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Hybrid organic—inorganic nanoparticles were synthesized by incorporating covalently embedded
monometallic (Ti or Zr) and bimetallic (Ti—Zr) oxoclusters, functionalized with polymerizable methacrylate
ligands, into a polymethylmethacrylate (PMMA) matrix. Nanoparticles were synthesized via photoactivated
free-radical copolymerization inside direct (oil-in-water) miniemulsion droplets, serving as confined
nanoreactors. This synthetic approach yielded spherical hybrid nanoparticles with an average diameter of
76 £ 50 nm. Given the ability of d° early transition metals to coordinate and activate the H,O, molecule,
the catalytic activity of these materials was investigated in heterogeneous oxidation reactions. Their
catalytic performance was initially evaluated in the oxidation of methyl p-tolyl sulfide, representing the first
example of Ti- and Ti—Zr-oxocluster-based hybrid materials as catalysts in a peroxidation reaction. Among
them, the monometallic Ti-based materials demonstrated superior conversion, selectivity, and reaction rate.
Subsequently, the catalysts were tested for the oxidation of benzyl alcohol and the epoxidation of
cyclooctene, demonstrating the potential application of oxocluster-based catalysts for primary alcohol and
alkene oxidations. Notably, the hybrid based on Ti4O,(OPr)s(OMc)g displayed the highest conversions and
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Accepted 2nd September 2025 reaction rate also for these reactions. These findings highlight the potential application of miniemulsion-
synthesized oxocluster-based hybrid nanoparticles as heterogeneous catalysts for the oxidation of various
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organic substrates. Moreover, preliminary hypotheses regarding the formation of the active peroxometal

rsc.li/materials-a species were formulated based on density functional theory (DFT) calculations.

organic monomers. The strong interactions between the two
components allow for a better distribution of the inorganic filler

Introduction

(cc)

The plethora of possible combinations of functional organic
molecules and inorganic building blocks is one of the main
driving forces for the exploration of novel multifunctional
organic-inorganic hybrid materials. These compounds, mostly
consisting of an inorganic core embedded in an organic matrix,
display a great variability in the chemical nature and structure
of the components, leading to a fine-tuning of the material
properties.” In particular, great interest is addressed to class II
hybrids, which differ from class I hybrids by the covalent
linkage between the inorganic building block and a polymeric
matrix obtained through a copolymerization with suitable
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in the polymeric matrix, while minimizing phenomena like
phase separation, migration, aggregation, and leaching.>* In
the last two decades, several types of inorganic building blocks
have been employed to synthesize hybrid materials, such as
polyhedral oligomeric silsesquioxanes (POSS),>® poly-
oxometalates (POM)™™® or oxoclusters of early transition
metals. >

Transition metal oxoclusters, with the general formula M,-
0,(OH)(OC(O)R),, are formed by a polyhedral inorganic core
composed of M-O-M bridges (where M is typically an early
transition metal in its highest oxidation state) coordinated by
bidentate organic ligands, typically carboxylates.'®>** The
functionalization of the inorganic core with ligands containing
polymerizable moieties, such as C=C bonds, makes these
compounds suitable building blocks for the synthesis of cross-
linked hybrid materials with an appropriate organic
comonomer %1415

The incorporation of early transition metal oxoclusters has
been proven to enhance the mechanical and thermal resistance
of the resulting polymeric materials;>'*'>'*'® moreover, the
final materials swell in organic solvent,” enabling their

This journal is © The Royal Society of Chemistry 2025
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application as a heterogeneous catalysts with tunable substrate
access to the catalytically active center.”””* Compounds based
on early transition metals in their highest oxidation state (d°)
display interesting catalytic properties, in particular towards the
activation of hydrogen peroxide, for the oxidation of different
substrates, such as olefins, sulfides, sulfoxides, and
alcohols."™*'*” Faccioli et al. described the catalytic activity of
zirconium-based oxoclusters for the homogeneous catalytic
oxidation of sulfur-based substrates in the presence of
hydrogen peroxide.?” Although the catalysts showed low oxida-
tive and hydrolytic stability in the reaction environment, their
incorporation in a polymethyl methacrylate (PMMA) matrix
allowed for higher overall stability of the resulting heteroge-
neous catalysts, thus increasing their catalytic performance,
while enabling their recovery and recycling.'®** More recently,
Benedetti et al. described the successful incorporation of the
oxocluster Zr,0,(OMc),, (OMc = methacrylate) (in the following
labelled as Zr,) in a PMMA matrix through a polymerization
process carried out in the confined space of direct (oil-in-water)
miniemulsion droplets.”® The miniemulsion polymerization
allowed to obtain a final hybrid material in the form of nano-
particles featuring high specific surface area, enhanced di-
spersibility, with tunable behaviour in terms of dimensions,
cross-linking degree, and swelling.>**

While it is known that Zr-oxocluster-based hybrids are
effective catalysts for the oxidation of organic sulfide in the
presence of H,0,,'®?*?7?%3* jt should be emphasized that Ti(wv)
compounds are generally more efficient for H,0, activation,
including a range of structures from mononuclear®*® and di-
nuclear complexes®® to polyoxometalates.’” This suggests that
hybrid materials incorporating Ti- or bimetallic Ti-Zr oxoclus-
ters could offer superior catalytic activity for sulfide oxidation
compared to their Zr analogues. Considering the advantages of
nanoparticle synthesis via miniemulsion, we hypothesized that
Ti- and Ti-Zr oxocluster-based hybrid nanoparticles could
represent a significant advancement in heterogeneous catalysts
for sulfide oxidation mediated by H,O,.

Herein, we report, to the best of our knowledge, for the first
time the synthesis and characterization of hybrid organic-inor-
ganic nanoparticles based on monometallic (Ti) and bimetallic
(Ti-Zr) oxoclusters covalently embedded within a PMMA matrix.
These nanoparticles were prepared using a photoactivated free-
radical copolymerization conducted in direct miniemulsion
droplets. Their catalytic activity was systematically evaluated in
the oxidation of methyl p-tolyl sulfide using H,O, as the oxidant.
Furthermore, the catalytic performance was explored with respect
to the oxidation of benzyl alcohol and cyclooctene, highlighting
the potential application of oxocluster-based catalysts for the
oxidation an alcohols and alkenes. DFT calculations were also
performed to demonstrate the formation of peroxo species via
ligand exchange with H,O,.

Experimental section
Materials

Zirconium n-butoxide (Zr("OBu),, Merck, 80% wt. in n-butanol),
zirconium n-propoxide (Zr("OPr),, Merck, 70% wt. in n-
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propanol), titanium isopropoxide (Ti(‘OPr),, Merck, 97% wt. in
isopropanol), titanium n-butoxide (Ti("OBu),, Merck, 98% wt. in
n-butanol) and methacrylic acid (Merck, 99% wt. stabilized,
filtered through alumina to remove the polymerization inhib-
itor) were employed for the synthesis of the oxoclusters. Methyl
methacrylate (MMA, Merck, 98% wt. stabilized) was employed
as the comonomer for the synthesis of the hybrids, after filtra-
tion through alumina to remove the polymerization inhibitor.
Sodium n-dodecyl sulphate (SDS, 99% wt., Alfa Aesar), hexa-
decane (99% wt., Alfa Aesar), and Irgacure 2959 (BASF) were
employed in the synthesis of the hybrid nanoparticles.
Hydrogen peroxide (Merck, 35% wt. in water), methyl p-tolyl
sulphide (Merck, 99% wt.), benzyl alcohol (Merck, 99% wt.),
cyclooctene (Merck, 95% wt.), and acetonitrile (Merck,
=99% wt.) were employed in the catalytic tests. Di-
chloromethane (Merck, =99.9% wt.), n-undecane (Merck,
=99% wt.), and polystyrene-supported triphenylphosphine
(Merck) were employed for the preparation of the GC analysis
samples.

Synthesis of the oxoclusters

Synthesis of Zr,0,(OMc),, (Zr,). The Zr, oxocluster was
synthesized according to a previously reported procedure by the
reaction of zirconium n-butoxide with methacrylic acidina1:7
molar ratio.”

6.619 g of an 80% solution of zirconium n-butoxide were
added to 8.401 g of methacrylic acid under Ar using a standard
Schlenk line setup. After mixing at room temperature, the
solution was allowed to stand for 2 days. The colourless crystals
formed were decanted and dried under vacuum for 4 h (80%
yield). The crystalline structure of the oxocluster, previously
reported in the literature,” was confirmed by measuring the
unit cell dimensions with a single-crystal X-ray diffraction
technique (Table S1) and through FT-IR ATR and Raman spec-
troscopy (Fig. S3).

Synthesis of Ti;0,(‘OPr)s(OMc)s (Tis) and TigO4("OBu)g(-
OMc)s (Tig). The Ti, and Tie oxoclusters were synthesized
according to previously reported procedures by the reaction of
titanium isopropoxide, in the case of Ti4, or titanium n-but-
oxide, in the case of Tis, with methacrylic acid in a 1: 2.2 molar
ratio.*®

For the synthesis of Tiy, 4.012 g of a 97% solution of titanium
isopropoxide were added to 2.347 g of methacrylic acid. For the
synthesis of Tis, 4.998 g of a 98% solution of titanium n-but-
oxide were added to 2.720 g of methacrylic acid. After mixing at
room temperature and under Ar atmosphere, using a standard
Schlenk line setup, the solution was allowed to stand for one
month. The yellowish crystals formed were decanted and dried
under vacuum for 4 h (50% yield for Tiy, 67% yield for Tig). The
crystalline structures of the oxoclusters, previously reported in
the literature,*® were confirmed by measuring the unit cell
dimensions with a single-crystal X-ray diffraction technique
(Table S1) and through FT-IR ATR and Raman spectroscopy
(Fig. S4 and S5).

Synthesis of Ti,Zr,04("OBu),(OMc)y, (Ti,Zr,) and Ti,Zr,-
0,4("OBu)g(OMc)yo (TisZr,). The Ti,Zr, and TisZr, oxoclusters
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were synthesized according to a reported procedure.* The
Ti,Zr, oxocluster was synthesized by reaction of titanium n-
butoxide, zirconium n-butoxide and methacrylic acidina1:2:
12.6 molar ratio. The Ti,Zr, oxocluster was synthesized by
reaction of titanium n-butoxide, zirconium n-propoxide and
methacrylic acid in a 1:1: 8.4 molar ratio.

For the synthesis of Ti,Zr,, 2.652 g of a 98% solution of
titanium n-butoxide, 7.246 g of a 80% solution of zirconium »-
butoxide were added to 8.341 g of methacrylic acid. For the
synthesis of TiyZr,, 2.334 g of a 98% solution of titanium n-
butoxide, 3.218 g of a 80% solution of zirconium n-butoxide
were added to 4.987 g of methacrylic acid. After mixing at room
temperature and under argon atmosphere, using a standard
Schlenk line setup, the solution was allowed to stand for one
month. The yellowish crystals formed were decanted and dried
under vacuum for 4 h (67% yield for TiyZr,, 85% yield for
TisZr,). The crystalline structures of the oxoclusters, previously
reported in the literature,* were confirmed by measuring the
unit cell dimensions with a single-crystal X-ray diffraction
technique (Table S1) and through FT-IR ATR and Raman spec-
troscopy (Fig. S6 and S7).

Synthesis of the hybrid materials

Hybrid materials in the form of nanoparticles were obtained
through a free-radical polymerization between the oxocluster
and MMA, conducted within the confined space of direct (oil-in-
water) miniemulsion droplets. The hydrophobic phase, con-
sisting of one of the oxoclusters and MMA in a 1:100 molar
ratio, hexadecane (4.2% wt. of the total mass of the monomers)
as a hydrophobic agent, and Irgacure 2959 (3% wt. of the total
mass of the monomers) as polymerization initiator, was stirred
at 1500 rpm for 15 min to dissolve the oxocluster crystals. The
hydrophilic phase consisted of an aqueous solution of SDS 3 g
L. The weight ratio between the hydrophobic and the hydro-
philic phase was set equal to 1:4.”® The two phases were pre-
emulsified by stirring at 1500 rpm for 15 minutes and then
homogenized by ultrasonication (3 min, 70% intensity, 644 W,
Laborsonic P Sartorius Stedim Sonicator) while cooling the
solution with an ice-water bath. The polymerization was acti-
vated by UV radiation (Hg-vapor UV lamp operating at 400 W) by
placing the miniemulsion under the lamp (constant stirring
during the polymerization). Different polymerization times
were tested. The obtained hybrids were isolated and washed
through three steps of centrifugation (the first two steps with
water, the last one with acetonitrile; 15 000 rpm for 10 minutes)
and then dried under vacuum for 12 hours.

Characterization methods

The hybrid materials were characterized by FT-IR in an Atten-
uated Total Reflectance (ATR) mode (diamond crystal) using
a Thermo NEXUS 870 FT-IR NICOLET instrument. The wave-
length range was 4500-500 cm ' recording 64 scans with
a resolution of 4 em™".

Raman spectra were collected by using a Thermo DXR
Raman Microscope equipped with a 532 nm laser as excitation

source operating at 10 mW power. The recorded range was 120-
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3500 cm ™ ' recording 64 scans for each sample with an exposure
time of 1 s.

Low-angle XRD date were recorded using a Bruker AXS D8
Advance Plus diffractometer, equipped with a Cu Ka1,2 anode (4
= 1.5106 A) and a LYNEXEYE XE-T detector in 1D mode. X-rays
were generated by supplying a voltage of 40 kV and a current of
40 mA. The measurements were performed using the Bragg-
Brentano geometry. The diffractograms were collected over the
0.4-10.0° 26 range, with a step size of 0.02° 26 and a nominal
time per step of 1 s. A variable primary divergence slit opening
(keeping the length of the illuminated specimen area constant
to 25 mm) and a fixed secondary divergence slit opening (2.34°)
were employed together with Soller slits with an aperture of
2.5°. A position-sensitive detector (PSD) opening of 0.4° was
employed. Automatic air scatter knife positioning was used.

Thermogravimetric Analyses (TGA) were carried out to eval-
uate the inorganic content of the hybrid materials. The data
were collected with a TGA Q500 TA Instruments with a ramp of
10 °C min~" from 60 °C up to 800 °C under air flow.

Scanning electron microscopy (SEM) analysis was performed
by using a Zeiss SUPRA 40VP instrument equipped with
a detector Oxford INCA xsight X-ray. The accelerating potential
was set at 5 kV.

Single crystal X-ray diffraction analyses were collected on
a Rigaku-Oxford Xcalibur Gemini EOS diffractometer, equipped
with a 2 K x 2 K CCD area detector and sealed-tube Enhance (Mo)
and (Cu) X-ray sources. The raw diffraction data were collected by
means of w-scan techniques at room temperature using graphite-
monochromated Mo-K,, (A = 0.71073 A) or Cu-K,, (A = 1.54184 A)
radiation in a 1024 x 1024 pixel mode and 2 x 2 pixel binning or
(when necessary) 4 x 4 binning. Accurate unit cell parameters
needed for comparison with reported known structures were ob-
tained by the least-squares refinement of 21 166/15 900 (Ti,Zr,-
0,4(0"Bu),(OMc)y,), 4997/7267 (TiyZr,04(0"Bu)s(OMc)q), 5987/
6703 (Zr,0,(0Mc)y,), 10 128/5816 (Ti,O,(0'Pr)s(OMc)) and 6858/
7169  (TigO4(O"Bu)g(OMc)g)  strongest reflections chosen
throughout the whole data collection. Data collection, reduction,
and finalization were performed using the CrysAlisPro software,
versions 1.171.42.49 (Rigaku OD, 2022). Raw data were corrected
for Lorentz/polarization effects. An empirical absorption correction
was also performed by means of a multi-scan approach, with the
scaling algorithm SCALE3 ABSPACK, using equivalent reflections.

The swelling experiments were carried out by immersing
a weighted amount of hybrid material in acetonitrile for 72 h;
after withdrawal from the solvent, the wet sample was weighted
again. For the swelling test, the materials were synthesized with
a photoactivated bulk polymerization. The swelling index (Isy)
was determined by the following formula:

(Wtwel - Wtdry)

I sw—
Wiary

% 100 (1)

Computational details

DFT calculations were performed using the software package
Gaussian 16.*° Based on the benchmark results reported in ref.

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta03437j

Open Access Article. Published on 05 2025. Downloaded on 2025/10/21 08:17:41.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

41 concerning zirconium oxoclusters, we selected the PBEO ref.
42-44 functional and a basis set of triple-{ quality, namely the
6-311g(d, p) for the light atoms and the LANL2TZ with effective
core potentials for Zr and Ti; this was obtained from the Basis
Set Exchange database.*” Long-range solvent effects (acetoni-
trile) were included in the calculations using the PCM (Polar-
izable Continuum Model) model***” as implemented in
Gaussian 16. Starting geometries were obtained from the X-ray
structures of the zirconium*® [Zr,] (CCDC deposition nr. 137083)
and titanium® [Ti,] (CCDC deposition nr. 167594) oxoclusters,
respectively. All structures were first minimized in the gas phase
and checked to be true minima by calculating the vibrational
frequencies: no imaginary frequencies were found. Cartesian
coordinates of the relevant systems can be found in the
computational details in the SI.

Catalytic tests

In a typical oxidation reaction, a suitable quantity of hybrid
nanoparticles, to provide 0.028 mmol of the embedded
oxocluster, was added to 2.4 mL of acetonitrile, with 1 mmol of
substrate (methyl p-tolyl sulphide, benzyl alcohol, or cyclo-
octene), in a small closed vial. Subsequently, 2 mmol of H,0,
(from a 35% wt. aqueous solution) were added to the solution.
The oxidation reaction was run at fixed temperature (50 °C)
under stirring. Samples (50 uL) were withdrawn at selected time
intervals and diluted in 1100 pL with a 10 mM solution of n-
undecane (standard) in CH,Cl, and treated with tri-
phenylphosphine (supported on a poly(styrene/divinylbenzene)
resin) as quencher for the residual oxidant. GC analyses were
performed with a Shimadzu GC2010 equipped with an ioniza-
tion flame detector and an equity-5 (15 m x 0.1 mm) capillary
column of poly(5%-diphenyl/95%-dimethylsiloxane) with
0.1 mm film thickness (Tipjection = 270 °C; Tdetection = 280 °C;
carrier gas: He; Tinjtial = 90 °C x 1 min; rate = 90 °C min%; Tpa
= 260 °C x 5 min). Retention times: n-undecane: 2.75 min;
methyl p-tolyl sulfide: 3.23 min; methyl p-tolyl sulfoxide:
4.30 min; methyl p-tolyl sulfone: 4.55 min; cyclooctene:
1.59 min; cyclooctene oxide: 2.26 min; benzyl alcohol: 2.49 min;
benzaldehyde: 2.11 min. Concentrations (C) of reactants and
oxidation products were calculated by integration of chro-
matographic peaks (A) of the standard (S) and of the analytes
(X), using the following calculated response factors F =(As/Cs)/
(Ax/Cx): F(undecane) = 1, F(methyl p-tolyl sulfide) = 0.66,
F(methyl p-tolyl sulfoxide) = 0.64, F(methyl p-tolyl sulfone) =
0.64, F(cyclooctene) = 0.73, F(cyclooctene oxide) = 0.54,
F(benzyl alcohol) = 0.51, F(benzaldehyde) = 0.53. Second order
kinetic constants were determined by fitting the experimental
data using Scientist Micromath software. The results of the GC
analyses are reported in Table S2-S19.

Results and discussion
Synthesis of hybrid nanoparticles

Following known procedures, five different oxoclusters were
synthesized: Zr,0,(OMc);, [Zry],"® Ti;0,(O'Pr)s(OMc)s [Ti4],*®
Ti604(OnBu)3(OMC)3 [Tis],38 Tizzr404(OnBu)2(OMC)14 [Tizzl'4],39

This journal is © The Royal Society of Chemistry 2025
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and TiyZr,0,4(0"Bu)s(OMc)y [TisZr,].* The structure of each
synthesized oxocluster was confirmed through single-crystal
XRD analysis. Table S1 reports the crystallographic cell
parameters for all the oxoclusters and a match percentage to the
structures already deposited in the CCDC.*® For Zr, the match
points to the isostructural and isomorphous hafnium deriva-
tive, while for compound Tis, the known structure, with iden-
tical structure of the oxocluster moiety, is the n-propoxy
analogue. In all cases the expected inorganic oxometallate core
was unambiguously identified. A representative example of one
of the structures, compared with the deposited one (Ti Zr,), is
provided in the SI (Fig. S1); the SI also includes a comparison of
the experimental structure of Tis with the CCDC-deposited
structure (Fig. S2). Moreover, the successful synthesis of the
oxoclusters was also confirmed by FT-IR ATR and Raman
spectroscopy. The FT-IR and Raman spectra of the oxoclusters
are reported in Fig. S3-S7, along with the proposed interpreta-
tion based on IR and Raman spectra of Zr oxoclusters.*

Subsequently, the photoactivated free-radical polymeriza-
tion with methyl methacrylate (MMA) was carried out within
direct (oil-in-water, o/w) miniemulsion droplets, as schemati-
cally reported in Fig. 1. Sodium dodecyl sulfate (SDS) was
chosen as the surfactant for the preparation of the mini-
emulsion, given the excellent results in terms of cross-linking
and size distribution of the nanoparticles (NPs) reported in
the work of Benedetti et al.?® The latter also highlights the
optimal hydrophobic (oxocluster + MMA)/hydrophilic (SDS
aqueous solution 3 g L™ ') phase weight ratio of 1: 4, in terms of
miniemulsion stability (up to 72 hours) and NPs morphology.
The oxocluster/MMA molar ratio was fixed at 1:100 for all
syntheses, since a previous study identified this value as
optimal for achieving a high swelling degree in organic solvents
which, in turn, enhances substrate access to catalytic active
sites.’®*® Various polymerization times were tested to obtain
high values of polymerization degree (5-50 min). In Table 1, all
synthesized hybrid samples are reported. In Fig. S8-S12 the FT-
IR ATR and Raman spectra of the hybrid materials are reported.

In order to evaluate the degree of polymerization of these
hybrids, the Zr,-based materials were characterized through
infrared spectroscopy (ATR-FTIR) by comparing the areas of the
signal related to the C=C bond (1642 cm ') with the one of the
C=0 bond (1720 cm ").*® Zr,-based hybrids were selected as
a benchmark to optimize the reaction time. The C=C/C=0
area ratio can be correlated with the degree of polymerization of
the material: the C=C bonds react during the free radical
polymerization, causing their signal intensity to decrease,
whereas the C=O0 signal remains unvaried and is taken as
a reference. Consequently, their ratio decreases as the poly-
merization proceeds.* In Table 2, the C=C/C=0 ratios of the
Zr, oxocluster-based hybrid nanoparticles are reported. A
comparison of the FTIR spectra of the samples Zr,-5 and Zr,-20
is reported in Fig. S13.

It is worth noting that as the polymerization time increases,
from 5 min to 20 min, an increase of the degree of polymeri-
zation degree is observed. With polymerization times longer
than 20 min, the polymerization extent does not change
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Fig. 1 Schematic representation of the miniemulsion polymerization process carried out to obtain oxocluster-based hybrid nanoparticles.

Table 1 List of synthesized oxocluster-based hybrid materials. Pho-
toactivated free radical polymerization between the oxoclusters and
MMA was carried out with reaction times ranging from 5 min to 50 min

Sample Oxocluster Polymerization time (min)
Zr4-5 5
Zr,-10 10
Zr420 20
Zr,-30 Zry 30
Zr-40 40
Zr,-50 50
Tig20 Tiy
Tig-20 Ti

0 o 20
TiyZr,-20 Ti,Zr,
Ti Zr,-20 Ti,Zr,

significantly; consequently, all the samples prepared with the
other four oxoclusters underwent a 20 min long polymerization.

Due to the amorphous nature of the hybrid materials, XRD
studies cannot provide detailed structural information.
However, in Fig. S14 of SI we show the diffractogram of
a selected sample, Zr,-20. The most notable feature is a very
broad and low-intensity halo centred approximately at 26 = 5°
and corresponding to a distance of ca. 18 A. This feature might
be related to the average separation between the clusters
dispersed within the amorphous polymethacrylate matrix.

To evaluate the morphology of the nanoparticles and their
size distribution, SEM measurements were carried out

(Fig. S15-S19). As an example, in Fig. 2 a SEM image of the
sample Zr,-20 is reported, along with a graphical representation
of the size-distribution of the NPs. The spherical NPs display
a broad size distribution with an average diameter of 76 nm
(standard deviation = £ 50 nm).

Since the concentration of the oxocluster in the polymer
matrix determines the catalytic performances of the whole
material, thermogravimetric analyses (TGA) were employed to
evaluate the actual content of the oxocluster in the hybrid
materials. The thermal decomposition in air of the oxoclusters
produces a specific number of moles of TiO, and/or ZrO,,
depending on the chemical composition of the inorganic core;
hence, by the quantification of the inorganic residue, the real
content of oxocluster embedded in the PMMA matrix can be
estimated. From the TGA results (Fig. S20), it is possible to
observe a first significant weight loss in the range of 60-290 °C,
attributed to the removal of residual unreacted monomer and
adsorbed species. In the range 290-450 °C the most intense
weight loss was observed, which was ascribed to the degrada-
tion of the polymer matrix of the samples. A final weight loss, in
the range 450-550 °C, was related to the degradation of the
organic fraction of the oxocluster. The improved thermal
stability of the hybrids confirmed the successful covalent
incorporation of the oxoclusters. This is evident comparing the
traces of the samples with that of pure PMMA (Fig. S20, black
line), which begins to decompose at a lower temperature,
around 225 °C.**?° In Table 3 it is possible to observe that the

Table 2 Degree of polymerization (evaluated from the area ratio of C=C/C=0 IR signals) of the samples based on Zr,

Sample Polymerization time (min) Area C=C Area C=0 Ratio (C=C/C=0)%
Zr,-5 5 0.15 0.63 24
Zrs-10 10 0.11 0.98 11
Zrs-20 20 0.07 0.99 7
Zr4-30 30 0.07 0.97 7
Zr,-40 40 0.06 0.68 8
Zr4-50 50 0.07 0.89 8
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Fig. 2 SEM image of the sample Zr,-20 (on the left) and average size-distribution (on the right).

Table 3 TGA weight percentages residues, based on the molar ratio
between the oxocluster and monomer, of the most representative
synthesized hybrid materials

Theoretical residue Experimental residue

Sample (% wt.) (% wt.)
Zr4-20 4.3 3.9
Tiy-20 2.9 2.9
Tig-20 4.0 5.0
Ti,Zr,-20 5.5 6.1
TiaZr,-20 6.2 7.5

detected residual weights (% wt.) for all the five hybrid materials
are comparable with the theoretical ones. For the samples
based on Tis, TiyZr, and TisZr,, the experimental inorganic
residue is slightly higher than the expected value, probably due
to a partial evaporation of the MMA during the polymerization
process, owing to the heat generated by the UV lamp (~50 °C).
Moreover, some unreacted monomers were likely washed away
during the recovery process.

Since the Zr and Ti ions are the active catalytic sites, the
reaction solvent plays a fundamental role in enabling the
diffusion of the reaction substrates and intermediates through
the PMMA up to the oxoclusters core. To verify the accessibility
to the metallic sites, swelling tests were performed with the
solvent used for the catalytic tests, acetonitrile (ACN). The
oxoclusters, functionalized with several polymerizable groups,
act as cross-linking sites during the polymerization process;
therefore, although the pure PMMA is soluble in many organic
solvents (including ACN), the synthesized hybrid materials
swell without solubilizing. Previous studies have already re-
ported that the swelling degree is inversely proportional to the
degree of cross-linking and, therefore, to the oxocluster
concentration in the polymer matrix."®** ACN, chosen as the
reaction solvent, was confirmed to be the optimal choice for the

Table 4 Swelling degrees of the hybrid materials in ACN after 72 hours

Sample Zr,-20 Tig-20 Tig-20 TiyZrs-20 TigZr,-20

I (%) 59 73 67 49 55

This journal is © The Royal Society of Chemistry 2025

oxidative desulfurization of methyl p-tolyl sulfide catalysed by
Zry-based hybrids'™?® likely due to its intermediate polarity
(Er(30) = 46).°* The obtained swelling degrees are reported in
Table 4, while the mathematical equation used for its quanti-
fication is reported in the experimental section.

It is worth noting that the highest swelling values were ob-
tained for hybrids based on Ti, and Tie. This result can be
explained by considering that these two oxoclusters, containing
6 and 8 polymerizable functional groups (C=C), respectively,
form materials with a lower degree of cross-linking than those
obtained from oxoclusters with a higher number of C=C bonds
(12 for Zr,, 14 for Ti,Zr, and 10 for Ti,Zr,).

Catalytic tests

Oxidation of methyl p-tolyl sulfide. It is well known from our
previous works that peroxides coordinated to Zr-oxoclusters
display high reactivity towards the oxidation of organic
sulfides,” and the selectivity for the sulfones is further
enhanced by the presence of the polymer matrix, owing to the
increased  affinity for the intermediate sulfoxide
substrates.'®***® The synthesized hybrid materials were tested
as heterogeneous catalysts in the two-step oxidation of methyl p-
tolyl sulfide (S) to the corresponding sulfoxide (SO) and sulfone
(SO,) in the presence of hydrogen peroxide (H,O,), as sche-
matically reported in Fig. 3.

The percentage molar ratio between the oxocluster in the
polymer matrix and S, was set to 0.28%; while the molar ratio
between S and H,0, was 1: 2. The temperature was fixed at 50 °
C and the reaction was carried out for 24 hours. The conversion,
initial rate (calculated in the first 5 minutes of the reaction) and
the two kinetic constants k; and k, (first and second reaction
step, respectively), are reported in Table 5. The full reaction
profiles, obtained by monitoring the reaction through gas-
chromatographic (GC) analyses (Table S2-S19), are reported in
the SI (Fig. S21).

It should be noted that there was a significant improvement
in the reaction rate, conversion of S and selectivity towards SO,
going from the uncatalyzed reaction (first row) to the reaction
carried out in the presence of the hybrid materials. Almost
quantitative values of conversion and selectivity towards SO,
were obtained with catalysts based on Zr,, Tis, and Tis.
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Fig. 3 Scheme of the oxidation reaction of methyl p-tolyl sulfide (S) to the corresponding sulfoxide (SO) and sulfone (SO,).

Table5 Results of the catalytic tests of the oxidation of methyl p-tolyl sulfide (S) to methyl p-tolyl sulfoxide (SO) and methyl p-tolyl sulfone (SO5)
in terms of conversion, selectivity, initial rate (Rq, calculated in the first 5 minutes) and rate constants (ky: first reaction step, k»: second reaction

step)?
Conversion % Conversion % Conversion % SO:S0, SO: S0, SO: S0, ki

Catalyst 5 min 10 min 30 min 5 min 10 min 30 min RomM s * ki, ko M 's™t %

No cat. 9 12 25 93:7 93:7 89:11 0.10 1.3 x 1074 3.5
3.7 x 107°

Zrs-20 77 86 95 24:76 16:84 9:91 1.03 1.7 x 1072 1.7
9.5 x 103

Tis-20 >99 >99 >99 5:95 4:96 4:96 1.33 1.2 x 1071 1.3
9.2 x 1072

Tie-20 >99 >99 >99 5:95 5:95 3:97 1.31 1.2 x 10t 1.3
9.0 x 1072

TiyZr,-20 96 96 97 29:71 29:71 28:72 1.27 8.8 x 1072 1.8
4.8 x 1072

TigZr,-20 95 95 96 41:59 41:59 40:60 1.26 7.9 x 1072 2.4
3.4 x 1072

Ti, 46 72 99 87:13 86:14 73:27 0.62 3.6 x 10°° 4.6
7.7 x 107*

% Reaction conditions: a suitable quantity of catalysts, to provide 0.028 mmol of the embedded oxocluster, was added to 2.4 mL of ACN, with 1 mmol
of methyl p-tolyl in a small, closed vial. Subsequently, 2 mmol of H,0, (from a 35% wt. aqueous solution) were added to the solution. The reaction

was run at fixed temperature (50 °C) under stirring for 24 hours.

Moreover, the catalysts Tiy,-20 and Tie-20 showed the highest
initial rate (R, > 1.3 mM s~ ). Lower conversions and selectivity
were, instead, obtained with the two bimetallic catalysts TiyZr,-
20 and Ti,Zr,-20. Nevertheless, the initial rates were similar to
those obtained with the Ti-based catalysts.

On the one hand, the better catalytic performances of Ti,-20
and Tis-20 can be attributed to their higher swelling degree in
the reaction solvent, which provides easier access to the cata-
lytic active sites of the catalyst. Furthermore, the higher activity
of Ti(v) compounds for the H,O, activation agrees with the
results reported in previous studies, in which catalysts based on
d° transition metals such as Mo, W, V?*5>5* and Ti,>® were
shown to have greater efficiency than Zr mononuclear
compounds.® Ti*", in particular, has a smaller ionic radius and
a greater electrophilicity than Zr*', which likely contributes to
its superior performance in H,O, activation.

Comparing the catalytic performances of the sample Zr,-20
with those of the same hybrid material obtained from a bulk
thermal activated polymerization, reported in our previous
work," (Table 6) it is possible to observe that the nanosized
catalyst (Zr,-20) possesses better catalytic properties (Fig. S21).
In particular, as reported in Table 6, both the conversion of S
and the selectivity towards SO, are higher using the nano-
particles than the bulk-synthesized catalyst. Also, the initial rate
R, is almost 10 times higher for the nanoparticles than the bulk.

The superior catalytic activity of the nano-sized catalyst
compared to its bulk-synthesized counterpart can be attributed
to its greater specific surface area and higher density of acces-
sible active sites. This effect is further enhanced by the mini-
emulsion  technique, which creates a controlled,
compartmentalized environment that improves the distribution
and accessibility of active sites, unlike the less controlled

Table 6 Comparison of the catalytic results for the oxidation of S with the catalyst Zr,-20 and Zr4-Bulk, the latter reported as Zr;,MMA(1: 100) in
our previous work.*® The reaction conditions were the same for both the tests

Catalyst Conversion % 1 h Conversion % 4 h SO:S0,1h SO:S0, 4 h Ry mM s™*
Zr-bulk'® 84 95 21:79 9:91 0.11
Zrs-20 98 99 5:95 1:99 1.03
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conditions of bulk synthesis. Based on these results, it has been
demonstrated that the miniemulsion technique provides
nanoparticles with excellent catalytic properties for the oxida-
tion of S and, for Zr,-20, higher than those obtained with the
Zrs-based bulk-synthesized material.

To assess the role of the PMMA matrix on the catalytic
properties of the hybrid material, the pure Ti, oxocluster was
tested as catalyst for the oxidation of S without varying the
reagents/oxocluster ratio. As it is possible to observe in Table 5,
last row, S is almost quantitatively oxidized after 30 min, as for
Ti,-20 and Tig-20, but the R, value (0.62 mM s~ ') is less than half
of that for Tis-20 (1.33 mM s~ '). Furthermore, the selectivity
towards SO, is clearly lower with the free oxocluster, as reflected
by the higher ratio k,/k,, and an almost quantitative conversion
to the most oxidized product, 3:97 (SO:SO,) is reached only
after 8 hours (Fig. S24). In light of this result, it is possible to
confirm that embedding the oxoclusters in the PMMA matrix
enables their stabilization in the reaction environment and
increases the overall catalytic activity of the resulting hybrid
material.'®*2®

As pointed out in a recent study,”” the mechanism involved
in the metal-catalyzed sulfoxidation reaction is quite variable
and depends on many factors, such as coordination geometry,
steric hindrance and ionic radius of the metal centre. In the
case of oxocluster-based catalysts, the intimate catalytic mech-
anism is still unknown and theoretical mechanistic studies are
needed to understand the -catalytic behaviour of these
compounds. In order to shed some light on the different cata-
lytic activity of the Ti-based and Zr-based materials, we carried
out some preliminary DFT calculations of the reaction between
Ti, or Zr, oxocluster and H,O, involving the exchange of one
ligand “A” with the hydroperoxide anion:

M4A + H202 g M4OOH + HA (2)

where A is either methacrylate (MA) or "PrO and M, is either Ti,
or Zrs. The adduct of HOO™ with the metal center is, in fact,
considered to be the first relevant intermediate in similar
reaction mechanisms involving both discrete structures®* and
oxide surfaces.”® The results of the calculations are reported in
Table 7. For each oxocluster, we considered four possible
positions where a ligand could be replaced by the hydroper-
oxide anion. Concerning Ti,, these are the three non-equivalent
positions involving the bridging MA anions (labeled MA-n, n =
1,2, 3 in Table 7, see also Fig. $25-529 in SI) and one position of
the ‘PrO ligand. On the other hand, for Zr, only the four non-
equivalent positions (bridging or chelating) of MA (labelled
MA-n, n =1, 2, 3, 4 in Table 7, see the corresponding Fig. S30-
S34 in SI) were considered, due to the lack of alkoxy ligands. The
cartesian coordinates can be found in the computational details
section of the SI.

The results of the calculations suggest that the Zr, oxocluster
forms a more stable complex with the hydroperoxide (entry 7 in
Table 7, —13.2 k] mol™ ") compared to the most stable complex
found for Ti, (entry 4 in Table 7, —5.1 k] mol ). While for Zr,
the chelating MA-3 is the favoured position to replace, for Tiy,
the presence of a monodentate ligand as ‘PrO may favour the

This journal is © The Royal Society of Chemistry 2025

View Article Online

Journal of Materials Chemistry A

Table 7 Calculated AE for the reactions of eqn (2) in k mol™. Level of
theory PBEO(PCM)/triple-¢

Entry Oxocluster A® AE (k] mol ™)
1 Ti, MA-1 15.3
2 Ti, MA-2 6.7
3 Ti, MA-3 39.0
4 Ti, iPro ~5.1
5 r, MA-1 —5.6
6 r, MA-2 21.2
7 Zry MA-3 —13.2
8 7r, MA-4 16.9

¢ The numbering of the structures obtained for Ti, and Zr, has the only
purpose of listing them and there is no correlation between the same
MA-n of the two oxoclusters.

exchange. It is noteworthy that the Zr, MA-3 structure features
a hydroperoxide anion coordinated to the Zr center by both
oxygens, as represented in Fig. S33 in the SI. Instead, in the
Ti,"PrO structure the HOO™ is bonded to the Ti centre by just
one oxygen and the other OH group weakly H-bonded with
a nearby ligand (Fig. S28). These results are consistent with the
typical coordination numbers of Ti and Zr, which are 6 and 8,
respectively and with the smaller radius and higher electro-
negativity of Ti with respect to Zr.>® The relatively higher insta-
bility of Ti,~OOH complex could be thus correlated with its
higher catalytic activity, as experimentally observed. Further
studies, which are outside the scope of the present investiga-
tion, are necessary to fully elucidate the reaction mechanism
and potential energy surface and will be reported in due time.

Benzyl alcohol and cyclooctene oxidation. Considering the
good results obtained for the sulfide oxidation, the hybrid
materials were also tested in the oxidation of benzyl alcohol
(BzOH) and cyclooctene (C) using the same reaction conditions
tested for the oxidation of S (including the molar ratio between
substrate and H,0, equal to 1:2). We chose to explore the
reactivity toward these compounds considering that the oxida-
tion of primary and secondary alcohols****** and the epoxida-
tion of olefins®® are among the most important reactions in
organic chemistry, since the obtained products (aldehydes,
carboxylic acids, or epoxides) are important intermediates in
the synthesis of many fine chemicals and pharmaceuticals.®***

The results are reported in Table 8, for the oxidation of
BzOH, and in Table 9, for the oxidation of C. The reaction
profiles of the benzyl alcohol and cyclooctene oxidations are
reported in the SI (Fig. S22 and S23, respectively).

For the oxidation of BZOH, no formation of benzoic acid was
observed. A net increase in conversion and initial rate is
observed in all the reactions carried out in the presence of
hybrid nanoparticles compared to the uncatalyzed reaction
(first row). The highest conversion of BzOH (19%, after 24
hours) and initial rate (57 pM s~ ') were obtained with Ti,-20.

The oxidation of C to the corresponding epoxide CO does not
take place in the absence of the catalyst, while the best per-
forming catalyst was again Ti,-20, with a conversion of 40%
after 24 hours and an initial rate of 42 uM s~ '. As for the
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Table 8 Results of the catalytic tests of the oxidation of benzyl alcohol
calculated in the first 5 minutes), and second order rate constant®
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(BzOH) to benzaldehyde (BzO) in terms of conversion, initial rate (Ro,

HO

H,0, N
S —
Catalyst
ACN
50°C
Benzyl alcohol Benzaldehyde

Catalyst Conversion % 1 h Conversion % 4 h Conversion % 24 h Ro (mM s™) kM ts™h
No cat. 5 5 5 36 2.8 x107°
Zr4-20 6 8 11 52 6 x107°

Tig-20 11 17 19 57 8 x10*

Tig-20 8 10 13 50 9.3 x 10°*
TiyZr-20 5 8 11 51 3.2x107*
TiyZr,-20 6 8 10 48 43 x107*

“ Reaction conditions: a suitable quantity of catalysts, to provide 0.028 mmol of the embedded oxocluster, was added to 2.4 mL of ACN, with 1 mmol
of benzyl alcohol in a small, closed vial. Subsequently, 2 mmol of H,O, (from a 35% wt. aqueous solution) were added to the solution. The reaction

was run at fixed temperature (50 °C) under stirring for 24 hours.

oxidation of S, on one side this result may be correlated with the
higher swelling degree of Ti,-20 in acetonitrile, which provides
easier access to the catalytic active sites and promotes the
formation of a more reactive Ti-OOH complex.

Even though the conversion values obtained for BZOH and C
oxidation are lower than those reported for some Ti- and Zr-
polyoxometalates for alcohols and alkenes oxidations,*™” and
will require a careful optimization in terms of conditions and of
H,0, amount/excess, these results underline the potential
applications of oxocluster-based catalysts also for these kinds of
reactions.

Catalysts stability evaluation. The results of our two previous
studies,'®** in which Zr,-based hybrids were tested as catalysts
for the oxidation of organic sulfones, confirmed through XAS
analyses that the oxoclusters crystal structure remains
unchanged after the catalytic tests, indicating that the
oxocluster within the PMMA matrix possesses the same struc-
ture as the pure Zr, oxocluster. Although we aimed to confirm
the unaltered crystal structure of the oxoclusters after the
catalytic tests, the amorphous nature of these hybrid materials
precludes the use of XRD studies to directly investigate the

Table 9 Results of the catalytic tests of the oxidation of cyclooctene (C) to cyclooctene oxide (CO) in terms of conversion, initial rate (Ro,

calculated in the first 5 minutes), and second order rate constant®

H202

B —
Catalyst

ACN
50°C

Cyclooctene

(e}

Cyclooctene oxide

Catalyst Conversion % 1 h Conversion % 4 h Conversion % 24 h Ry (uM s kM's™h
No cat. 0 0 0 0 0

Zr4-20 0 2 6 2 1.9 x 10°°
Tis-20 21 31 40 46 1.2 x 107*
Tie-20 16 18 22 42 1.3 x 1074
TiyZr,-20 4 9 12 29 1.7 x 1077
TiyZr,-20 5 8 9 14 2.4 x10°°

“ Reaction conditions: a suitable quantity of catalysts, to provide 0.028 mmol of the embedded oxocluster, was added to 2.4 mL of ACN, with 1 mmol
of cyclooctene in a small, closed vial. Subsequently, 2 mmol of H,O, (from a 35% wt. aqueous solution) were added to the solution. The reaction was

run at fixed temperature (50 °C) under stirring for 24 hours.
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Fig. 4 Comparison of the Raman spectra of Tis oxocluster (black line)
and Tis-20 recovered after the catalysis (red line).

crystal structure before and after the catalytic studies. Never-
theless, the retention of the oxocluster structure within the
PMMA was evaluated using Raman spectroscopy.

At the end of the catalytic turnover (24 h), the reaction
mixtures were centrifuged to separate the catalysts which were
purified by two centrifugation steps with water followed by
a final step with acetonitrile. Finally, the catalysts were placed
under vacuum to remove the residual solvent.

The signals associated with the vibrational modes of the
M-O-M bond consist, typically, in two peaks present in the
range 100-300 cm™ ".>"*® In Fig. 4, the Raman spectra of the
oxocluster Ti, and the corresponding hybrid Ti,-20 recovered
after the catalysis are reported (full-range spectra are reported
in Fig. S4 for Ti, and S36 for Ti,-20). While the signal of the Ti-
O-Ti bond, centred at ~210 cm ™" is easily detected for the pure
oxocluster (black line), for the hybrid material the signals are
less intense due to the dilution of the oxocluster in the polymer
matrix. However, as reported by Faccioli et al.,”” the presence of
the M-O-M signals in the hybrid materials can confirm the
presence of the unaltered oxocluster structure, since these
signals could not be detected after the hydrolysis of the inor-
ganic core. The Raman spectra of the catalysts recovered after
the catalytic tests are reported in Fig. S35-S39.

Conclusions

In this work, we successfully synthesized a series of nanosized
hybrid organic-inorganic materials by incorporating Ti- (Ti,,
Ti) and bimetallic Ti-Zr- (TiyZr,, Ti,Zr,) oxoclusters, along with
a reference Zr- (Zr,) oxocluster, into a PMMA matrix via a pho-
toactivated free-radical copolymerization in direct mini-
droplets. The synthesis yielded spherical
nanoparticles which were characterized by FT-IR, Raman, TGA,
and SEM.

Subsequently, the materials were tested as heterogeneous
catalysts for the oxidation of methyl p-tolyl sulfide to the cor-
responding sulfoxide and sulfone using H,O,. The catalytic

emulsion

This journal is © The Royal Society of Chemistry 2025
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tests revealed that all hybrid nanoparticles were catalytically
active. Notably, the monometallic Ti-based catalysts, Ti,-20 and
Tig-20, exhibited superior performance, achieving near-
quantitative conversion and high selectivity towards the
sulfone with higher initial rates, outperforming also previously
reported heterogeneous systems based on Zr- or Hf-oxoclusters
embedded into bulk polymers* (eventually including fluori-
nated co-monomers*®) or nanoparticles.?® Within this scenario,
environmental applications in the field of oxidative desulfur-
ization (ODS) of fuels, for which conversion of sulfides to
sulfones is crucial, can be envisaged.*

To further improve the knowledge of the catalytic properties
of oxocluster-based hybrid materials, we tested them also for
the oxidation of benzyl alcohol, as an example of primary
alcohol oxidation, and cyclooctene, as an example of alkene
oxidation. As for the case of the sulfide oxidation, also in these
cases the Ti-based catalysts resulted to be the most active in
terms of conversion and rate, though in this case the catalytic
performances were much lower than for the oxidation of methyl
p-tolyl sulfide.

On the one hand, we attributed the high activity of the Tis-20
hybrid material to its high swelling degree in the reaction
solvent, which may facilitate the access of reaction substrates to
the Ti cations within the PMMA matrix. On the other hand, the
results of DFT calculations indicate that both Ti,-OOH and Zr,-
OOH can form, but with a different geometry of coordination
and with the Ti-OOH complex being less stable and, therefore,
likely more reactive than the Zr-OOH complexes.

In summary, this research shows the successful synthesis of
Ti-, Zr, and Ti-Zr-oxocluster-based hybrid nanoparticles as
heterogeneous catalysts for H,O,-mediated oxidation reactions.
In particular, we present the novel application of Ti-oxocluster-
based hybrid materials as highly active catalysts for the oxida-
tion of methyl p-tolyl sulfide, highlighting their potential use as
catalysts for the oxidation of a broader range of organic
substrates. All these findings provide a crucial starting point for
future developments in sustainable catalysis using H,O, as an
oxidant and oxocluster-based hybrid materials as alternative
catalysts.
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