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The use of radiometal isotopes in Positron Emission Tomography: a new nuclear 

imaging success story? 
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Radiometals: Towards a New Success Story in 
Nuclear Imaging? 

David Brasse*a,c, and Aline Nonatb,c  

 
 
 
Several limitations of 18F and other non-metallic isotopes have been emphasized by the 
development of macromolecular biotargeting agents for cancer, including peptides, antibodies, 
fragments and oligonucleotides, which typically have biological half-lives that are much longer 
than the radioactive half-life of 18F. Based on the 18F-FDG success story, we can wonder 
whether all critical criteria are or can be fulfilled for the radiometallated bioconjugates to 
break through and which metals have the best chance for success. In this paper we give a brief 
overview of radiometal isotopes having the potential for PET imaging in term of physical 
properties, production capacity and associated chemistry. 
 

 

 

 

 

 

 

 

A Introduction 

The year 2000 represents an important milestone in nuclear imaging. The same year, the PET/CT was declared “image of the year” by the 
society of nuclear medicine, “invention of the year” by Time magazine and “outstanding basic science paper” for the work of Thomas Beyer 
et al1 in the journal of Nuclear Medicine. As claimed by Johannes Czerning in 2003, the PET/CT was a technical evolution that has led to a 
medical revolution. The number of PET or PET/CT procedures in US was closed to 0.2 Million in 2000 and reached 1.85 Millions in 2012. 
We observe the same behaviour in Europe with a 21% increase of procedures between 2005 and 2010. This current success story as an 
invaluable tool in clinical routine is due to the concomitance of several factors, among which improvement in detector performance has in 
fact played a rather minor role.2 The need for a “technetium”-like isotope for PET was mandatory. With a half-life of almost two hours and 
ideal physical properties for PET imaging, 18F rapidly became the isotope of choice. However, it requires a well-established network of 
cyclotron facilities capable of providing radiolabelled compounds at the patient bed. Finding the clinical niche in which PET does not to 
compete but rather complement other imaging modalities was also a determining factor for the success of PET. The combination with CT 
promoted PET as the dominant tool in oncology. 
Nuclear medical imaging is currently preparing for a new turning point in its history. Several limitations of 18F and other non-metallic 
isotopes have been emphasized by the development of macromolecular biotargeting agents for cancer, including peptides, antibodies, 
fragments and oligonucleotides, which typically have biological half-lives that are much longer than the radioactive half-life of 18F and 11C. 
Furthermore, radiochemistry with non-metallic isotopes often necessitates demanding and complex synthesis with conditions that are not 
always compatible with these sensitive biomolecular agents. Based on the 18F-FDG success story, we can wonder whether all critical criteria 
are or can be fulfilled for the radiometallated bioconjugates to break through and which metals have the best chance for success. 
One determining factor is probably the way the isotopes are produced (reactor, cyclotron), packaged (radio-labelled molecules, generators) 
and distributed. The second item is highly correlated to their coordination chemistry and the availability of bifunctionnal chelators which can 
form stable and kinetically inert complexes in bio-friendly conditions and also be covalently attached to targeting vectors.3 We also need to 
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define the “killer applications” for which the added value is well identified compared to other approaches. Some exciting results have been 
already published in theranostic, multimodality approaches and boron neutron capture applications.4  

Although the performance of the imaging modalities played a minor role in the FDG PET/CT success, we will present some 
advances in PET instrumentation and detector module. 
 
 
B Availability of metal ions  
 
B.1 Radiometals for PET 
All nuclear medicine procedures require the use of radionuclides to highlight for example a functional disorder or to transfer enough energy 
to locally damage cancer cells. Over the last decades, nuclear physics facilities brought to our knowledge more than one hundred radioactive 
isotopes with properties useful for nuclear medicine.  
The radioactive isotope is categorized according to its type of ionizing radiation. Gamma and positrons emitters will be used for imaging 
procedures while beta, alpha and electron are used for therapy purposes. 
Several important criteria will push forward a radionuclide if its properties are well adapted to the medical application of interest. For 
example, its half-life should be long enough to be distributed and reach the target after the patient injection but short enough to minimize the 
patient exposure after the imaging procedure was performed. It should be long enough regarding the time required to transport the product 
between the production site and the examination room but short enough to prevent long-term waste-handling issues for the hospital.  
Positron emission tomography (PET) imaging system are optimized to detect the two 511 keV photons coming from the annihilation of the 
positron. Prior to the annihilation, the unstable atom loses energy by emitting ionizing radiation. Depending on the isotope, the positrons that 
represent a fraction of the total amount of decays (branching ratio) are emitted according to a continuous kinetic energy spectrum defined by 
a maximum available energy.  
The emitted charged particle looses its initial energy by collisions with the atoms in the surrounding tissue. Once the positron energy 
becomes sufficiently small, the particle collides with a free electron producing two photons almost 180° opposed. The distance travelled by 
the positron before the annihilation is called the positron range and depends on the initial energy of the particle. The properties required to 
become a good PET candidate are then a high branching ratio (BR) to optimize the injected activity, a low positron energy to limit the 
particle range and optimize the spatial resolution, a suitable half-life and appropriate chemical properties. The positron range can be 
computed from an empirical formula given by Katz and Penfold4. 

ܴ୫ୟ୶	ቂ
௚

௖௠మቃ ൌ ൝
ఉܧ0.412

ଵ.ଶ଺ହି଴.଴ଽହସ୪୬	ሺாഁሻ

ఉܧ0.530 െ 0.106
           

0.01 ൑ ఉܧ ൑ ܸ݁ܯ	2.5
ఉܧ ൐ ܸ݁ܯ2.5   (1) 

where Eஒ represents the positron energy. In order to retrieve the distance travelled by the particle, the range has to be divided by the tissue 

density. Similarly to 99mTc for SPECT, 18F presents all the properties to rapidly become at the beginning of PET imaging the isotope of 
choice. It has a branching ratio close to 100% with a short average range in soft tissue of 0.6 mm but probably suffer from a short half-life of 
only two hours when macromolecules required more time to reach their biological target. To overcome this handicap, radiometal isotopes 
presenting longer half-lives can be used. Possible candidates for PET imaging are listed in Table 1.  

Few elements present a positron energy allowing a range below 1 mm in soft tissue. This criteria may become important when preclinical 
studies are concerned but less penalizing when investigations at the organ scale are required.  

If we consider the branching ratio of 18F as the gold standard and in order to obtain the same “image quality”, the amount of activity required 
when using 64Cu, 89Zr and 86Y should be 5.5, 3 and 4.3 times higher than the one used with 18F. However, more information is required to 
correctly estimate the excess dose delivered to the patient such as the physical and biological half-lives, the biodistribution of the compound, 
the energy of the positron and the additional gamma rays. 

For example, if we consider the external dose delivered by the gammas and the radiotoxicity reported in nuclide safety datasheets, we obtain 
lower values for 64Cu than 18F (3.6×10-5 mSv/h for 64Cu and 1.9×10-4  mSv/h for 18F per MBq at 1 meter for the external dose and 1.26×10-10  
Sv/Bq for 64Cu and 2.9×10-10 Sv/Bq for 18F in term of radiotoxicity when the product is ingested). In that case the excess dose delivered to 
the patient is mainly dictated by the low branching ratio of 64Cu. 

Taking into account all these considerations, 3 to 4 radiometals present interesting properties for PET imaging. Interest in using 68Ga for 
clinical PET comes from its availability from a generator. While the positron range of 68Ga is higher than the one of 18F and its half-life is 
around one hour, the availability of 68Ga from a 68Ge/68Ga generator eliminates the need of an onsite cyclotron and makes 68Ga an attractive 
alternative to 18F. 64Cu seems to present appropriate properties to target macromolecules requiring longer half-life. We will have to keep in 
mind its low branching ratio and the emission of an additional beta minus particle (38.5%) with a maximum and average energy of 579 keV 
and 191 keV respectively. For longer half-lives, two radiometals present interesting properties: 89Zr and 71As. While 89Zr is well documented 
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Figure 4:  Selected acyclic chelators. 

 

 

Figure 5:  Selected macrocyclic chelators. 

 

 
EDTA (ethylenediaminetetraacetic acid) is probably one of the oldest synthetic ligand. Originaly synthesized by R. Fick and H. Ulrich in 
1936, it has been widely used for the complexation of transition metals and displays fast complexation kinetics at room temperature.28 
However, serum stability measurements on the 67Cu complex revealed that it is not stable in human serum.29 DTPA 
(diethylenetriaminepentaacetic acid, Figure 4) is another cheap and convenient ligand since it can be obtained in one step from sodium 
chloromethylacetate and diethylenetriamine.30  Its coordination properties were first studied with Fe(III) in 196831 and  DTPA has been 
found to outperform EDTA.32 Since then, it has been used to coordinate almost all metals of the periodic table, from transition metals to  
rare-earth elements. It was first used for the synthesis of Technetium-99-DTPA-protein complexes for scintigraphy in 1981.33  
 As seen from the number of publications over the past twenty-five years (Figure 6), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10)-
tetraacetic acid, Figure 5) is the most popular macrocyclic chelator for the complexation of radiometals. Its complexation properties were 
first studied by H. Stetter and W. Frank in 1976, showing outstanding complexation of alkaline earth metals (Ca, in particular) as well as 
strong binding of transition metal ions such as Cu, Ni, Co, Zn, Cd and for Pb.34 One year later, J. F. Desreux demonstrated that DOTA could 
also form very stable lanthanide complexes in water (La, Eu, Pr and Y).35  Moreover, it forms overall more stable complexes than DTPA and 
was for a long time considered as a universal ligand for imaging applications such as MRI, PET, SPECT and fluorescence imaging.36 In 
particular, [Gd(DOTA)]-  has been used as a clinical MRI contrast agent since the 90’s (DOTAREM®, Guerbet). 
 The last five years are characterized by a decline in the use of DOTA for radiolabeling applications together with a growing number of 
alternative ligands (Figure 6). The development of new bifunctional chelates for the coordination of radiometals is far from being a futile 
task, since it has now become clear that, due to the large diversity in the properties of the radiometals and their differing coordination 
chemistries, there cannot be a universal chelate suitable for all radionuclide. Larger tetraazamacrocycles such as TETA (TETA = 1,4,8,11-
tetraazacyclotetradecane-1,4,8,11-tetraacetic acid) have been developed in order to provide 6-membered chelate rings.37 Triazacyclononane 
derivatives (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid) provide a smaller coordination pocket with a restricted number of binding 
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atoms. Investigations have been performed on reinforced systems, namely, cross-bridged and side-bridged chelates, with the aim to increase 
kinetic inertness of the Cu(II) complexes. This review is aimed to provide general notions about the coordination chemistry of Ga(III), Cu(II) 
and Zr(IV), when designing a PET imaging agent. It seemed neither realistic nor appropriate for us to endeavour to present a comprehensive 
review of the ligands developed within the last 30 years or so.  For more detailed information, interested readers are referred to recent 

excellent review articles on this topic.3,38,39,40 

Figure 6:    Left: Number of publications using  classical macrocyclic  ligands  (DOTA, NOTA, TETA, ATSM, CB‐DO2A, CB‐TE2A,DO2P, CB‐DO2P,  Sarcophagines, PCTA), 

podants (EDTA, DTPA, DFO) and their derivatives used for radiolabelling applications; Right : Evolution of the relative percentage of the different ligands. 

 

  

Table 2:  Thermodynamic stability constants, redox potentials (q‐rev = quasi‐réversible, irrev = irreversible) and kinetic inertness towards acid‐assisted dissociation of 

selected Ga(III) and Cu(II) complexes.38,3,41,39 
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Year

EDTA

DTPA

ATSM

NOTA

DOTA

others

 M Log KML Ered vs NHE t1/2 
Macrocyclic chelators 

DOTA 
Ga 21.3   
Cu 22.2, 22.7 -0.74 (irrev) <3 min (5M HCl, 90°) 

NOTA 
Ga 31.0   
Cu 19.8, 21.6  -0.70 (irrev) <3 min (5M HCl, 30°) 

TETA 
Ga 19.7   
Cu 21.1, 21.9 -0.98 (irrev) <3 min (5M HCl, 90°) 

CB-DO2A 
Ga    
Cu  -0.79 (irrev) 4.0 h (1 M HCl, 30°) 

CB-TE2A 
Ga    
Cu  -0.88 (q-rev) 154 h (5M HCl, 90°) 

DO2P 
Ga    
Cu 28.7   

DiamSar 
Ga    
Cu  -0.90 (irrev) 40h (5M HCl, 90°) 

PCTA 
Ga    
Cu 19.1   

Acyclic chelators 

EDTA 
Ga 18.8, 19.2   
Cu 21.0, 22.0   
Zr 27.7, 29.4   

DTPA 
Ga 25.5   
Cu 21.4   
Zr 35.8, 36.9   

ATSM Ga    
Cu  -0.40 (q-rev)  

DFO 
Ga 28.6   
Cu 19.2   
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C.1 Chelates for Ga-68  

Gallium is a post-transition metal of electronic configuration [Ar]3d104s24p1. Its chemistry in aqueous solution is exclusively limited to the 
+3 oxidation, which has a diamagnetic d10 configuration and a small ionic radius of 47-62 pm for coordination numbers of 4 to 6.42 As a 
classic hard acidic cation, it is strongly bond to hard donor ligands featuring multiple nitrogens and anionic oxygens such as carboxylate, 
phosphonate or phosphinate functions. Two points need to require specific attention when designing Ga(III)-based radiopharmaceuticals: (i) 
there resistance to hydrolysis and (ii) to transchelation reactions, which occur in particular with transferrin, due to the strong competition 
between Ga(III) and Fe(III).23 At physiological pH, gallium displays a strong affinity for hydroxide ions and forms insoluble [Ga(OH)3],

43 
whereas free hydrated [Ga(H2O)6]

3+ is stable only under acidic conditions (pKa = 2.6).44 
 67-Gallium citrate is used as a γ emitter for SPECT since the mid 70’s. Citrate is a weak Ga(III) chelator and is known to give 
transchelation reactions with transferrin, lactoferrin and ferritin in vivo,45 which leads to an accumulation of the Ga-67 in the lungs 
immediately after intravenous injection. Because of its low specificity and significantly high radiotoxicity, it is only used where and when 
18F-FDG PET is not available. However, [Ga(citrate)OH]- (log βMLOH = 7.1)46 can be used as a pre-complexing agent for the synthesis of 
Ga(III) complexes of higher stability.47 For instance, thermodynamically stable and kinetically inert Ga(III) complexes have been obtained 
by sequestering Ga(III) with hexadentate ligands (Table 2).38,3 DOTA analogues have mainly been used and the 68Ga complexes have been 
tested pre-clinically for the targeting of somatostatin,48 bombesin49,50 and melanocortin 1 receptors.51 68Ga-DOTA conjugates with octreotide 
(68Ga-DOTATOC), and analogue peptides (68Ga-DOTATATE and 68Ga-DOTANOC) are currently in clinical trials for diagnosing 
somatostatine-receptor positive tumours.52 NOTA is known to form very stable Ga(III) complexes (Table 2).53 Its C-functionalised derivative 
(NODAGA) is becoming increasingly more popular since it outperforms most of  the other DOTA analogues, especially with regard to facile 
radiolabeling (30 to 60 minutes at ambient temperature).54,50 
 Among the recent advances, triazacyclononane-triphosphinate derivatives (TRAP, log KML = 26.24, NOPO55) have been developed with 
the aim to increase Ga(III) selectivity and in vivo stability. A N4O2 linear chelating agent (H2dedpa, Figure 7)56 and its nitroimidazole 
derivative57 show very good radiolabeling efficiencies in mild conditions as well as exceptional kinetic inertness in vitro. Bis-phosphonate 
conjugates have also been studied for bone imaging58 and Ga[NO2A-N-(α-amino)propionate] for in vivo pH sensing.59  
 
C.2 Chelates for Cu-64  

Copper is a first row transition metal of electronic configuration [Ar]3d104s1. It displays three oxidation states in aqueous solutions, Cu(I-III). 
Cu(I) has a diamagnetic d10 confuguration and is stabilized by soft ligands such as thioethers, thiolates, phosphines, nitriles, isonitriles, 
cyanide. Cu(II) is the most widely used oxidation state for radiopharmaceuticals. It is paramagnetic and stands on the border between hard 
and soft metals. As a consequence, it has a strong affinity for ligands containing nitrogen donors but also hard anionic oxygens or soft sulfur 
donors. Cu(III), is relatively rare and is only observed when coordinated to strong π-donating ligands.60 
 Historically, cyclic and acyclic tetradentate chelators (N4, N2O2 and N2S2) were favored in order to stabilize the d9 electronic 
configuration of Cu(II). Cyclam and its derivatives form complexes with high thermodynamic stability61 although not kineticly inert. 
Bis(thiosemicarbazonato) ligands such as ATSM (Figure 4) coordinate as a tetradentate chelate in a planar arrangement. The complexes are 
characterized by a very low redox potential (Table 2) and [Cu(ATSM)]  is spontaneously reduced when entering a cell and reoxidized by 
molecular oxygen in a reversible process.62 [64Cu(ATSM)] has been used very effectively for the detection of hypoxic tumor cells and is 
currently in clinical trials.63 
 Stable complexes with coordination numbers of 5 and 6, with trigonal bipyramidal and distorded octahedral geometries (due to Jahn-
Teller distorsions) have now become the most investigated in radiocopper chemistry since they provide a better envelopment of the Cu(II) 
ion and tend to be more kinetically inert. So far, a wide range of polyaazamacrocyclic ligands, based on cyclen, cyclam and 
triazacyclononane backbones, have been studied.39,64,65

 Although they have been extensively used as chelators for 64Cu-labeling of peptides, 
DOTA and TETA are not ideal chelators for Cu(II) and in vivo experiments in rat models have shown that both complexes undergo 
transchelation of 64Cu(II) to liver and blood proteins.66 NOTA is now emerging as the best alternative to DOTA since it is commercially 
available and can be used for the labeling with 64Cu with very high specific activity and under mild reaction conditions (30-60 min at room 
temperature).67 Moreover, although the stability constant of [Cu(NOTA)]- is very similar to the ones of [Cu(DOTA)]2- and [Cu(TETA)]2- 
(Table 2), it displays a higher in vivo stability.39 Metabolic studies in rat models showed that cross-bridged [64Cu(CB-DO2A)] and [64Cu(CB-
TE2A)] (Figure 5) present an increased in vivo stability compared with [64Cu(DOTA)]2- and [64Cu(TETA)]2- complexes, confirming that the 
introduction of the ethylenic bridge enhances the stability of these macrocyclic complexes.68,69 CB-TE2A also possesses the capacity to 
stabilize Cu(I) and is practically inert towards Cu(II)/Cu(I) reduction (Ered = -0.88 V). However, these constraints significantly slow down the 
kinetics of Cu(II) complexation and renders difficult the labeling of heat-sensitive biomolecules such as antibodies. 70 Cross-bridged cyclam 
and cyclen macrocycles having methanephosphonic acid pendant arms, CB-DO2P and CB-DO2P (Figure 5), have been developed71,72 and 
the corresponding 64Cu complexes demonstrated promising kinetic inertness in vivo. Side-bridged cyclam derivatives are also strong 
candidates since they allow for quantitative radiolabeling with 64Cu in EtOH and in vitro stability in human serum.73 
Hexaaminemacrobicyclic type structures such as sarcophagines74,75,76,77 form hexacoordinated and octahedral Cu(II) complexes at room and 
negligible in vitro transchelation was observed. Despite their very promising properties, the application of sarcophagine derivatives has until 
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now been limited by their long and tedious synthetic pathway. This barrier has recently been challenged by E. Mume et al., who developed a 
high yielding synthesis method.78  
 Two new cyclam (pycup2Bn)79 and cyclen (L1)80 cross-bridged macrocycles (Figure 5) form stable complexes with Cu(II) (log KCuL = 
23.25 for L1) and demonstrate very good kinetic inertness towards acid-assisted dissociation  (t1/2 = 20.3 h in 5M HCl 90°C for Cu-pycup2Bn 
and t1/2 = 30.8 d in 12M HCl 90°C for L1). For both systems, complexation kinetic is slow at room temperature. Nevertheless, in the case of 
pycup derivatives, quantitative radiolabeling was achieved after 30 min at 60°C. Acyclic ligands based on a pyridine backbone and 
functionalized by aminomethylphosphonate functions also show great promises for 64Cu PET imaging. These ligands display a very strong 
complexation toward Cu(II) (Log KCuL = 22.7 for L2), combined to a high selectivity for Cu(II) towards Ni(II), Co(II), Zn(II) and Ga(III) 
(ΔLogK > 4).81,82  L2 can be derivatized into an activated phosphonated bifunctional chelate L3 (Figure 7), which can be coupled to small 
peptides or large antibodies.83 Several other ligands based on picolinate units such as dedpa (log KCuL = 19.2)84, HTE1PA (log KCuL = 25.5 
and t1/2 = 32 min in 1M HCl 25°C),85 no1pa2py (log KCuL = 21.0)86 have recently been reported and exhibit high selectivity and fast 
complexation kinetics (Figure 7). Metabolism study of [64Cu(TE1PA)]+ assessed a good in vivo stability.87 
 

 
Figure 7:  Emerging families of ligands for Ga‐68 and/or Cu‐64 complexation. 

 

 Pyridyl substituted bispidine (3,7-diazabicyclo[3.3.1]nonane) ligands88 and bispidine fused with dioxotetraaza macrocycles (L5, Figure 
7)89 are also strong candidates for the complexation of 64Cu, as shown by 64Cu transchelation tests in SOD and in human serum at 37°C. 
Biodistribution studies of ligand L4 in rats models have shown a very rapid blood and normal-tissue clearance for most organs and tissus.90 
2,4-pyridyl-substituted bispidine have the advantage to be readily obtained in few synthetic steps.91  

C.3 Chelates for Zr-89 

Zirconium is another transition metal ([Kr]4d25s2). In aqueous solution, it is present under its +4 oxidation state, with a small ionic radius 
(59-89 pm for CN 4-9). As a consequence, Zr(IV) is extremely hard and its chemistry is dominated by hydrolysis and poly oxo/hydroxo 
species.92 Polyanionic ligands such as EDTA,93 DTPA94 and DOTA95 form eight-coordinated complexes with Zr(IV) with strong affinity 
(Table 2).95,96,97,98 However, the complexes display poor in vivo stability.99 Desferrioxamine (DFO, Figure 4) is from far the most used ligand 
for the synthesis of Zr-based radioconjugates. Since the first clinical studies in 2006,100,101 a large number of 89Zr-DFO-antibody conjugates 
are in clinical trials for various applications102,103 such as metastatic prostate cancer,104,105 breast cancer,106 and for the detection of sentinel 
lingual lymph nodes.107 However, upon time, 89Zr is released and small accumulation in bones is observed.108,109 Several groups have now 
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undertaken the study of the aqueous chemistry of Zr(IV) with DFO and, more generally, hydroxamates such as acetohydroxamic acid (AHA) 
and N-methyl-acetohydroxamic acid (Me-AHA),110  with the aim to design improved chelators. In particular, a recent DFT study of the 
mechanism and reactivity of Zr(IV) with Me-AHA confirms that hydroxamate ligands with increased denticity (8 instead of 6 in the case of 
DFO) will provide complexes with increased thermodynamic and kinetic stability.111 As a consequence, a series of macrocyclic ligands, 
incorporating four hydroxamate units has been synthesized. These ligands demonstrated excellent complexation abilities (Figure 8) and the 
complexes display strong kinetic inertness. Moreover, improved stabilities compared with the reference DFO have been predicted from 
quantum chemical studies, which opens bright perspectives for these new ligands.  Other coordination units have also been studied. Methyl 
carboxylate (H4octapa) and methylphosphonate derivatives of H2dedpa (H6phospa) have been studied for the complexation of 89Zr. 
Improvements in 89Zr radiolabeling were observed with an advantage for the phosphonated ligand over the carboxylic acid derivatives 
although the radiolabeling yield remains weak (12% at 37°C).112 Hydroxypyridinone (HOPO) derivatives appear as a good alternative to 
DFO since they can be radiolabelled in almost quantitative yields (>98% with high specific activity) at millimolar concentration by using the 
standard procedure used for the complexation of DFO, ie. by addition of 89Zr-oxalate at room temperature and pH 6 to 7. 113 However, recent 
studies have demonstrated a significant loss of affinity upon bio-conjugation. For instance, the 89Zr-CP256-trastuzumab immunoconjugate 
was shown to be less stable in vivo than 89Zr-HOPO-trastuzumab and a strong uptake in bones and joints was observed.114  

Figure 8:  Other ligands for Zr‐89 complexation. 

 

 

C.4. Principle reactive functions and conjugation strategies 

The simplest conjugation strategy, which has long been used in the field, takes advantage of one of the acetate pendant arms, which is 
involved in amide bond formation with primary amines from lysine residues. However, the transformation of one of the carboxylic acid 
group into a carboxamide has a strong influence on metal binding properties and decreases in vitro and in vivo stabilities of the resulting 
complexes.115 Well-established methods of selective N- and C-functionalization have been developed in order to enable the coupling with the 
biomolecule without compromising the stability of the respective metal complexes.116 Functionalization is found either on the coordinating 
pendant arm,117,118,119 or on the methylenic backbone of the chelator, which is more elegant and also avoids the multistep synthesis of a 
sophisticated pendant arm.64,120,121,122 Once the bifunctional chelate synthesized, its use as radiopharmaceuticals will still strongly depend on 
i) the effectiveness of the bio-labelling reaction on a accessible function of the target biomaterial (peptide, protein or antibody) which does 
not perturb the biological activity, ii) its ease of implementation in bio-friendly conditions (usually in aqueous buffered media at pH close to 
neutrality or slightly basic, and at temperatures ranging from 4 to 40°C) and iii) the pharmacokinetic and biodistribution of the 
radiometallated bioconjugate. Most popular activated functions are targeted towards lateral functions of amino acids, either the amine of 
lysine or the thiol found in cysteine.123 A guide to the construction of 68Ga, 64Cu and 89Zr labelled peptide-, antibody- and oligonuleotide-
bioconjugates has been published by B. M. Zeglis and J. S. Lewis.64 Additional information can also be found in more recent reviews. 
40,116,124 Activated carboxylic acid with succinimydyl ester (NHS),125,83 isothiocyanate,126,127,128 N-hydroxysulfosuccinimidyl ester (SNHS),129 
tetrafluorophenol (TFP)130 or peptide coupling reagents such are EDCI, HATU, HOBt... can easily react with primary amines to form a stable 
peptidic bond (Figure 9). BFCs functionnalized with maleimide units are used to regioselectively target thiol functions with quantitative 
coupling yields.131,132 Click-chemistry reactions are attracting a growing interest in the radiopharmaceutical community.133 The copper-
catalyzed 1,3-dipolar Huisgen cycloaddition between terminal alkynes and azide is an extremely efficient reaction.134 However, the 
requirement of a toxic Cu(I) catalyst has prevented its application in living systems. Copper-free alternatives based on the use of highly 
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strained cyclooctyne derivatives have now been used for labeling reactions in vitro135 and in living organisms.136 Additionally, the spacer 
that separates the chelating moiety and the bioactive fragment can used as pharmacokinetic modifiers. For instance, a polyethyleneglycol 
(PEG) chain will increase water solubility, whereas an aliphatic chain will increase lipophilicity. 

Figure 9:  Main activated functions used for bioconjugation of radiotracers towards lysine and cysteine amino‐acids.  

 

 
 
 
D Improvement in PET signal-to-noise ratio  
  
Nowadays, a typical commercial clinical PET scanner is made of multi-full-ring detector modules composed of a few ten thousand small 
scintillation crystals coupled to photodetectors to detect the two 511 keV photons emitted by the radiotracers in the patient body (Figure 10). 
Because of the cylindrical nature of the detector arrangement, two opposite photons can be detected almost simultaneously. This event is 
called coincidence and defined a straight line or line-of-response (LOR). The time window to validate the coincident event is about half a 
billionth of a second with a coincidence data rate of a million events per second. The absolute detection efficiency (in %) or the sensitivity 
(in cps/MBq) of a PET scanner is defined as the ratio between the number of recorded coincident events and the number of coincident events 
emitted by the source. This figure of merit is governed by the solid angle defined by the scanner geometry and the material used to detect the 
511 keV photons.137 In practice, the geometry of the PET system is mostly defined by the patient size for the scanner bore and the overall 
cost of the system for the axial extent of the scanner. The whole-body biodistribution of [18F]-FDG tracer can be obtained in less than 15 
minutes. 
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example, 8 mm of LSO:Ce crystal are required to attenuate 50 % of 511 keV. In order to collect 90% of impinging 511 keV photons, 25 mm 
of crystal are needed which lead to 81% detection efficiency in coincidence mode. Unfortunately, the uncertainty on the scintillation position 
increases with the thickness of the crystal. The trade-off is a reduction in spatial resolution through parallax errors due to the lack of accurate 
measurement of the depth of interaction (DOI). Two or more crystal layers can be used to sample the depth and then obtain an estimation of 
the DOI.141 Moses et al was the first to measure the DOI using an additional array of photodiodes in the front side of the block detector.142 
Several groups after have used the same concept with an LSO scintillator array coupled at both sides by semiconductor 
photodetectors.143,144,145 Contrary to the phoswich method, this method allows a continuous sampling of the DOI. However, in the 1970s, 
Ter-Pogossian et al pioneered an original concept where the NaI crystals were positioned according to the axial direction with a PMT at each 
end of the crystal.146 The principle advantage of this geometry is that, due to a simplification in the depth encoding procedure, neither 
resolution nor sensitivity is compromised. The crystal section gives the transverse spatial resolution and the light sharing between both 
photodetectors gives the spatial resolution in the axial direction. The detection efficiency depends on the number of crystals in the radial 
direction. Several groups have been investigated this geometrical approach.147,148,149 In Salvador et al, a spatial resolution in the axial 
direction of 1 mm FWHM has been achieved with LYSO:Ce crystal of 1.5 x 1.5 x 25 mm3.150,151 

Casabella et al recently published a high resolution TOF PET concept with axial geometry. A coincidence timing resolution of 211 ps 
(FWHM) is reported constraining the annihilation point on the LOR to 3.1 cm (FWHM).152 

 
Conclusion 
 
In 1964, Hacket et al153 published 4 compounds as promising agents for use with 64Cu in the localization of brain tumors: alanine, cysteine, 
isonicotinic acid hydrazide and DTPA. Fifty years later, all these compounds have been proven to suffer from low in vivo stability. More 
than twenty Cu(II) chelates have been synthesized and tested in order to provide a strong coordination pocket and to avoid the release of 
Cu(II) in the body.  These compounds have been linked to antibodies, proteins, peptides and nanomolecules for preclinical and clinical 
researches. At the same time, 64Cu-ATSM, which uptake mechanism is based on Cu(II) reduction followed by decomplexation, is showing 
great promises for hypoxic tumors and is currently being tested in phase II for cervical cancer in the US. Moreover, in an era of outstanding 
accomplishments in personalized medicine and theranostic, 64Cu and its brother 67Cu show great advantages as a dual PET imaging agent and 
radionucleotide for the radioimmunotherapy of tumours. Despite all these efforts, it seems that we still lack of clinical killer applications 
pushing a 64Cu radiolabelled molecule in front of the scene, as none of the 64Cu-radioconjugate has been implemented to phase III studies 
yet.  

64Cu is not the only radiometal tagged as innovative radionuclide and this paper investigates the critical criteria such as the physical 
properties, the production capability and the associated molecule to become a success story. As the majority of the actual literature, we 
highlight 3 radiometal isotopes having the potential for PET imaging: 68Ga produced by generator may contribute to PET imaging as 99mTc is 
doing for SPECT, 64Cu to label macromolecules if the sensitivity of the PET systems is improved and 89Zr when longer half-lives are 
required. 

In conclusion, it seems that progresses are being held hostage by the fragility of the financial systems, which makes investors more risk 
averse than a decade ago. At the moment, all the radiopharmaceutical industry is still focused on FDG production and the cyclotron 
production sites and the clinical PET facilities are almost saturated making FDG a quasi-inexpensive molecule. It’s then difficult to correctly 
appreciate the industrial and health public authorities’ capacities to introduce a new radiolabelled molecule on the market at the level of 
FDG. 
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