, with ΦDL and Φ± chosen in Table 1, λDL5

and λ± are 0.12 µm and 0.16 mm, respectively. tr is 32.2 µ s.6

3.1 Thermoelectrification of a finite ice slab7

We consider the thermoelectrification of a 0.1 m-thick ice slab, in which a bulk-like region8

with zero space charge exists around its middle plane. Figure 1a,b show the evolution of the9

thermovoltage across the slab (∆φ = φ(0)−φ(W )) and the total charge in the slab’s left half (σtot),10

respectively. The total charge in the slab’s right half is opposite to σtot and thus not shown. We11

observe that, after a temperature gradient is imposed, the ice slab’s electrification exhibits two12

distinct stages. In the first, fast stage, ∆φ and σtot initially increase rapidly and then approach13

their positive pseudo-steady state at t ∼ 10λ2
DL/DL (∼ 0.3 ms with the parameters chosen in Table14

1). This is followed by a second, slow stage, during which both ∆φ and σtot decrease and approach15

their negative steady state value at t ∼ 6× 107λ2
DL/DL ( ∼30 min).16

Before analyzing the dynamics of the fast and slow stages of thermoelectrification, it is worth-17

while to compare the computed thermovoltage and charge with the analytical theory by Jaccard.20
18

He studied the thermoelectric behavior of very thick ice slabs (i.e., boundary effects are neglected) at19

steady state. His theory is built upon the idea that, at steady state, eDL(jD−jL)+e±(j+−j−) = 020

(the total-charge current is zero) and eDL(jD − jL)− eDL(j+ − j−) = 0 (the bound-charge current21

is zero), which can be combined to arrive at the necessary condition for reaching steady state:22

jD − jL = j+ − j− = 0 (14)

Physically, this condition requires that, at steady state, the currents due to both Bjerrum and ionic23

defects are zero. Using this condition and assuming that ni(x) = n0
i (T (x)) (i = q,m,D, and L)24

8
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Figure 1: (a) Evolution of the thermovoltage across the 0.1 m-thick ice slab. (b) Evolution of the

total charge in the left half of the ice slab.

and ∆T � Tm, the steady state thermovoltage for the problem defined in Section 2 is1

∆φJ = − 1

2e

[
1− β±
1 + β±

Φ± +
1− βDL
1 + βDL

ΦDL

]
∆T

Tm
(15)

where β± = D−/D+ and βDL = DL/DD. The total charge in the warmer half of the ice slab is2

given by σJ = ε0ε∞∆φJ/W . Examining the values of ∆Φ and σtot shown in Fig. 1 at large time,3

we observe that the steady state thermovoltage ∆Φ is only ∼40% of that predicted using Eq. 15,4

while σtot is predicted with an error less than 0.1% by Jaccard’s theory. These results highlights5

the importance of finite thickness in affecting thermoelectrification and will be analyzed in Section6

3.2.7

In the following, we analyze the fast and slow stages of electrification process in detail.8

3.1.1 Fast stage9

When a temperature gradient is just imposed across on an ice slab, each defect follows its10

quasi-equilibrium density corresponding to the local temperature. The higher density of defects in11

the left (warmer) part of ice thus drives their diffusion toward the right (colder) part of ice. Because12

L defects diffuse faster than D defects, their density near ice slab’s left boundary decreases. This13

reduces the annihilation rate of D and L defects there, but does not alter their generation rate (see14

Eq. 2 and 4). Because D defects generated locally diffuse away slowly, their density near the left15

boundary increases. Overall, as shown in Fig. 2a, near the left boundary, D defects are enriched16

9
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but L defects are depleted; the opposite occurs near the right boundary.1

Figure 2: Charge dynamics during the fast stage of thermoelectrification in an ice slab. (a) 
Evolution of ionic and Bjerrum defect density profiles. Note that the density of ionic defects is 
close to zero and thus their curves overlap. (b) space charge density profile and its components. (c) 
electric potential profile. (d) Evolution of space charge in ice slab’s left half and the electric and 
polarization fields at ice slab’s middle plane. In (a-b), profiles at two time instants are shown near the 
left boundary (arrows indicate the direction of increasing time). In (d), Em, Pb,m, and Fm are the 
electric, polarization, and F-field at ice slab’s middle plane.

The above processes also occur for ionic defects. However, because their density is ∼ 106 times2

smaller than that of Bjerrum defects, their density change associated with the above processes is3

minuscule compared to that of Bjerrum defects during the fast stage (see Fig. 2a). Therefore, we4

focus on density evolution and charge dynamics of Bjerrum defects below, and neglect those of5

ionic defects whenever reasonable.6

The accumulation of D defects and depletion of L defects near the left boundary, together with7

the opposite phenomenon near the right boundary, leads to a charge separation there (see Fig. 2b).8

10
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Due to negligible contributions of ionic defects, the space charge distribution near these boundaries1

is determined almost solely by the Bjerrum defects that carry bound charges only. Overall, charge2

separation is confined within ∼ 5λDL from each boundary, as expected for charge separation in3

electrolytes.26 The charge separation leads to an electric potential that decreases from the left to4

the right boundary (see Fig. 2c), mostly in a linear manner because charge separation is limited to5

a narrow zone near each boundary.6

The development of thermoelectric potential across the ice slab generates an electric field7

pointing toward its right boundary (from the hot to the cold side). This field drives the migration8

of D (L) defects toward the right (left) boundary. As shown in Fig. 2d, such a migration effect9

slows down the accumulation of positive (negative) charge near the right (left) boundary that is10

driven by the diffusion effect. As charge accumulation is enhanced with increasing time, the electric11

field increases proportionally (see Fig. 2d). Eventually, the migration effect becomes strong enough12

to balance the diffusion effect so that no further charge accumulation occurs and a steady state is13

reached. Such a picture on how a steady state is reached, however, is only a partial view of the14

charge dynamics during fast stage. This is because it neglects the buildup of polarization field Pb15

and its effect on the transport of defects, which are useful for understanding why only a pseudo-16

steady state is reached at the end of the fast stage and how a genuine steady state is reached at17

the end of the slow stage.18

To better appreciate how the pseudo-steady state is reached in the fast stage, it is instructive19

to analyze the transport of D and L defects into/out of ice slab’s left half through the slab’s middle20

plane. This analysis is facilitated by the fact that, near the middle plane of the rather thick ice21

slab considered here, all defects are at local equilibrium (i.e., ni(x) = n0
i (T (x))), which makes the22

evaluation of defect fluxes and their components straightforward.23

Table 2 summarizes the direction of fluxes of Bjerrum defects through ice slab’s middle plane24

(referred to with a subscript m) and the associated currents, i.e., iDL,m = eDL(jD,m − jL,m).25

The diffusion fluxes of D and L defects are both constant and in positive direction. The faster26

(slower) diffusion of L (D) defects makes the net diffusion current negative. This leads to the27

charge accumulation shown in Fig. 2b and d, which generates an electric field that drives D (L)28

defects toward ice slab’s right (left) boundary and thus a positive net migration current. Because29

Bjerrum defects carry only bound charges, their separation near the slab’s boundaries generates a30

polarization field Pb = −ε0ε∞E. This field is opposite to the electric field but drives the transport of31

Bjerrum defects in the same direction as the electric field (see Eq. 7 and 8). Together the electric32

11
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and polarization fields drive a positive total current, countering the charge accumulation driven1

by the constant diffusion current. Charge accumulation near the ice slab’s boundaries eventually2

stops when the migration-polarization current balances the diffusion current, thereby leading to an3

apparent steady state (see Eq. 14).4

Table 2: Direction of Bjerrum defect fluxes and currents at ice slab’s middle plan during the fast

stage (→/← means toward ice slab’ right/left boundary).

diffusion electric migration polarization effect

jD,m → → →
jL,m → ← ←
iDL,m ← → →

Building upon the above analysis, both the time scale and the asymptotic total charge near5

each boundary of the fast stage can be obtained analytically. Using Eq. 7-8 and taking advantage6

of the fact that the region near the ice slab’s middle plane is bulk-like, (i.e., nD(x) = nL(x) =7

n0
D(T (x)) = n0

DL(T (x)) near x = W/2 and nD|x=W/2 = nL|x=W/2 = n0
DL,m), the net excess of D8

defects over L defects in ice slab’s left half follows9

d(ΓD − ΓL)

dt
= jL,m − jD,m = (DD −DL)

dn0
DL

dx
|x=W/2 − (DD +DL)

eDL
kBTm

n0
DL,mF |x=W/2 (16)

10

F = E − Φ

e2
DL

Pb (17)

where Γi =
∫W/2

0 ni dx is amount of defect i in ice slab’s left half (i = D,L). F is a field representing11

the combined electric-polarization fields driving the transport of charged defects. During the fast12

stage, electric and polarization fields are generated predominately by Bjerrum defects that feature13

only bound charge. Therefore, F = (1+α)E, with α = Φε0ε∞/e
2
DL = 0.034. F |x=W/2 and E|x=W/214

are hereafter denoted as Fm and Em, respectively. Integrating Eq. 9 and 10 over the ice slab’s left15

half, we have16

ΓD − ΓL =
ε0ε∞
eDL

Em =
ε0ε∞

(1 + α)eDL
Fm (18)

Substituting Eq. 18 into Eq. 16, we obtain17

ε0ε∞
(1 + α)eDL

dFm(t)

dt
= −(DD +DL)

eDL
kBTm

n0
DL,mFm(t) + (DD −DL)

dn0
DL

dx
|x=W/2 (19)

12
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With the initial condition Fm(0) = 0, the solution of Eq. (19) is1

Fm(t) = −q
p
e−pt +

q

p

p =
n0
DL,me

2
DL(1 + α)(DD +DL)

kBTmε0ε∞
and q =

dn0
DL

dx

eDL(1 + α)(DD −DL)

ε0ε∞

(20)

The time scale for Fm(t) to reach a steady state is thus2

τF,f =
1

p
=

2λ2
DL

(1 + α)(DD +DL)
= 1.9tr (21)

Here, with the parameters shown in Table 1, τF,f = 61.2 µs. Physically, τF,f resembles the Debye3

time of bulk electrolytes26 and it is the time scale for development of F field that drives electric-4

polarization transport of Bjerrum defects to balance their current driven by diffusion. Since Fm =5

(1 + α)Em = (1 + α)σtot/ε0ε∞, τF,f is also the time constant for the development of electric field6

and total charge in ice slab. Eq. 19 and 21 thus predict that, at 3τF,f = 5.7tr, the total charge7

in ice slab’s left half reaches 95% of its plateau value of the fast stage, in agreement with that8

observed in Fig. 2d with an error of ∼1%.9

Using Eq. 3 and 19, at the end of fast stage, the asymptotic value of electric field at ice slab’s10

11 middle plane is obtained as

Em,f = − ΦDL

2(1 + α)eDL

(
1− βDL
1 + βDL

)
1

Tm

∆T

W
(22)

The asymptotic value predicted by Eq. 22 for the present problem agrees with that shown in Fig.12

2d with an error less than 0.1%.13

If Bjerrum defects were the only charge carrier, then a genuine steady state would be reached14

15 at the end of processes illustrated above. However, in presence of ionic defects, a genuine steady 16 state 

is not reached when σtot approaches an apparent plateau (see Fig. 2d). Specifically, reaching 17 a genuine 

steady state requires the current of ionic defects at ice slab’s middle plane associated 18 with the fluxes of 

H+ and OH− (j+,m and j−,m) to be zero, i.e., i±,m = e±(j+,m − j−,m). Table 3 19 summarizes the direction 

of fluxes of ionic defects through ice slab’s middle plane and the associated

current i±,m during the fast stage of thermoelectrification. The diffusion current associated with H+
20

and OH− ions is positive because H+ ions are more mobile. Because the electric field set up by the21

separation of Bjerrum defects during the fast stage is positive, the migration currents of ionic defects22

is also positive. Because H+ (OH−) ions carry a negative (positive) bound charge, their polarization23

13
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current is negative. However, because Pb = −ε0ε∞E during the fast stage as explained above, the1

polarization current of ionic defects is only α = 3.4% of their electric migration current (see Eq. 52

and 6). Hence, the polarization current of ionic defects cannot balance their diffusion and electric3

migration currents. The plateau in Fig. 2d thus represents only a pseudo-steady state. A genuine4

steady state can only be achieved when the current driven by a greatly enhanced polarization field5

balances the current driven by diffusion and electric fields. To enhance the polarization field set6

up by charge separation associated with majority Bjerrum defects, significant charge separation7

contributed by minority ionic defects is needed. However, because of the very low density of ionic8

defects (and thus their current), a significant enhancement of the polarization field can only occur9

at a large time scale, which corresponds to the slow stage of thermoelectrification observed in Fig.10

1.11

Table 3: Direction of ionic defect fluxes and currents at ice slab’s middle plane during the fast

stage and the early part of the slow stage (→/← means toward ice slab’ right/left boundary).

diffusion electric migration polarization effects

j+,m → → ←
j−,m → ← →
i±,m → → ←

3.1.2 Slow stage12

As pointed out above, after a pseudo-steady state is reached, ionic defects have not yet reached13

their steady state. Their transport is the driving force for thermoelectrification during the sub-14

sequent slow stage. Their transport changes fields built by Bjerrum defects earlier and leads to15

the evolution of the density of Bjerrum and ionic defects, space charge distribution, and potential16

profile shown in Fig. 3a-c. Initially, driven by the electric and polarization fields set up by the17

transport of Bjerrum defects, OH− (H+) ions are enriched (depleted) near the left boundary, while18

the opposite occurs near the right boundary (see Fig. 3a). As shown in Fig. 3b, near the left19

boundary, this makes the total space charge more negative but the bound charge more positive.20

The latter is due to the fact that the bound charge of an ionic defect is opposite to its effective21

charge.21 These changes of the total and bound charge distribution weaken the electric field across22

the ice slab (e.g., the slope of electric potential in Fig. 3c) but enhance the polarization field.23

14
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Figure 3: Charge dynamics during the slow stage of thermoelectrification. (a-c) Evolution of ionic 
and Bjerrum defect density profiles (a), space charge density profile and its components (b), and 
electric potential profile (c) in an ice slab. (d) Evolution of space charge in ice slab’s left half and the 
electric and polarization fields at ice slab’s middle plane. In (a-b), profiles at two time instants are 
shown near the left boundary (arrows indicate the direction of increasing time).

The aforementioned transport of ionic defects thus tends to weaken the F−field (refer to Eq.1

17) established through the balance of the diffusion and electric-polarization transport of Bjerrum2

defects. However, this weakening effect is countered easily by the currents generated by the diffusion3

of Bjerrum defects due to their vastly higher density compared to ionic defects. As a result, the4

change of F−field is less than 0.1% (see Fig. 3d) and the accumulation (depletion) of OH− (H+)5

ions near the left boundary is accompanied by the accumulation (depletion) of D (L) defects there6

as can be observed in Fig. 3a. The continued accumulation (depletion) of OH− (H+) ions near7

ice slab’s left boundary eventually brings the sign of net charge from positive at the pseudo-steady8

state to negative and enhances the bound charge there. These changes reduce the electric field to9

negative and strengthen the polarization field greatly at the middle plane, both helping to counter10

15
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the current generated by diffusion of ionic defects. Eventually, the combined electric-polarization1

currents of ionic defects balance their positive diffusion current and a steady state is finally reached.2

Overall, the thermoelectrification of an ice slab during the slow stage shows two key features.3

First, the F−field varies little because it is controlled primarily by the constant-rate diffusion of4

Bjerrum defects; electric and polarization fields change significantly from their values at the fast5

stage so that the ionic current they generate eventually balances the diffusion current of ionic6

defects. In particular, at the ice slab’s middle plane, we have O(dFm/dt) � O(dEm/dt), which is7

indeed observed in Fig. 3d. Second, the change in the charge of ionic defects near each boundary8

is accompanied by a similar change of the net charge of Bjerrum defects. In particular, we have9

O(d(Γ+ − Γ−)/dt) ∼ O(d(ΓD − ΓL)/dt), which is indeed observed in Fig. 3a and d. Both features10

can also be understood by analyzing the transport equations of ionic and Bjerrum defects in a11

temperature gradient (see supplementary Information for details).12

Building upon the insights from the above results, the net charges of ionic and Bjerrum defect13

pairs near each boundary and the time scale of the slow stage can be obtained analytically. To14

obtain the charge of the two defect pairs near the left boundary (σ± = e±(Γ+ − Γ−) and σDL =15

eDL(ΓD − ΓL)), we integrate Eq. 9 and 10 over ice slab’s left half, apply the boundary conditions16

in Eq. 11, and after some algebra, we obtain17

σ± = e±(Γ+ − Γ−) = Pb,m
e±
e

+ Emε0ε∞
e±
e

(23)

18

σDL = eDL(ΓD − ΓL) = −Pb,m
e±
e

+ Emε0ε∞
eDL
e

(24)

Next, similar to Eq. 16, applying the conservation law for H+ and OH− ions and using Eq. 5, 6,19

and 17, the excess of H+ ions over OH− ions in ice slab’s left half is obtained as20

d(Γ+ − Γ−)

dt
= − e

kBTm
n0
±,m(D++D−)Em+

eDL
kBTm

n0
±,m(D++D−)Fm+(D+−D−)

dn0
±

dx
|x=W/2 (25)

where n0
±,m = n0

+(x = W/2) = n0
−(x = W/2). n0

± is the equilibrium density of ionic defects, which21

depends on the local temperature through Eq. 3. Combining Eq. 25 with Eq. 3 and 16, we obtain22

d(Γ+−Γ−)
dt

(D+ +D−)
n0
±,m

kBTm

+

e
eDL

d(ΓD−ΓL)
dt

(DD +DL)
n0
DL,m

kBTm

= −eEm +
1

2Tm

[
1− βDL
1 + βDL

ΦDL +
1− β±
1 + β±

Φ±

]
dT

dx
(26)

Because n0
DL,m ∼ 106n0

±,m and O(d(Γ+ − Γ−)/dt) ∼ O(d(ΓD − ΓL)/dt), the second term on the23

16
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left-hand side of Eq. 26 can be neglected. Substituting Eq. 17 and 23 into Eq. 26, we have1

d
dt

[
1
e

(
ε0ε∞Em +

e2DL
Φ (Em − Fm)

)]
(D+ +D−)n0

±,m
= − eEm

kBTm
+

1

2kBT 2
m

[
1− βDL
1 + βDL

ΦDL +
1− β±
1 + β±

Φ±

]
dT

dx
(27)

Because O(∂Fm/∂t)� O(∂Em/∂t), the Fm term in Eq. 27 can be neglected to result in2

ε0ε∞ +
e2DL

Φ

e(D+ +D−)n0
±,m

dEm
dt

= − eEm
kBTm

+
1

2kBT 2
m

[
1− βDL
1 + βDL

ΦDL +
1− β±
1 + β±

Φ±

]
dT

dx
(28)

Because the slow stage lasts much longer than the fast stage, the initial condition for Eq. 28 can be3

approximated as the pseudo-steady state value of Em during the fast stage, i.e., Em(t = 0) = Em,f .4

Therefore, we have5

Em(t) = (Em,f − Em(t =∞))e−t/τE,s + Em(∞) (29)

The steady state electric field at ice slab’s middle plane is6

Em(t =∞) = − 1

2eTm

[
1− β±
1 + β±

Φ± +
1− βDL
1 + βDL

ΦDL

]
∆T

W
(30)

The steady state value predicted by Eq. 30 agrees with that shown in Fig. 3d with an error less7

than 0.1%. The time scale for Em(t) to reach the steady state is8

τE,s =
kBTm

(
ε0ε∞ +

e2DL
Φ

)
e2(D+ +D−)n0

±
=

(
1 +

1

α

)
e2
±
e2

λ2
±

(D+ +D−)/2
(31)

Substituting the parameters in Table 1, τE,s = 3.47 min. Physically, τE,s is similar to the9

Debye time of ionic defects and it is the time scale for the development of Em and Pb,m fields that10

drives electric-polarization transport of ionic defects to balance their current driven by diffusion.11

Eq. 29 and 31 predict that, at 3τE,s = 1.94 × 107tr, the decrease of total charge in ice slab’s left12

half reaches 95% of the that at steady state, in agreement with the observation in Fig. 3d with an13

error less than 1%.14

Using a similar approach, the steady state value of the polarization field at ice slab’s middle15

plane, Pb,m(t = ∞), can be obtained (see supplementary Information). Using the steady state16

values of Pb,m and Em, the ratio of the net charge of ionic defects near the left boundary (σ±) to17

17
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the total charge of all defects (σtot = σ± + σDL) can be obtained as1

σ±(t =∞)

σtot(t =∞)
=

e±eDL
eε0ε∞Φ

[
1−β±
1+β±

Φ±eDL − 1−βDL
1+βDL

ΦDLe±

]
[

1−β±
1+β±

Φ± + 1−βDL
1+βDL

ΦDL

] +
e±
e

(32)

Eq. 32 predicts that σ±(t = ∞)/σtot(t = ∞) = 1.07 × 103, which agrees with the data shown in2

Fig. 3d with an error less than 0.1%.3

3.2 Effect of ice slab thickness on electrification4

We showed earlier that the steady state thermovoltage across a 0.1 m-thick ice slab obtained5

from our numerical simulation is only ∼40% of that predicted by Eq. 15, which was derived by6

neglecting boundary effects (or equivalently, assuming that the ice slab is very thick). In this7

section, we examine the origin of this significant discrepancy and evaluate the effect of ice slab8

thickness on thermoelectrification.9

Figure 4: Space charge density (a) and electric potential (b) profiles across a 0.1 m-thick ice slab

at steady state (T (0) − T (W ) = 3K). The inset in (b) is the electric field near the left boundary

and it is non-dimensionalized using the field given by Eq. 30.

Figure 4a shows the distribution of space charge in the ice slab, with zoom-in views near its left10

boundary (i.e., x = 0). We observe that the charge distribution features two layers with different11

length scales: a compact inner layer and a diffuse outer layer that extend ∼ 5λDL (0.59 µm) and12

∼ 15λ± (2.37 mm) from the left boundary, respectively. The inner layer features positive charge13

and is dominated by Bjerrum defects (see Fig. 2b); the outer layer features negative charge and is14

contributed more by ionic defects (see Fig. 3b). Because the inner layer is highly charged and the15
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outer layer is much more diffuse than the inner layer, the inner layer’s charge is fully screened by the1

counter-charges in the outer layer only at x ∼ 13λ± (this is evident in the inset of Fig. 4b, where the2

electric field E becomes zero at x/λ± ∼ 13). Therefore, as we move away from the left boundary,3

the electric potential decreases initially. A similar phenomenon occurs near the right boundary.4

Because these interfacial potential variations are significant and opposite to the potential variation5

in bulk ice, they make the overall potential difference across the ice slab considerably smaller than6

that expected from Eq. 15, where the boundary effects are neglected.7

Interfacial potential drops occur in the boundary regions, whose width is governed by λ± and8

is independent of ice slab’s thickness. As shown in Fig. 5a, boundary effects play an increasingly9

important role in the overall potential variation across ice slabs when they becomes thinner. Figure10

5b shows that, as W/λ± decreases to 316 corresponding to W = 5 cm, the interfacial potential11

drop even causes the thermovoltage across ice slab to reverse sign. As W/λ± decreases further to12

19, thermovoltage increases to 1.26 mV/K, with the warmer end at a higher potential.13

Figure 5: (a) Steady state electric potential profiles across ice slabs with different thickness. (b)

Variation of the thermoelectric power ∆φ/∆T as a function of an ice slab’s thickness. ∆φ/∆T > 0

corresponds to a higher potential at the warmer end of an ice slab. ∆T/W = (T (0) − T (W ))/W

is kept as 30 K/m in all cases.

Figure 6a shows the variation of the total charge in the ice slab’s left half (σtot) as a function of14

its thickness. As the slab thickness decreases, σtot deviates from that predicted by Eq. 30. To see15

the origins of this deviation, we examine the distribution of Bjerrum and ionic defects in an ice slab16

with W = 19λ±. Figure 6b shows the non-equilibrium density of all defects (ni− n0
i ) while Fig. 6c17

shows the density (ni) of the ionic defects across the ice slab. At the ice slab’s middle plane, the18

19
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density of each defect remains close to its local equilibrium (panel b); however, the gradients of ionic1

defects’ density deviates from those corresponding to the local equilibrium condition considerably2

(panel c) due to the overlap of the space charge layers. The prediction of the steady state electric3

field at middle plane by Eq. 30 is based on two assumptions (a) ni(x = W/2) = n0
i (Tm) and (b)4

ni(x) = n0
i (x) near x = W/2. However, this second assumption no longer holds for ionic defects5

(see Fig. 6c), σtot cannot be predicted by Eq. 30 accurately.6

The dependence of σtot on slab thickness is weaker compared to that of the thermovoltage.7

Indeed, at W > 60λ±, σtot already becomes independent of slab thickness and is predicted well8

by Eq. 30. This is expected: unlike thermovoltage that is determined by the potential profile in9

the entire ice slab, σtot is governed by the electric field at ice slab’s middle plane, which depends10

much less sensitively on the slab thickness (e.g., in Fig. 5a, the slope of the potential in the middle11

portion of the ice slab barely varies with ice slab thickness while the total potential drop across12

the ice slab is heavily affected by the potential drop near both boundaries). Given the thickness13

dependence of σtot and the thermovoltage, the choice of sample thickness in experiment deserves14

more attention.15

Figure 6: (a) Variation of the total charge in an ice slab’s left half as a function of its thickness.

(b-c) Non-equilibrium density of ionic and Bjerrum defects (b) and density of ionic defects (c)

across an ice slab with W/λ± = 19. (T (0)− T (W ))/W = 30 K/m in all cases.

3.3 Steady-state thermovoltage16

The thermoelectric power computed in Section 3.1.2 is ∆φ/∆T = −0.026 mV/K, which devi-17

ates greatly from the around -2 mV/K measured by Latham and Mason1 (∆φ/∆T > 0 corresponds18

20
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to higher potential at ice slab’s warmer end). Many factors can contribute to this discrepancy.1

From the theory and modeling perspective, the discrepancy may be attributed to at least2

three reasons. First, the thermodynamic and transport properties of Bjerrum and ionic defects3

used in our models may not be accurate for the ice samples used experimentally. For thick ice4

slabs, their thermoelectric power is described using Eq. 15 and thus depends on four parameters:5

the activation energy of ionic and Bjerrum defects (Φ± and ΦDL) and the mobility ratio of each6

defect pair (β± and βDL). These properties, however, are not fully understood and rather different7

values have been reported (see Table S1 in the supplementary Information). Of these properties,8

ΦDL is relatively well established (0.66 to 0.79 eV) and Φ± is likely 1 to 1.4 eV. β± is likely in the9

range of 0.1-0.3, while βDL is thought to be far larger than 1.0.10 Figure 7 shows that the ∆φ/∆T10

predicted using Eq. 15 in a plausible parameter space of these properties (note that βDL is varied11

from 1 to 10 because thermovoltage varies little as βDL increases beyond 10. We observe that a12

∆φ/∆T in the range of -2.0 to 0.1 mV/K is possible, and the experimentally measured ∆φ/∆T13

can indeed be captured by the model for some parameter combinations.14

Figure 7: The thermoelectric power ∆φ/∆T (mV/K) computed using Eq. 15 for different Φ±,

ΦDL, β±, and βDL. ∆φ/∆T > 0 corresponds to a higher potential at the warmer end of an ice

slab.

Second, the boundary effects associated with finite thickness of ice slab illustrated in Section15

3.2 can greatly change ∆φ/∆T , even reversing its sign. The precise impact of boundary effects on16

the above discrepancy is, however, difficult to quantify. While the thickness of ice slab was usually17

reported in experimental studies, the value of W/λ± is difficult to determine because of the large18

uncertainty of the activation energy of ionic defects and thus λ±.19

21
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Third, not all physics governing the thermoelectric behavior of ice have been considered in1

the model adopted here. As an example, the temperature dependence of charge carriers’ diffusion2

coefficient (or mobility) is neglected in our model. This effect can be considered by introducing3

d lnDi/dT = ΦDi/kBT
2, where ΦDi is the migration energy of a carrier i.20 With this modification,4

the thermovoltage given by Eq. 15 must be modified to become20
5

∆φJ = −1

e

[
(ΦDD

+ 1
2ΦDL

)− βDL(ΦDL
+ 1

2ΦDL)

1 + βDL
+

(ΦD+ + 1
2Φ±)− β±(ΦD− + 1

2Φ±)

1 + β±

]
∆T

Tm
(33)

From Eq. 33, we see the migration energy and activation energy affect the thermovoltage in6

qualitatively similar way. The migration energies of ionic and Bjerrum defects (especially those of7

D and OH− defects) are less well understood compared to their activation energies. The migration8

energy of the Bjerrum defects is thought to be around 0.2 eV. The migration energy of ionic defects9

is often considered as 0, although negative migration energies arising from tunneling mechanisms10

have also been proposed (see Table S1 in the supplementary Information).27
11

12 As another example, the model adopted here neglects physics that cause defects near interfaces 

13 to exhibit behavior different from that in bulk ice. In reality, defects near ice surface may behave 14 

differently from that in bulk ice, e.g., they may have mobilities and activation energies different 15 from 

those in bulk.15 Some of these neglected physics can affect the separation of defect pairs 16 near ice 

surfaces and consequently the thermoelectric behavior of ice, thereby explaining to the 17 discrepancy 

between experimental data and prediction by the present thermoelectric model.

From the experimental perspective, the measured thermoelectric behavior may depend on the18

nature of ice samples used, which can depend on how samples were prepared. Furthermore, the19

measured thermovoltage may not be strictly a property of the ice if the contact potential between20

the ice and electrode itself depends on temperature.21

4 Conclusions22

In summary, the electrification of ice slabs under a temperature gradient is investigated both23

numerically and analytically. First, we study the dynamics of electrification of a relatively thick24

ice slab after a temperature gradient is imposed. The thermoelectricfication occurs in two stages.25

The initial fast stage is dominated by Bjerrum defects, who are the majority charge carriers in ice.26

Charge separation in this stage is confined within 5λDL from the slab boundaries. In the subsequent27

22
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slow stage, the transport of ionic defects modifies the electric field set up by Bjerrum defects during1

the fast stage, while the combined electric and polarization field (the F−field) changes little. The2

charge separation in this stage is confined within 15λ± from the slab boundaries. The time scales3

of the first and second stages are found to correspond to the Debye time scales of Bjerrum and4

ionic defects, respectively. The analytical predictions of the total charge near the warm/cold end of5

the ice slab and its contributions by Bjerrum and ionic defects independently at the pseudo-steady6

state (i.e., the end of the first stage) and at the true steady state are obtained.7

Next, by imposing a constant temperature gradient across the ice slab, we simulated the ther-8

moelectrification of ice slabs with different thickness. The steady-state thermovoltage and charge9

accumulation near each boundary are found to depend on ice slab’s thickness with the thermovolt-10

age displaying a higher sensitivity. Finally, we analyze the discrepancies of thermovoltages predicted11

by simulations and measured experimentally. The uncertainties of ice properties, finite thickness12

effects, incompleteness of thermoelectric theory, and uncertainties in experimental measurements13

are identified as main reasons behind these discrepancies.14

Thermoelectric effects in ice were discovered experimentally half a century ago, and the theo-15

retical studies of these effects culminated in Jaccard’s model shortly after.20 Since then, little work16

has been devoted to them and it is often implicitly assumed that these effects are well understood.17

The present study, however, suggests that there exist significant gaps in our understanding of these18

effects. Given that these effects potentially play an important role in both natural phenomena (e.g.,19

lightening in thunderstorms) and can be leveraged for engineering applications (e.g., electrostatic20

deicing9), we hope this present study will stimulate both experimental and theoretical studies of21

these effects in the future.22
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