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Fengling Li,d Irene Chau,d Suzanne Ackloo, d Cheryl Arrowsmith,dfg

Albina Bolotokova,d Pegah Ghiabi,d Elisa Gibson, d Levon Halabelian,de

Scott Houliston,g Rachel J. Harding,deh Ashley Hutchinson,d Peter Loppnau,d

Sumera Perveen,d Almagul Seitova,d Hong Zeng,d Matthieu Schapira,de

Jean-Marc Taymans c and Dmitri Kireev ‡*ab

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress

tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original

workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's

target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening

allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-

binding sites. In two screening rounds, 84 compounds were procured for experimental testing and 8 were

confirmed to bind LRRK2-WDR with dissociation constants (Kd) ranging from 3 to 41 mM. To investigate the

functional effect of WDR ligands, they were tested for their ability to modify the LRRK2 activity markers in

HEK293T cells. Two compounds showed statistically significant increases in the kinase activity of WT LRRK2,

and two compounds affected the conformation and kinase activity of major LRRK2 mutants.
Introduction

Parkinson's disease (PD) stands as the second-most prevalent
neurodegenerative disorder, afflicting nearly one million indi-
viduals in the United States alone, and the worldwide genetic
prevalence was estimated to be 18 per 100 000 individuals with
its incidence persistently escalating despite available thera-
peutic interventions.1 Among the novel targets emerging in PD
research, leucine-rich repeat kinase 2 (LRRK2) gained particular
ment of Chemistry, USA. E-mail: dmitri.

l, Center for Integrative Chemical Biology

172 – LilNCog – Lille Neuroscience &

ity of Toronto, Toronto, ON M5G 1L7,

y, University of Toronto, Toronto, Ontario

oronto, Ontario M5G 1L7, Canada

y Health Network, Toronto, Ontario M5G

of Toronto, Toronto, Ontario M5S 3M2,
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attention.2 LRRK2 is a seven-domain protein primarily
composed of Ras of complex (ROC) and kinase domains and
a C-terminal WD40 domain.3,4 Mutations within various LRRK2
domains have been implicated as potential drivers of PD
pathology, leading to hyperphosphorylation of its substrate Rab
proteins, a pivotal event in disease progression.5–7 The forma-
tion of LRRK2 laments is catalyzed by the interaction of LRRK2
with microtubules and is likely caused by the kinase hyperac-
tivity exacerbated by the PD-associated LRRK2 mutations.8

Notably, most chemical compounds under preclinical and
clinical investigation for PD therapy target the kinase domain,
exemplied by DNL201, and DNL151.9 While the clinical effi-
cacy of kinase inhibitors is yet to be demonstrated, it would be
of interest to consider alternative options for pharmaceutical
intervention. In particular, the WD40 repeat domain (WDR) of
LRRK2 has also been shown to undergo PD-associated muta-
tions and putatively play a pivotal role in tubulin binding or
recruitment of other signaling partners.3,4 Small-molecule
chemical probes binding to the WDR might be a useful tool
to further explore its potential as a target for PD therapeutics.
However, no small-molecule ligands have been reported yet for
LRRK2-WDR. Moreover, the location of the potential binding
site for such ligands is unknown.

To address the need for WDR-targeting chemical probes, the
Michael J. Fox Foundation for Parkinson's Research and the
Critical Assessment of Computational Hit-Finding Experiments
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 FRASE database screening. (A) 2544 ligand fragments (magenta
sticks) seeded in the LRRK2 WDR structure (orange ribbons); (B) 85
ligand fragments with scores >0.4 are grouped into five distinct clus-
ters (1–5); (C) potential ligand-binding pockets corresponding to
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(CACHE) initiative announced CACHE Challenge #1 (ref. 10 and
11) (35 teams responded to this inaugural challenge, 23 of
which were selected to participate). According to the CACHE
Challenge terms, participants were allowed to submit a list of
up to 100 virtual hits in Round-1. The teams that identied any
experimentally conrmed Round-1 hits were invited to submit
a Round-2, hit-expansion list to explore preliminary structure–
activity relationships (SARs).

Finding ligands for the WDR represents two distinct prob-
lems: (i) locating the binding site and (ii) docking/scoring the
ligands. There are a variety of options for both tasks. While
potent ligands typically exploit the central cavity of other donut
shaped WDR domains,12,13 an unbiased approach would be to
identify ligand-binding pockets through cavity sensing algo-
rithms such as SiteMap (Schrodinger suite14), GRID,15

POCKET,16 or SurfNet.17 Next, ligands can be placed into the
detected pockets and assessed for their binding affinity using
one of many docking techniques available either in commercial
molecular modeling suites or using open-source soware, such
as Autodock18 and its popular forks, e.g., Autodock Vina19 (it is
not our intention here to provide a comprehensive review of the
vast universe of docking algorithms). In recent years, machine
learning (ML) scoring functions (for instance, GNINA,20

OnionNet,21 Pafnucy,22 or TopologyNet23) allowed, to some
extent, the increase of the accuracy of binding affinity predic-
tions. Moreover, deep active learning strategies, e.g., Deep
Docking,24 extended the scope of docking-based screens to
billions of compounds. Finally, blind docking techniques, such
as DiffDock,25 EquiBind,26 or TANKBind,27 do not need a prior
assumption about the binding pocket location and hence solve
both problems (pocket identication and docking) at once.
However, despite the recent progress, hit nding for novel
ligand-orphan targets still suffers from the same old problem,
an excessive false-positive rate (which may be further exacer-
bated when the binding site is not known), that oen prevents
nding any hits. Hence, new strategies are welcome. We
recently developed the FRASE-based hit-nding robot (FRASE-
bot)28 that takes advantage of the FRAgments in Structural
Environments (FRASE)29 concept. Similar to blind docking
methods, FRASE-bot does not require to specify the binding
site. Instead, the structure of the protein of interest is seeded
with ligand fragments transferred from experimental protein–
ligand complexes (as described in ref. 29). The seeded frag-
ments can then be exploited in virtual screening, e.g., to build
a pharmacophore model or to run a substructure search (the
option used in this work). Such fragment-based primary screens
can be efficiently run on billion-scale databases and result in
focused compound sets enriched in actives, thus improving the
odds of success for the downstream docking-based screens.
Binding sites for docking algorithms can be dened as the
protein regions with the highest densities of the seeded frag-
ments. Alternatively, the target structures and poses could be
plugged into a molecular generator as a source of structural
constraints. In CACHE Challenge #1, our hit-nding platform
enabled identication of 8 WDR ligands in a low micromolar
range, thus placing us among the winners of the competition.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Results
FRASE screening identies ligand fragments seeded in the
WDR structure

Fast screening of the FRASE database (as described in ref. 28)
was performed against an X-ray structure of the LRRK2 WDR
domain (PDB: 6DLO). The screening resulted in 2544 fragments
clusters 1–5.

Chem. Sci., 2025, 16, 3430–3439 | 3431
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seeded in multiple regions of the protein structure (Fig. 1A).
Two lters were applied to eliminate awed fragment poses, i.e.,
poses displaying “collisions” (distances of 1 Å or closer) between
the ligand and the protein atoms and poses that are not suffi-
ciently “buried” within the protein (that is, each ligand atom
has an average of less than 5 protein atoms within 5 Å). The
application of both lters reduced the number of fragments to
348. Finally, a previously developed neural network model28 was
applied to calculate tness scores for the selected poses (the
model was trained to distinguish between true FRASEs and
decoys). The threshold of 0.4 was applied to further reduce the
number of fragments to 85 (Fig. 1B).

Ligand fragments form dense clusters in putative ligand-
binding pockets

To assess the collective value of the 85 fragments resulting from
the FRASE screen, we analyzed high-density regions of the frag-
ment population. To this end, the fragments were represented by
the Cartesian coordinates of their geometric centers and clus-
tered using the K-means technique. The clustering yielded ve
spatially distinct groups (designated in Fig. 2B as clusters 1–5),
potentially representing two binding pockets for docking-based
screens. Cluster centers of 1–3 form an approximately equilat-
eral triangle with sides of∼10 Å (Fig. 1B), suggesting that a small-
molecule ligand may potentially bind any two of the sub-pockets
occupied by clusters 1–3 but not all three (this would require
a ligand of considerable size). Clusters 4 and 5 are close to each
other (5 Å between the centers) and far away (∼25 Å) from clusters
1–3 (Fig. 1B). It is hence unlikely for a single ligand to
Fig. 2 The experimentally confirmed Round-1 hits. Chemical structures, L
1 hits 1 (A) and 2 (B); docking poses for 1 (C) and 2 (D).

3432 | Chem. Sci., 2025, 16, 3430–3439
simultaneously bind the pocket occupied by 1–3 and the pocket
occupied by 4–5. The fragments populating each of the respective
sub-pockets also reect the pockets' nature. In particular, cluster
1, embedded in the body of the WDR “donut”, is predominantly
composed of non-polar, aromatic, halogen-substituted rings
(Fig. 1C); cluster 2, located on the outer surface of the “donut”,
mainly includes heterocycles, with many of them featuring
hydrogen-bond donor (HBD) substituents (Fig. 1C); cluster 3,
occupying the rim of the donut's central cavity, represents
a mixture of polar heterocycles, such as diazoles and triazoles,
and non-polar aromatic fragments (Fig. 1C); cluster 4, entangled
within the b-strands on the opposite side of the donut (Fig. 1C),
mixes oxygen- and nitrogen-containing heterocycles, and
halogen-substituted non-polar aromatics; and cluster 5, adjacent
to cluster 4, is largely non-polar aromatic.

Seeded fragments enable selection of a focused compound set

Both structural and spatial information provided by the 85
seeded fragments was exploited to pre-lter a collection of
commercially available compounds – the Advanced Screening
Collection (Enamine) of ∼900 000 molecules. In particular, we
sought to retrieve the compounds potentially binding to at least
two identied sub-pockets. To this end, combinations of frag-
ment structures were used to compose substructure queries
under the following conditions: (i) fragments for the same query
must be pulled from two different clusters and (ii) the two
clusters must be within ∼10 Å from each other. That is, the
queries may combine fragments from clusters 1 and 2, 1 and 3,
2 and 3, and 4 and 5. These multiple substructure searches
RRK2 Kd values, solubility, and SPR dose–response data for the Round-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The experimentally confirmed Round-2 hits. Chemical struc-
tures and LRRK2 Kd values, and solubility for the Round-3 hits 3–8.
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resulted in a combined set of ∼100 000 compounds enriched in
potential LRRK2 WDR binders.

Docking-based screening designates putative LRRK2 binders

The ∼100 000 compounds resulting from the substructure
search were docked using Autodock Vina19 to the two binding
pockets corresponding to clusters 1/2/3 and 4/5, respectively.
The top 10% hits from Autodock Vina were then subjected to
docking using the Glide algorithm.30 The top 1000 Glide hits
were processed through a min–max diversity lter to remove
structurally redundant compounds (see the Methods for more
details). Next, binding free energies (BFE) were calculated for
the remaining ∼600 compounds using the MM-GBSA31 method
(as implemented in the Schrodinger soware suite14). Finally,
the top 200 docked ligands were visually inspected. The deci-
sion to keep a hit was made based on three scores (Vina, Glide,
and MM-PBSA BFE) and visually perceived factors such as how
well-buried the ligand is, how exible it is, and how “natural” its
conformation looks like. A total of 54 compounds were retained
at this step, of which 37 were available for purchase on the day
of the order and submitted to the CACHE challenge organizers
as Round-1 hits.

Binding conrmation for the Round-1 hits

Binding for the 37 sourced compounds was evaluated using
a Surface Plasmon Resonance (SPR) assay with biotinylated
LRRK2-WDR immobilized on a streptavidin chip, thus facili-
tating the capture of target molecules (see Fig. 2A and B and ESI
le 1†). Moreover, binding to the NSD2 PWWP domain, an
unrelated target, was assessed to monitor unspecic protein
binding. Dynamic Light Scattering (DLS) was used to evaluate
solubility and aggregation at 200 mM. Initially, all compounds
underwent rapid SPR screening at concentrations of 50 mM and
100 mM. Two compounds, 1 and 2, exhibited a binding signal
ranging between 50% and 200% of the expected value and were
selected for dose–response experiments. Both 1 and 2 demon-
strated dose-dependent binding with Kd of 16 mM and 32 mM,
respectively. According to DLS data, both compounds were 30%
soluble at a high concentration of 200 mM and 1 showed signs of
aggregation. While 1 appeared selective for LRRK2, 2 displayed
binding to the unrelated NSD2 PWWP domain with a Kd of 42
mM. Although, the 3D structures of the LRRK2 WDR in complex
with 1 and 2 are yet to be solved, the respective docking poses
(Fig. 2C and D) can be used as a template for further hit
expansion, as well as initial exploration of structure–activity
relationships (SARs). Both 1 and 2 occupy the pocket corre-
sponding to cluster 3 (Fig. 1C, 2C and D) and can potentially be
extended toward pockets 1 or 2.

Round 2: hit expansion enables preliminary structure–activity
relationships

In Round-2, pharmacophore screening and similarity search
were employed to identify structural analogs of 1 and 2 in
Enamine REAL, an ultra-large screening collection of 6.5 billion
compounds.32 Since the full database is out of reach for a 3D
pharmacophore screening, it was preltered using 2D
© 2025 The Author(s). Published by the Royal Society of Chemistry
pharmacophore ngerprints (as described in the Methods). The
top 70 million 2D-pharmacophore hits were then subjected to
3D pharmacophore screening using Phase,33 with pharmaco-
phore models derived from the docking poses of 1 and 2,
resulting in a combined pool of 1122 compounds. Concurrently,
a similarity search on the full Enamine REAL database with 1
and 2 as queries and a Tanimoto threshold of 0.8 (as described
in the Methods) yielded 190 molecules. Next, the 1312 (1122 +
190) compounds were docked using Glide30 and clustered using
the Butina method.34 We then selected two overlapping lists for
the nal triage: (i) 150 top-scored cluster representatives and (ii)
50 top-scored ligands overall (based on Glide scores). The poses
of these selected ligands were visually inspected to assess their
structural alignment with the parent compounds 1 and 2. A
curated set of 47 analogs (43 for parent 1 and 4 for parent 2) was
submitted for experimental testing (see ESI le 2†).

Six analogs (3–8) of the parent hit 1 exhibited dose-
dependent binding to the LRRK2 WDR domain in the range
of 3 mM to 44 mM (Fig. 3). Apart from 7, which showed signs of
aggregation at 50 mM and was only 75% soluble at 100 mM,
compounds behaved well up to 100 mM as measured by DLS and
all of them displayed no binding to the unrelated target NSD2
Chem. Sci., 2025, 16, 3430–3439 | 3433

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07532c


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
6/

1/
20

  1
0:

47
:4

7.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
PWWP domain. The analogs' activity helped to further validate
the 1-arylmethyl-6-phenyl-1H-pyrazolo[3,4-b]pyridine chemical
series and inform early SARs.

Effect in cell-based assays

Round-1 and Round-2 hits were tested in cells to identify
possible changes in LRRK2 kinase activity or its phosphoryla-
tion status. As an initial approach and based on the solubility
data mentioned above, we treated HEK293T cells transfected
with a WT or Y1699C pathogenic LRRK2 mutant with the
different hits at a concentration of 30 mM. Aer 2 hours of
treatment, we could observe subtle changes in the phosphory-
lation status of LRRK2 and its kinase activity (Fig. 4). Two
analogs (5 and 6) showed a signicant increase in the phos-
phorylation level of residue S935 in WT LRRK2 but not in YC
pathogenic mutant transfected cells (Fig. 4B). When we
analyzed the kinase activity of LRRK2 in the presence of the hits,
we observed compounds 1 and 6 to induce a slight increase in
the LRRK2 kinase activity of the Y1699C pathogenic mutant
compared to DMSO treated cells (Fig. 4C and D).

Discussion

CACHE Challenge10,11 was a long-needed benchmark for
computational hit-nding methods. Certainly, the challenges
come at a high cost due to the substantial amount of experi-
mental work required for conrmation of virtual hits submitted
by all selected participants. But this is a fair price to pay for
excluding any conscious and subconscious bias that may
inuence hit-nding studies on a protein with prior knowledge
Fig. 4 Cellular effects of compounds on LRRK2 kinase activity. (A) Exam
Y1699C pathogenic mutant and treated with DMSO, 30 nMMLi-2, a pote
cell lysates analyzed by western blotting for Flag, pS1292 LRRK2, pS935
Quantification of the pS935 LRRK2/LRRK2 ratio of blots depicted in (A). *
depicted in (A). *p < 0.05, **p < 0.01. (D) Quantification of the pT73 RAB10
0.001.

3434 | Chem. Sci., 2025, 16, 3430–3439
of ligands. Challenge #1 will provide a triple benet to the drug/
probe discovery community: (i) inform the computational hit-
nding community on which methods are most efficient; (ii)
facilitate access to these most efficient methods by encouraging
the use of original open-source soware; and (iii) catalyze the
development of publicly accessible chemical probes for prom-
ising but difficult therapeutic targets, such as LRRK2 WDR.

The LRRK2 WDR is the rst genuine ligand-orphan target to
which FRASE-bot was applied. Previously, the concept of frag-
ments in structural environments was introduced to optimize
selectivity proles in a “model system” of three enzymes
(TYRO3, AXL, and MERTK) belonging to a well-established
superfamily of protein kinases.29 Recently, a more challenging
Calcium and Integrin Binding protein 1 (CIB1) belonging to
a small family of four proteins was successfully targeted by
FRASE-bot.36 Although no small-molecule ligands were known
for CIB1, a putative ligand-binding site was previously identied
through the discovery of peptide binders by phage display
screens.37–40 For the LRRK2 WDR, neither the ligands nor their
potential binding sites were known, and hence, both tasks – site
and ligand identication – needed to be addressed by FRASE-
bot.

In CACHE Challenge #1,10,41 FRASE-bot was applied to
identify LRRK2 WDR ligands among many other original
workows. Eventually, only 7 participants out of 23 were able to
identify any hits. In two rounds of the challenge, we identied 8
experimentally conrmed LRRK2 WDR binders (out of 85
submitted compounds, thus showing a 9% success rate) with Kd

ranging from 3 mM to 44 mM as determined by surface plasmon
resonance.42 This study demonstrates the high potential of the
ple of HEK293T cells transfected with a 3×Flag-tagged LRRK2 WT or
nt kinase domain inhibitor (ref. 35), or 30 mM of the different hits for 2 h,
LRRK2, RAB10, pT73 RAB10 and a-tubulin as the loading control. (B)
p < 0.05. (C) Quantification of the pS1292 LRRK2/LRRK2 ratio of blots
/RAB10 ratio of blots depicted in (A). *p < 0.05, **p < 0.01, and ****p <

© 2025 The Author(s). Published by the Royal Society of Chemistry
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FRASE-based strategy in the intended setting, that is, hit-
nding for a difficult non-conventional target. Conceptually,
FRASE-based screening and design can be described as an
interaction-based approach, in which the activity of new ligands
is established based on the similarity of structural patterns of
ligand–protein interaction to those of known active ligands.
Such similarity can be dened either for a whole ligand, e.g.,
through Structural Protein–Ligand Interaction Fingerprints
(SPLIF),43,44 or fragment-wise, by means of FRASE screening.36

The LRRK2 WDR binders resulting from the challenge will
benet the Parkinson's research. Aer optimization for an
increased potency, cell membrane permeability, and pharmaco-
kinetics, WDR probes will help to further investigate the biology
of LRRK2 and its role in Parkinson's disease. This is of particular
interest in light of our fragmentary knowledge on how the LRRK2
WD40 domain affects LRRK2 functions. For instance, it has
previously been shown that the C-terminal domain of LRRK2,
where the WDR is located, is essential for its kinase activity.45

Recent studies showed that a helix extending from the WDR
domain acts as a dynamic regulator of LRRK2 kinase activity,
alternatively binding LRRK2 kinase or LRRK2 N-terminal
domains.46 Therefore, WDR binding molecules may affect this
regulation, impacting both LRRK2 kinase activity and overall
LRRK2 conformation. In our preliminary cellular studies, we
were able to probe for both of these effects using the LRRK2
kinase activity markers pT73-Rab10 and pS1292-LRRK2 as well as
the LRRK2 conformational marker pS935-LRRK2. Our results
show that the three compounds affect the LRRK2 function in
different ways. Two of them (5 and 6) induce weak but observable
increases in pS935-LRRK2 levels for WT LRRK2, suggesting that
some compounds may affect LRRK2 conformation, thereby
affecting the phosphorylation/dephosphorylation equilibrium.
Interestingly, two compounds also led to slight increases in the
kinase activity marker pT73-Rab10 in the Y1699C-LRRK2 mutant
but not WT (1 and 6), suggesting that the WDR domain ligands
may regulate LRRK2 kinase activity. It remains to be determined
if this effect is limited to certain disease mutants and whether
these can affect not only kinase activation but also kinase inac-
tivation. Further testing will be needed to progress the current
compounds toward potential chemical probes of WDR function.
In addition, further optimization would be needed to determine
whether some WDR binding candidates may show potential as
Parkinson's drugs.

Methods
Computational methods

FRASE screening. FRASE screening was performed as
described in ref. 36 using the LRRK2 WDR structure (PDB:
6DLO) as the protein target. The workow (including the post-
screening cluster analysis by the k-means method) was imple-
mented in Pipeline Pilot 2021SP1 (available online47). The
Cartesian coordinates of the fragments' geometric centers were
used as input to k-means clustering (a distance threshold of 2 Å
to the cluster center was set as the inclusion criterion).

Substructure search. The substructure search for Round-1
was performed on the Enamine Advanced Collection
© 2025 The Author(s). Published by the Royal Society of Chemistry
(downloaded in February 2022) using the RDKit function
rdkit.Chem.rdchem.HasSubstructMatch.

Similarity search. The similarity search on topological
ngerprints was performed using the RDKit function rdkit.Da-
taStructs.TanimotoSimilarity. Morgan (circular) ngerprints
were generated using rdkit.Chem.AllChem.GetMorganGener-
ator(radius=2) and GetSparseCountFingerprint. Pharmaco-
phore ngerprints were implemented using the RDKit
functions rdkit.Chem.Pharm2D.Generate. Gen2DFingerprint
and rdkit.Chem.Pharm2D.SigFactory with 3 distance bins and
2-point pharmacophores enumerated. Chemical features were
generated using the standard RDKit feature-typing mechanism
rdkit.Chem.ChemicalFeatures.BuildFeatureFactory.

Pharmacophore screening. Pharmacophore screening of the
Enamine REAL collection32 was performed using the Phase
module33 of the Schrödinger Suite Release 2021.14 Phase was
applied in “full match” mode with a target number of 50
conformers generated per ligand and tolerance spheres of 1 Å.
The phase screen score was used for ranking the search hits
with default rejection criteria.

Ligand–protein docking. Ligand–protein docking was per-
formed using Autodock Vina19 and Glide.30 The Vina program
version 1.2.0 was used with default options and a search space
of 10× 10× 10 Å centered on the geometric center of the FRASE
fragments (in Round-1) or the docking pose of the conrmed
hits (in Round-2). Glide from Schrödinger Suite Release 2021
(ref. 14) was performed in standard precision mode with the
default scaling factor and enabled sampling of ring conforma-
tions. The center of the protein grid was dened as the centroid
of the Workspace ligand (FRASE fragments in Round-1 or the
docking pose of the conrmed hits in Round-2). The size of the
grid was automatically determined to dock ligands similar in
size to the Workspace ligands. The maximum number of ligand
poses to output was set to one for both docking programs.

Molecular mechanics – generalized born surface area (MM-
GBSA). Molecular Mechanics – Generalized Born Surface Area
(MM-GBSA)48 used as a rescoring tool was implemented in
Schrödinger Suite Release 2021.14 The VSGB 2.0 solvation
model49 was applied in combination with the OPLS4 force eld
and hierarchical sampling method.

Clustering and diversity lter. The post-docking hit analysis
was performed using the Butina clustering method imple-
mented as the RDKit function rdkit.ML.Cluster.Butina.Clus-
terData with molecules represented as path ngerprints
rdkit.Chem.rdFingerprintGenerator.GetRDKitFPGenerator.
The Round-1 hits were diversied using the rdkit.SimDivFil-
ters.rdSimDivPickers.MaxMinPicker with a dissimilarity
threshold of 0.5 Tanimoto on Morgan ngerprints (radius = 2).
Surface plasmon resonance (SPR)

The binding affinity of compounds was assessed by surface
plasmon resonance (SPR, Biacore™ 8K, Cytiva Inc.) at 25 °C.
Biotinylated LRRK2 (2141-2527aa – https://www.addgene.org/
210899/) was captured onto ow cells of a streptavidin-
conjugated SA chip at approximately 5000 response units
(RUs) (according to the manufacturer's protocol). Compounds
Chem. Sci., 2025, 16, 3430–3439 | 3435
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were dissolved in 100% DMSO (30 mM stock) and diluted to
10 mM before serial dilutions were prepared in 100% DMSO (a
dilution factor of 0.33 was used to yield 5 concentrations). For
SPR analysis, the serially titrated compound was diluted 1 : 50 in
HBS buffer (10 mM HEPES pH 7.4, 150 mM NaCl, and 0.01%
Tween-20) to a nal concentration of 2% DMSO. Experiments
were performed using the same buffer containing 2% DMSO
and multi-cycle kinetics with a 60 s contact time and a dissoci-
ation time of 120 s at a ow rate of 40 mL min−1. Kinetic curve
ttings and KD value calculations were done with a 1 : 1 binding
model using Biacore Insight Evaluation Soware (Cytiva Inc.).

Dynamic light scattering (DLS)

The solubility of compounds was estimated by DLS that directly
measures compound aggregates and laser power in solution.
Compounds were serially diluted directly from DMSO stocks
and then diluted 50× into ltered 10 mM HEPES pH 7.4 and
150 mM NaCl (2% DMSO nal). The resulting samples were
then distributed into 384-well plates (black with a clear bottom,
Corning 3540), with 20 mL in each well. The sample plate was
centrifuged at 3500 rpm for 5 minutes before loading into the
DynaPro DLS Plate Reader III (Wyatt Technology) and analyzed
as previously described.50,51

Cell assays

The activity of compounds was determined in HEK293T cells
(ATCC, CRL-3216) cultured as previously described (Marchand
et al., 2022). The cells were subcultured in 6-well plates and
transfected at 70–80% conuence with 2 mg of LRRK2 WT or
LRRK2 Y1699C pathogenic mutant constructs using branched
polyethyleneimine (Clinisciences, 19850). The next day, trans-
fected cells were subcultured into 12-well plates and subjected
to western blot 48 h post-transfection. The cells were treated
with DMSO (Sigma-Aldrich, D2438), 30 nM of MLi-2, a kinase
domain inhibitor35 (Tocris, 5756) or 30 mM of the different
compounds for 2 hours prior to collection.

The cells were collected and washed in PBS, followed by
resuspension in lysis buffer ((20 mM Tris pH 7.5, 150 mM NaCl,
0.2% Triton-X100, 5 mM MgCl2, and 10% glycerol) + cOmplete
EDTA-free protease inhibitor cocktail + PhosSTOP phosphatase
inhibitor cocktail) and incubation on a rotary wheel for 30
minutes at 4 °C. Lysates were then centrifuged at 13 200 rpm for
10 minutes at 4 °C, and the protein concentration of superna-
tants was estimated by BCA assay (Takara, T9300A). Around 30
mg of protein were mixed with an appropriate amount of 4×
NuPAGE™ LDS Sample Buffer (Invitrogen, NP0008) and 10×
Bolt™ Sample Reducing Agent (Invitrogen, B0009), boiled at 70
°C for 10 minutes, and resolved in NuPAGE™ 4–12% Bis–Tris
Midi Gels (Invitrogen, WG1403) at 100 V for 2 hours with
NuPAGE™ MOPS SDS running buffer (Invitrogen, NP0001).
Proteins were electrophoretically transferred onto 0.45 mm
nitrocellulose membranes (Cytiva, 10600002) at 40 mA over-
night at 4 °C in transfer buffer (20 mM Tris pH 8.6, 122 mM
glycine, and 5% (v/v) MeOH). The membranes were blocked
with 5% (w/v) skim milk powder in 0.1% Tween-20/PBS for 1
hour at room temperature and incubated with primary
3436 | Chem. Sci., 2025, 16, 3430–3439
antibodies diluted in blocking solution overnight at 4 °C.
Primary antibodies included rabbit anti-pS1292 LRRK2 [MJFR-
19-7-8] (1 : 1000, Abcam, ab203181), mouse anti-Flag® M2 (1 :
500, Sigma-Aldrich, F1804), mouse anti-a-tubulin (1 : 10 000,
Bio-Techne, NB100-690), rabbit anti-pT73 RAB10 [MJF-R21] (1 :
1000, Abcam, ab230261), and mouse anti-RAB10 [4E2] (1 : 1000,
Thermo Scientic, MA515670). The following day, the
membranes were washed twice in 0.1% Tween-20/PBS for 10
minutes at room temperature and incubated with secondary
antibodies diluted in 0.1% Tween-20/PBS for 1 hour at room
temperature. Secondary antibodies included HRP-conjugated
goat anti-mouse (1 : 10 000, Cell Signaling, 7076S) and goat
anti-rabbit (1 : 5000, Cell Signaling, 7074S). Aer two additional
washes, the membranes were revealed using ECL Standard
Western Blotting Detection Reagent (Cytiva, RPN2209) for 1
minute, and the chemiluminescent reaction was detected with
Amersham ImageQuant™ 800 Western blot imaging systems
(Cytiva, USA).
Statistical analysis

Data were checked for normal distribution using the Shapiro–
Wilk test. Normally distributed data were analyzed by one-way
ANOVA and Fisher's LSD multiple comparison. Signicance
values for all data are indicated in gure legends. Statistical
analysis and graphs were generated using GraphPad Prism
soware version 10.2 (San Diego, CA, USA).
Code availability

The source code used to perform the current study is shared as
a supplementary archive le and through the GitHub repository
https://www.github.com/kireevlab/FRASE-bot-Pipeline-Pilot.47

The latest version of FRASE-bot implemented as a Python code
is available at https://www.github.com/kireevlab/FRASE-bot-
RDKit.52
Data availability

A spreadsheet with SPR data for experimentally tested
compounds selected by virtual screening is shared as ESI les 1
and 2† (respectively, “t_1183_CACHE1-Round1-con-
rmation.xlsx” and “t_1183_CACHE1-Round2-conrmation”).
Source data for the gures are provided with this paper.
Author contributions

Methodology, investigation, analyses, writing, and editing:
A. M., M. G., X. W., A. J. L. O., F. L., I. C., S. A., C. A., A. B., P. G., E.
G., L. H., S. H., R. J. H., A. H., P. L., S. P., A. S., H. Z., M. S., J.-M.
T., and D. K.; conceptualization, writing, review, supervision,
resources, and project administration: M. S., J.-M. T. and D. K.
Conflicts of interest

The authors declare no competing interests.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://www.github.com/kireevlab/FRASE-bot-Pipeline-Pilot
https://www.github.com/kireevlab/FRASE-bot-RDKit
https://www.github.com/kireevlab/FRASE-bot-RDKit
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc07532c


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
6/

1/
20

  1
0:

47
:4

7.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Acknowledgements

This work was supported by a startup fund provided by the
University of Missouri and by grant 5R01GM132299 from NIH,
National Institute of General Medical Sciences (NIGMS), to D. K.
A. J. L. O. and J.-M. T. are profoundly grateful for the funding
from the Agence Nationale de Recherche (ANR-21-CE16-0003-
01, project PARK-PEP). Experimental testing was supported by
an Open Science Drug Discovery grant from Canada's Strategic
Innovation Fund (SIF Stream 5) administered by Conscience
and the Michael J. Fox Foundation and conducted at the
Structural Genomics Consortium, a registered charity (no:
1097737) that receives funds from Bayer AG, Boehringer Ingel-
heim, Bristol Myers Squibb, Genentech, Genome Canada
through the Ontario Genomics Institute [OGI-196], Janssen,
Merck KGaA (aka EMD in Canada and USA), Pzer and Takeda.

References

1 S. Rong, G. Xu, B. Liu, Y. Sun, L. G. Snetselaar, R. B. Wallace,
B. Li, J. Liao andW. Bao, Trends inMortality From Parkinson
Disease in the United States, 1999–2019, Neurology, 2021, 97,
e1986–e1993.

2 J.-M. Taymans, M. Fell, T. Greenamyre, W. D. Hirst,
A. Mamais, S. Padmanabhan, I. Peter, H. Rideout and
A. Thaler, Perspective on the current state of the LRRK2
eld, npj Parkinson's Dis., 2023, 9, 104.

3 P. Zhang, Y. Fan, H. Ru, L. Wang, V. G. Magupalli,
S. S. Taylor, D. R. Alessi and H. Wu, Crystal structure of the
WD40 domain dimer of LRRK2, Proc. Natl. Acad. Sci. U. S.
A., 2019, 116, 1579–1584.

4 C. K. Deniston, J. Salogiannis, S. Mathea, D. M. Snead,
I. Lahiri, M. Matyszewski, O. Donosa, R. Watanabe,
J. Böhning, A. K. Shiau, S. Knapp, E. Villa, S. L. Reck-
Peterson and A. E. Leschziner, Structure of LRRK2 in
Parkinson's disease and model for microtubule interaction,
Nature, 2020, 588, 344–349.

5 D. R. Alessi and E. Sammler, LRRK2 kinase in Parkinson's
disease, Science, 2018, 360, 36–37.

6 G. Ito and N. Utsunomiya-Tate, Overview of the Impact of
Pathogenic LRRK2 Mutations in Parkinson's Disease,
Biomolecules, 2023, 13, 845.

7 S. Wang, Z. Liu, T. Ye, O. S. Mabrouk, T. Maltbie, J. Aasly and
A. B. West, Elevated LRRK2 autophosphorylation in brain-
derived and peripheral exosomes in LRRK2 mutation
carriers, Acta Neuropathol. Commun., 2017, 5, 86.

8 C. K. Deniston, J. Salogiannis, S. Mathea, D. M. Snead,
I. Lahiri, M. Matyszewski, O. Donosa, R. Watanabe,
J. Böhning, A. K. Shiau, S. Knapp, E. Villa, S. L. Reck-
Peterson and A. E. Leschziner, Structure of LRRK2 in
Parkinson's disease and model for microtubule interaction,
Nature, 2020, 588, 344–349.

9 T. Müller, DNL151, DNL201, and BIIB094: experimental
agents for the treatment of Parkinson's disease, Expert
Opin. Invest. Drugs, 2023, 32, 787–792.

10 S. Ackloo, R. Al-awar, R. E. Amaro, C. H. Arrowsmith,
H. Azevedo, R. A. Batey, Y. Bengio, U. A. K. Betz,
© 2025 The Author(s). Published by the Royal Society of Chemistry
C. G. Bologa, J. D. Chodera, W. D. Cornell, I. Dunham,
G. F. Ecker, K. Edfeldt, A. M. Edwards, M. K. Gilson,
C. R. Gordijo, G. Hessler, A. Hillisch, A. Hogner, J. J. Irwin,
J. M. Jansen, D. Kuhn, A. R. Leach, A. A. Lee, U. Lessel,
M. R. Morgan, J. Moult, I. Muegge, T. I. Oprea, et al.,
CACHE (Critical Assessment of Computational Hit-nding
Experiments): A public–private partnership benchmarking
initiative to enable the development of computational
methods for hit-nding, Nat. Rev. Chem, 2022, 6, 287–295.

11 F. Li, S. Ackloo, C. H. Arrowsmith, F. Ban, C. J. Barden,
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