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Wider Impact Statement

This review addresses the critical intersection of machine learning and solid-state electrolyte
development, a field experiencing unprecedented growth with hundreds of publications emerging
in recent years. Key developments discussed include the evolution from classical ML screening
approaches to sophisticated deep learning architectures like graph neural networks, the
emergence of ML interatomic potentials enabling large-scale dynamics simulations, and the
transition toward generative models for de novo materials design. The field's significance
extends beyond academic interest: solid-state electrolytes are essential for next-generation
batteries that promise enhanced safety, energy density, and sustainability for electric vehicles and
grid storage applications. The rapid pace of innovation has created both opportunities and
challenges: while ML has accelerated SSE discovery timelines from decades to years, the
proliferation of disparate approaches, limited data availability for non-Lithium systems, and lack
of standardized evaluation metrics have hindered systematic progress. This review's forward-
looking perspective on autonomous discovery platforms, physics-informed generative models,
and integrated experimental-computational workflows will shape the field's trajectory toward
predictive materials design. By providing strategic directions for addressing current limitations,
from developing universal descriptors to establishing closed-loop discovery systems, this work
positions the materials science community to realize the transformative potential of Al-driven
SSE innovation, ultimately accelerating sustainable energy storage technology development.
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Data Availability

No primary research results, software or code have been included, and no new data were
generated or analysed as part of this review.
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Machine Learning Pipelines for the Design of Solid-State
Electrolytes

Vinamr Jain,? Zhilong Wang,> Fengqi You*2b.cd

The development of solid-state electrolytes (SSEs) is critical for enabling safer, high-energy-density batteries. However, the
discovery of new inorganic SSEs is hindered by vast chemical search spaces, complex multi-property requirements, and
limited experimental data, especially for multivalent systems. This review presents the first systematic framework mapping
five interconnected challenges in SSE discovery to emerging Al solutions, providing a strategic roadmap for practitioners.
We comprehensively survey machine learning pipelines from data resources and feature engineering to classical models,
deep learning architectures, and cutting-edge generative approaches. Key breakthroughs include: (1) machine learning
interatomic potentials enabling microsecond-scale molecular dynamics simulations at near-DFT accuracy, revealing non-
Arrhenius transport behavior and overturning established transport mechanisms; (2) advanced neural network architectures
achieving unprecedented accuracy in ionic conductivity prediction across diverse chemical spaces, including transformer-
based and graph neural network approaches; (3) generative models successfully proposing and experimentally validating
novel SSE compositions through diffusion-based design frameworks; and (4) autonomous closed-loop discovery platforms
integrating ML predictions with experimental synthesis, achieving order-of-magnitude efficiency gains over traditional
approaches. Unlike previous reviews focused on Li-ion systems, we explicitly address the critical data gap for multivalent
conductors (Mg?*, Ca?*, Zn?*, AI**) and provide concrete strategies through transfer learning and active learning frameworks.
We bridge conventional computational methods (DFT, molecular dynamics) with modern ML techniques, demonstrating
hybrid workflows that overcome individual limitations. The review concludes with actionable recommendations for multi-
objective optimization, explainable Al implementation, and physics-informed model development, establishing a
comprehensive roadmap for the next generation of Al-accelerated solid-state battery materials discovery.

All-solid-state electrolytes are being intensively explored as
a next-generation solution to overcome the limitations of liquid

Renewable energy growth and electrified transportation are
creating an urgent demand for efficient, safe energy storage.'?
Rechargeable lithium-ion batteries (LIBs) have dominated
portable electronics and electric vehicles due to their high
energy density and long cycle life3. However, conventional LIBs
rely on liquid electrolytes that are flammable and volatile,
raising serious safety concerns (fires and leakage) especially in
large-scale applications.*®> These liquid electrolytes also have
limited electrochemical stability windows, effectively capping
the LIB energy density by constraining high-voltage cathodes
and prohibiting the use of lithium metal anodes.®® Dendritic
lithium growth and side reactions in liquid electrolytes pose
risks of short-circuit and cell failure, highlighting the need for
alternative electrolyte technologies to enable safer, higher-
energy batteries.®
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electrolytes.19-12 By replacing the flammable liquid with a non-
combustible solid, SSE-based batteries promise vastly improved
safety and thermal stability.’> Moreover, the mechanical rigidity
of inorganic SSEs can suppress dendrite propagation,
potentially allowing the pairing of high-capacity lithium metal
anodes with high-voltage cathodes for higher energy density
cells.»* SSE materials fall into two broad classes: inorganic
crystalline or glassy ceramics (oxide or sulfide based) and solid
polymers (or polymer—ceramic hybrids).15:16 Inorganic SSEs such
as oxide “garnet” LisLasZr,0O1, and sulfide Li;oGeP,S12 have
achieved room-temperature Li* conductivities on the order of
1073-1072 S cm™,17-19 gpproaching those of liquid electrolytes.
Polymer SSEs (e.g., PEO-based systems) offer flexibility and
facile processing, but typically display lower ionic conductivities
(~1078-10"% S cm™ at ambient temperature) and often require
heating to 60—80°C to reach optimal conduction.2°-22 Each SSE
family has its own challenges: ceramic electrolytes can suffer
from grain-boundary resistance and brittle interfaces, whereas
polymer electrolytes tend to have narrower electrochemical
stability windows and lower transference numbers.23:24
Ongoing research is addressing these issues (e.g., novel glassy
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sulfide compositions and composite electrolytes) to realize the
full safety and performance advantages of SSEs.2>26

Prior to the rise of ML, researchers relied on first-principles
computations and atomistic methods have been widely used to
predict phase stability and Li* chemical potentials, and to
calculate migration barriers via nudged elastic band (NEB)
pathways for candidate electrolytes.?”?2 These calculations
yield valuable atomistic insights — for example, clarifying ion
conduction mechanisms in fast-ion conductors and screening
thermodynamically stable electrolyte/electrode simulations to
guide SSE discovery and optimization.?°=3! DFT calculations
combined with other computational approaches have proven
valuable for materials discovery.3233 Molecular dynamics (MD)
simulations (both classical and ab initio (AIMD)) are another
important tool, enabling the computation of ionic diffusivities
and conductivities in SSE frameworks.3* Indeed, AIMD
simulations on prototypical superionic solids like LiioGeP,S:> and
cubic Li;LazZr,0.2 have reproduced experimental ionic
conductivities, confirming the capability of simulations to
evaluate candidate SSE performance.3> However, DFT and MD
are computationally intensive and scale poorly to the enormous
compositional space of solid materials.3¢ High-throughput DFT
screening is typically limited to evaluating hundreds of
candidates at best, after preliminary filtering by simpler
models.3” This bottleneck has motivated the emergence of ML
approaches in electrolyte research, which can learn complex
composition—structure—property relationships from data and
make rapid property predictions.3® For instance, ML interatomic
potentials trained on DFT data can act as surrogates to rapidly
estimate ion migration barriers or perform MD simulations at a
fraction of the cost.3®4° More broadly, regression and
classification models have been trained to predict SSE ionic
conductivity or stability from compositions and structures,
enabling fast screening of thousands of unexplored
chemistries.*>#2 Early studies using data-driven models have
already identified new Li-ion conductors that were missed by
intuition or limited DFT searches,*3** underscoring the promise
of ML in accelerating materials discovery.

Despite this progress, several key research gaps and
challenges remain, which form the motivation for this review. A
fundamental hurdle is the limited availability of comprehensive
datasets, particularly for solid conductors beyond well-studied
Li* systems, such as those for multivalent ions (Mg?*, Ca?*, Zn?*,
Al3*).4546 This scarcity impedes the ability of supervised ML
models to generalize effectively.?’*® Relatedly, a significant
concern is the limited transferability of models, as those trained
on known compounds, may perform poorly when extrapolated
to novel crystal structures or to different ion chemistries.*’
Furthermore, designing practical materials requires a holistic,
multi-objective approach. While most studies have focused on
optimizing a single property like ionic conductivity,*°=>1 practical
SSEs must simultaneously satisfy multiple criteria, including a
wide electrochemical stability window and sufficient
mechanical strength to suppress dendrite formation.

Another challenge is the "black-box" nature of many advanced
ML models, which limits their utility when they cannot provide
insights into the underlying factors governing material

2| J. Name., 2012, 00, 1-3

properties.>253 Finally, there is a pressing need to mave beyond
the passive screening of predefined candidaitéiatemalstéward
generative design. This employing
generative algorithms to propose novel electrolyte
compositions and structures>>% and developing closed-loop
"predictive synthesis" pipelines, which iteratively couple ML
predictions with DFT validation and experimental feedback to
accelerate the discovery of new materials.>”>8 Addressing these
five interconnected challenges — data limitations, multi-criteria
optimization, interpretability, model generalization, and
generative design — is crucial for unlocking the next wave of
breakthroughs in solid-state electrolyte development.

This review addresses several critical gaps that distinguish it
from existing literature on ML-driven SSE discovery. While
previous reviews have largely focused on cataloguing ML
techniques applied to battery materials broadly or examining
specific electrolyte systems®® within traditional experimental
and computational frameworks, we provide the first systematic
framework that maps specific challenges in SSE discovery to
emerging Al solutions, offering a strategic roadmap for
practitioners. Most existing reviews emphasize Li-ion systems
exclusively, whereas we explicitly address the critical data
scarcity for multivalent ion conductors and provide concrete
strategies for extending ML approaches to these underexplored
but technologically important systems. Importantly, we bridge
the gap between traditional computational methods (DFT, MD,
KMC) and modern ML techniques, demonstrating how hybrid
workflows can overcome individual limitations while leveraging
complementary strengths. Rather than merely surveying
available techniques, we provide actionable guidance for data
collection priorities, validation strategies, and implementation
of explainable Al methods specifically tailored to solid-state
electrolyte discovery. Finally, we emphasize emerging
paradigms like autonomous discovery platforms and physics-
informed machine learning that represent the next frontier in
Al-accelerated materials discovery, going beyond conventional
property prediction to enable true generative design of novel
SSE materials.

We begin by examining the traditional computational
methods that have historically guided SSE discovery, including
NEB, molecular dynamics, and kinetic Monte Carlo simulations.
We then detail the data resources and feature engineering
strategies critical to enabling ML in this domain, followed by a
survey of classical and deep learning models, including graph
neural networks and ML-based interatomic potentials. We
explore how these models have been applied to predict key
properties (such as ionic conductivity, phase stability, and
electrochemical compatibility), perform high-throughput
screening to discover promising SSE candidates, and model ion
diffusion mechanisms. Next, we address key challenges in ML-
driven SSE discovery, including data scarcity, limited model
transferability, and multi-objective optimization. We then
discuss emerging solutions such as active and transfer learning,
explainable Al, and physics-informed models. Finally, we
highlight opportunities for autonomous discovery through
generative design, ML interatomic potentials, and closed-loop
pipelines integrating computation and experiment. Through

proactive, requires
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this synthesis, we aim to clarify the evolving role of machine
learning in SSE development and highlight strategic directions
for the field’s continued advancement.

2. Conventional Computational Methods

Before the rise of ML, computational approaches including
nudged elastic band (NEB) calculations, kinetic Monte Carlo
(KMC) simulations, and molecular dynamics (MD) have been
instrumental in SSE discovery. These methods provide the
foundational data and physical insights that now enable ML-
driven discovery. Understanding their capabilities and
limitations is essential for designing effective hybrid
computational workflows that combine traditional physics-
based methods with modern ML techniques. A comparative
summary of all computational methods discussed in this section
is provided in Table S1 (Supplementary Information),
highlighting their primary applications, advantages, limitations,
and typical system sizes for SSE design.

2.1. Nudged Elastic Band (NEB) Method

NEB is an algorithm designed to find the Minimum Energy Path
(MEP) and the associated saddle point (transition state)
between known initial and final states on a potential energy
surface. Its primary benefit is the direct calculation of the
activation energy barrier (E,) for specific atomic or ionic hops,
providing crucial atomistic details of migration mechanisms. A
crucial refinement, climbing image NEB (CI-NEB), addresses the
challenge of accurately locating the true saddle point by driving
one image uphill to converge precisely onto the saddle point.®°
This is vital for screening materials and dopants based on ion
mobility. The E, values derived from NEB calculations are also
essential inputs for higher-scale simulations like Kinetic Monte
Carlo.

The method has evolved from characterizing single
materials to enabling high-throughput discovery. Early work
mapped anisotropic Li-ion diffusion pathways in B-LisPS4,5!
while automated path search methods have efficiently
evaluated activation energies.®?2 Automated high-throughput
DFT workflows integrated with materials databases like the
Materials Project, AFLOW, OQMD, and NIST-JARVIS have
transformed materials discovery, allowing systematic
exploration of thousands of potential SSE compositions with
standardized protocols for convergence and property
extraction.®3 Recent integration of NEB into high-throughput
workflows enables screening of entire material classes like
antiperovskites.®* Modern implementations incorporate ML-
guided path initialization using graph neural networks to
generate superior initial guesses, dramatically improving
convergence rates and reducing spurious local minima,®
alongside adaptive sampling techniques with Gaussian process
regression for efficient high-dimensional configuration space
exploration. NEB can be combined with different levels of
theory. DFT-NEB provides high accuracy but is computationally
expensive, while classical NEB using empirical potentials offers
computational efficiency at the cost of accuracy dependent on

This journal is © The Royal Society of Chemistry 20xx
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force field quality. Critical implementation challengescare
discussed in detail in Sl Section S1.1. DOI: 10.1039/DSMHO1525A

2.2. Kinetic Monte Carlo (KMC) simulations

KMC is a stochastic simulation technique modeling system
evolution through discrete events with known rate constants.
KMC excels at accessing experimentally relevant timescales
(microseconds to seconds or longer), far exceeding typical MD
simulations. This enables study of slow diffusion phenomena,
SEl layer growth, or defect kinetics while efficiently bridging
atomistic event rates to macroscopic properties like diffusion
coefficients and ionic conductivity.

Recent methodological advances significantly
enhanced KMC capabilities for materials simulations. Adaptive
kinetic Monte Carlo (aKMC) methods such as the kinetic
Activation-Relaxation Technique (k-ART)®® and Self-Evolving
Atomistic Kinetic Monte Carlo (SEAKMC)®’ eliminate the need
for pre-defined event catalogs by identifying transitions on-the-
fly, enabling simulations of complex disordered systems.
Accelerated techniques including the Mean Rate Method and
First Passage Time Analysis have been developed to overcome
kinetic trapping in superbasins,®® extending the accessible
timescales for materials with complex energy landscapes.
Applications include active learning integration with KMC to
explore SEI formation reaction barriers®® and ab initio-based
KMC investigating polyanion mixing effects on Na-ion transport
in NASICON electrolytes.”® Implementation considerations are
discussed in SI Section S1.2.

have

2.3. Molecular dynamics (MD) simulations

2.3.1. Classical MD simulations

Classical MD simulates the atomic-scale motion of particles by
numerically integrating Newton's equations of motion. MD
allows for the simulation of significantly larger systems (103 —
106+ atoms) and longer timescales (nanoseconds to
microseconds) compared to ab initio methods. It directly
simulates ion dynamics at finite temperatures, enabling the
calculation of transport properties (diffusion coefficients D,
ionic conductivity o, activation energies E,), structural analysis
via RDFs and coordination numbers, and prediction of
mechanical properties.

The primary limitation is that accuracy hinges entirely on
force field quality and transferability—the "force field
bottleneck." Classical force fields do not explicitly treat
electrons, precluding description of electronic phenomena like
charge transfer or bond breaking/formation unless specialized
reactive force fields are used. Applications include studying ion
transport in polymer-argyrodite interfaces using newly
developed OPLS-AA based force fields,”! analyzing how Li
vacancies or interstitials in B-LisPSs enhance conductivity by
facilitating three-dimensional diffusion pathways,’”? and
examining Li* transport in dilithium ethylene dicarbonate
(Li.EDC), a primary SEI component.”® Software packages and
implementation considerations are provide in Sl sections S1.3-
S1.5.

J. Name., 2013, 00, 1-3 | 3
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2.3.2. AIMD for ionic conductivity validation

AIMD combines molecular dynamics with quantum mechanical
calculations (typically DFT) to determine interatomic forces on-
the-fly at each simulation time step. This avoids empirical force
field requirements, making AIMD particularly useful for novel or
complex materials. It can implicitly account for electronic
effects like dynamic polarization and charge distribution during
ion motion, potentially offering higher accuracy than classical
MD where these are prominent. AIMD serves as a crucial tool
for benchmarking and parameterizing classical force fields or
machine learning potentials.

However, AIMD is extremely computationally expensive.
This restricts simulations to small system sizes (typically a few
hundred atoms) and very short physical timescales
(picoseconds to a few nanoseconds). Consequently, to observe
sufficient diffusion events for calculating transport properties,
AIMD simulations of SSEs are often run at very high
temperatures, with room-temperature properties extrapolated
via the Arrhenius relation, which can be unreliable if diffusion
mechanisms change, or phase transitions occur. The accuracy of
AIMD also remains dependent on the approximations within
the underlying DFT calculation (e.g., the exchange-correlation
functional). Applications include investigating lithium-ion
diffusion in garnet-type materials’* and studying chemical
processes at the Li/LisPSsCl interface at different
temperatures.’”> Sampling considerations are discussed in SI
section S1.6.

3. Machine Learning Algorithms and Model
Architectures for SSEs

In recent years, ML has emerged as a powerful paradigm to
accelerate the design and discovery of novel SSEs. By learning
complex relationships between material features and target
properties, ML techniques can efficiently screen vast numbers
of candidate materials, predict key performance metrics, and
guide experimental synthesis efforts. This section reviews the
key ML algorithms, model architectures, and the essential data
resources that underpin the application of ML in the search for
high-performance inorganic SSEs.

3.1. Data Resources for SSE Machine Learning

The efficacy and reliability of any ML model are inextricably
linked to the quality, quantity, and relevance of the underlying
data used for training and validation. In the context of SSE
discovery, acquiring sufficient high-quality data presents a
significant challenge, particularly for experimentally measured
properties like ionic conductivity. This data scarcity can limit the
predictive power and generalizability of ML models. SSE
research leverages data from diverse sources, broadly
categorized into large-scale computational databases and
smaller, curated experimental datasets.

3.1.1. Computational Databases

These repositories primarily contain material properties derived
from computational methods, most notably DFT and MD
simulations. They serve as invaluable resources for high-

4| J. Name., 2012, 00, 1-3

throughput = computational screening  (HTS).,, s@lowing
researchers to filter vast numbers of can8idate Hateialsbased
on predicted fundamental properties such as thermodynamic
stability, electronic structure (e.g., band gap), crystal structure,
and mechanical properties. While these databases contain
diverse materials beyond SSEs, they serve as critical sources for
identifying promising SSE candidates and training predictive
models.
Materials Project (MP): The most prominent open-source
database with DFT-calculated properties for hundreds of
thousands of inorganic compounds.®® MP provides
formation energies, band gaps, elastic tensors, and crystal
structures—all accessible via web interface and API. Its
integration with pymatgen’® and matminer’’ facilitates
automated data retrieval and feature generation for ML
workflows. MP is frequently used to identify Li-containing
structures as initial SSE candidates.
Inorganic Crystal Structure Database (ICSD): Contains over
300,000 experimentally determined crystal structures,’®
providing reliable crystallographic information that serves
as starting points for DFT calculations or structural
descriptor generation.
AFLOW, OQMD, and NIST-JARVIS: These repositories offer
additional DFT-calculated properties across millions of
materials. AFLOW provides extensive electronic,
thermodynamic, and mechanical properties via its REST API
(AFLOWLIB).”® OQMD focuses on thermodynamic stability
through formation energies relative to the convex hull.&°
JARVIS offers comprehensive properties including elastic
tensors, dielectric constants, and phonon properties for
tens of thousands of materials.!
Other Computational Repositories: Additional databases
contribute to the materials data ecosystem. The
Computational Materials Repository (CMR) aggregates
electronic structure data from various projects, including
C2DB and QPOD.#? Materials Cloud supports reproducible
computational workflows and integrates with AiiDA for
provenance tracking.®3 The Crystallography Open Database
(COD) aggregates over 520,000 crystal structures of
organic, inorganic, and metal-organic compounds.8
GNoME, developed by DeepMind, has used deep learning
to predict the stability of over 2 million inorganic crystals.8>
The Alexandria database provides DFT-calculated
properties for millions of materials and is used to train
large-scale ML models.8¢

3.1.2. Experimental and Curated Datasets

While computational databases offer breadth, datasets

containing experimentally measured properties, particularly

ionic conductivity, are essential for training models to predict

real-world performance. These datasets are often smaller,

compiled through painstaking literature surveys or expert
curation.

e Lilon Dataset: An expert-curated collection focusing

on lithium-ion conductors, containing 820 entries from

214 literature sources.®” Each entry includes chemical

composition, an assigned structural label (e.g., garnet,

This journal is © The Royal Society of Chemistry 20xx
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LISICON), and AC impedance-measured ionic
conductivity at specific temperatures. With 403
unique compositions having near-room-temperature
conductivity data, it has been instrumental in training
ML classifiers (like CrabNet) to distinguish between
high and low conductivity compositions.®”

e OBELiIX Dataset: A more recent effort specifically
designed for benchmarking ML models for SSE
conductivity prediction. It comprises approximately
600 synthesized solid electrolyte materials with
experimentally measured room-temperature
conductivity, along with composition, space group,
lattice parameters, and, for about half the entries, full
crystallographic information files (CIFs).58

e Literature-Mined Datasets: Several studies have
employed natural language processing (NLP) and text
mining techniques to automatically extract relevant
data (e.g., ionic conductivity values, synthesis
parameters, structural types) directly from the vast
body of scientific literature. While powerful for data
aggregation, these approaches face challenges related
to the heterogeneity of reported data, inconsistencies
in experimental conditions, and the accuracy of
automated extraction.® An example includes the work
by Shon & Min (2023), which extracted over 4000

from 1500

ionic

conductivity measurements
papers.®©

nearly

3.1.3. Data Challenges

The effective application of ML in SSE discovery is often
hampered by several data-related challenges. As mentioned,
experimental data, especially reliable room-temperature ionic
conductivity measurements, remains relatively scarce
compared to the vastness of the chemical space being explored.
Data heterogeneity is another issue, arising from differences
between computational predictions and experimental realities,
variations in experimental protocols and measurement
conditions across different studies, and the diverse formats
used for data reporting. Furthermore, both computational and
experimental data contain inherent uncertainties and potential
errors as DFT calculations rely on approximations, while
experimental measurements are subject to synthesis variations
and characterization limitations.?* These issues often result in
datasets with missing values and significant class imbalance,
where high-performing electrolytes are severely
underrepresented. To mitigate these challenges, researchers
employ various strategies, including data imputation to
estimate missing entries and resampling techniques such as the
Synthetic Minority Over-sampling TEchnique (SMOTE) to create
more balanced training sets.?? Finally, data accessibility varies,
with some key databases requiring subscriptions while others
are open access.

The landscape of data resources reveals a complementary
relationship between large-scale computational databases and
smaller, targeted experimental datasets. Computational
databases like MP, AFLOW, OQMD, and JARVIS provide the
necessary breadth for initial high-throughput screening,

This journal is © The Royal Society of Chemistry 20xx
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enabling the filtering of millions of hypothetical,compeungs
based on fundamental properties like thermEd\HFaMId stabitity
(formation energy, energy above hull), electronic insulation
(band gap), and potentially relevant structural or mechanical
characteristics. However, accurately predicting ionic
conductivity, the key performance metric for an SSE, directly
from first principles is computationally demanding, often
requiring expensive MD simulations. This is where curated
experimental datasets like Lilon and OBELiX become critical.
Although smaller in size, they contain the direct experimental
measurements needed to train and validate ML models
specifically designed to predict ionic conductivity. This often
leads to a multi-stage ML workflow: initial screening using
models trained on large computational datasets to identify
stable and electronically suitable candidates, followed by
conductivity prediction for the down-selected candidates using
models trained on experimental data. Table S2 provides a
summary of prominent datasets commonly used in machine
learning studies for solid-state electrolyte research, including
their primary data sources, key material properties covered,
accessibility, and relevant references. The development of
accurate and efficient machine learning interatomic potentials
(MLIPs, discussed in Section 3.4) represents a significant effort
to bridge this gap, aiming to enable faster calculation of
dynamic properties like ionic conductivity for the vast number
of candidates identified through computational screening.

3.2. Classical Machine Learning Algorithms and Descriptors

Before the widespread adoption of deep learning, classical
machine learning algorithms formed the backbone of data-
driven materials discovery efforts, including the search for novel
SSEs. These methods remain valuable tools for establishing
baseline models, interpreting feature importance, and tackling
problems with limited data. They typically operate on a set of
pre-defined features, known as descriptors, which numerically
encode relevant material characteristics.

3.2.1. Descriptors (Features): The Language of Materials for
ML

Descriptors translate the chemical and physical nature of a
material into a numerical format that ML algorithms can
process. The selection, generation, and quality of these
descriptors are paramount, directly influencing model accuracy,
interpretability, and generalizability. A significant challenge in
the field is the development of descriptors that are both
universally applicable across different material classes and
accurately capture the underlying physics governing the target
property. Descriptors used in SSE research can be grouped into
several categories:

e Compositional Descriptors:
derived solely from the material's chemical formula
(stoichiometry) and the intrinsic properties of its
constituent elements. Examples include average
atomic mass, mean electronegativity, variance of
atomic radii, elemental fractions, and specific
stoichiometric They are computationally
inexpensive to generate but ignore the crucial

These features are

ratios.
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influence of atomic arrangement and bonding. For
instance, one study utilized a set of 145 "Chemical
Descriptor" features based on stoichiometry and
elemental properties®®. While simple, compositional
descriptors alone can sometimes yield reasonable
predictive performance, particularly for classification
tasks or when combined with more sophisticated
algorithms.

Structural Descriptors: These capture information
about the geometric arrangement of atoms in the
crystal lattice. They can range from simple parameters
like lattice constants, cell volume, space group
number, and packing fraction to more complex
representations like radial distribution functions
(RDFs), coordination numbers, bond angles,
polyhedral volumes, local atomic environment motifs
(e.g., using Voronoi analysis), and topological indices.
Structural descriptors are vital as many key SSE
properties, including ionic conductivity pathways and
mechanical stability, are intimately linked to the
crystal structure. Generating these features typically
requires crystallographic information (e.g., from CIF
files obtained via ICSD or MP) and specialized analysis
tools. Examples include employing Voronoi
tessellation features to improve graph neural
networks,®* or using Smooth Overlap of Atomic
Positions (SOAP) descriptors to represent local atomic
environments.?®

Electronic Descriptors: These features quantify
aspects of the material's electronic structure, which
governs electrical conductivity, electrochemical
stability, and chemical bonding. Common examples
include the electronic band gap (Eg), position of
valence and conduction band edges, density of states
near the Fermi level, work function, electron affinity,
ionization potential, and measures of bond ionicity or
covalency. Electronic descriptors are crucial for
screening potential SSEs, as ideal candidates must be
good ionic conductors but poor electronic conductors
(i.e., possess a wide band gap) and exhibit stability
within the battery's operating voltage window. These
descriptors are often derived from computationally
intensive DFT calculations.
Physicochemical/Thermodynamic Descriptors: This
broad category includes various calculated or
tabulated physical and chemical properties. Examples
relevant to SSEs include formation energy, energy
above the convex hull (Ehull) for thermodynamic
stability assessment, density, ionic radii, melting point,
and mechanical properties like bulk modulus (K) and
shear modulus (G). These descriptors relate to a
material's stability, processability, and mechanical
robustness against issues like dendrite penetration.
Formation energy and Ehull are standard outputs from
DFT databases (MP, OQMD) used for initial stability
screening, while mechanical moduli, predicted using

6 | J. Name., 2012, 00, 1-3

ML or DFT, are critical for assessing, ,depdrite
suppression capabilities. DOI: 10.1039/D5MH01525A
e Kinetic/Dynamic Descriptors: These features aim to
capture aspects related to ion transport dynamics.
Examples include activation energy barriers for ion
migration (Eb or Ea), diffusion coefficients (D), attempt
frequencies, and properties derived from phonon
calculations (e.g., vibrational density of states, phonon
band structure features). These descriptors are most
directly related to ionic conductivity (o), often
following an Arrhenius-type relationship o « exp kb—“T
However, they are typically challenging and
computationally expensive to obtain, requiring
methods like NEB calculations for migration barriers or
extensive MD simulations for diffusion coefficients.
Recent work has shown phonon-related features
derived from DFT phonon calculations can be
important predictors for ionic conductivity in ML
models.®®
The different categories of descriptors, along with their
generation methods and significance, are summarized in Table
1.
Libraries and Tools for Featurization
The automated generation of descriptors, or "featurization," is
facilitated by an ecosystem of open-source Python libraries.
Pymatgen’® provides the core data structures and tools for
materials analysis. Built upon this, Matminer’” offers a high-
level interface for computing a comprehensive suite of
compositional, structural, and electronic descriptors from
standard material representations. For more advanced models,
libraries such as DeepChem?®” are valuable for generating the
graph-based representations required by architectures like
Graph Neural Networks. These toolkits are instrumental for
automating the creation of robust and reproducible feature sets
for machine learning.

Table 1: Common Descriptors Used in Machine Learning for Solid-State Electrolytes

Descriptor Specific Informati Generation Pros/Cons
Category Descriptor  on Method
Example Encoded
Compositio  Average Elemental Formula- Simple;
nal Electroneg  chemical based Ignores
ativity bonding structure
tendency
Elemental Stoichiom Formula- Simple; Basic
Fractions etry based composition
info
Structural Volume Packing Structure Relates to ion
per Atom density, Analysis mobility/stiff
free (CIF) ness;
volume Requires
structure
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Journal Name ARTICLE
Space Crystal Structure Captures Note: CIF = Crystallographic Information File; DFT = Der\‘ﬁéWA'r:tLl'crﬂeCBﬂﬁ‘nael
Group symmetry  Analysis overall Theory; MD = Molecular Dynamics; NEB = Nusiged oElastioBandpMiis =
Number (CIF) symmetry; Machine Learning.
Coarse
descriptor 3.2.2. Classical ML Algorithms in SSE Research
Radial Average Structure Detailed local i | ical | ith h b r
Distributio  local Analysis structure; Various classical ML algorithms have been applied to SSE
n Function  atomic (CIF) Computation research for tasks including property prediction, classification,
(RDF) density ally more and unsupervised exploration of materials space.
around a Intensive ® Regression: Used to predict continuous target
central .
variables.
atom . . . . .
Coordinati  Number Structure Local bonding o Algorithms: Simple Linear Regression, Polynomial
on of nearest  Analysis environment: Regression, Kernel Ridge Regression (KRR), Support
g Number neighbour  (CIF) Definition can Vector Regression (SVR), Gaussian Process
8 s vary Regression (GPR).
| Applications: Predicting ioni n ivi |
B Electronic Band Gap Energy DFT Key for © pﬁ? cqto s e<.:l cting lo .C co duc.t ty (loga),
o 5 structure (Eg) required electronic activation energies, elastic moduli (K,G) for
g =3 to excite conductivity; mechanical stability assessment, and formation
g 8_ an Computation energies. For example, Ahmad et al. used Gradient
© g electron ally expensive Boosting Regressor (GBR) and KRR, trained on
= 9 - .
E 5 Formation  Thermody  DFT Fundamental structural features, to predict shear and bulk moduli
o E Energy namic stability for over 12,000 inorganic solids in a screening study
% ‘UE stability metric; for dendrite suppression®®. Zhao et al. used GPR-
@ . )
c 8 relative to Requires based Bayesian optimization to guide the
elementa calculation . .
8 E I tal Iculati
] 5 phases experimental synthesis of LATP electrolytes towards
o
< S.:) optimal ionic conductivity®.
§ § e (Classification: Used to assign materials to discrete
I‘é'i La)s Energy Thermody  DFT Better categories.
Ny Above Hull  namic stability o Algorithms: Logistic Regression (LR), Naive Bayes
a g (Ehull) stability indicator than (NB), Support Vector Machines (SVM), Decision
— . .
% § relatlvi.to formation Trees (DT).
competin energy,; . . -
o g phaspes € Requgi\r/es o Applications: Xu et al. (2020) used Logistic
E » phase Regression to classify SICON compounds as poor or
S diagram data good superionic conductors based on elemental
f—-:J E Physicoche lonic Radii  Effective Tabulated/F  Relates to descriptors.?” Chen et al. (2021) employed Support
< E mical size of ormula packing and Vector Machines to analyze relationships between
é ions channel size; manufacturing  conditions  and  solid-state
< S'mple, ) electrolyte film performance for evaluation and
o approximatio R i
& n optimization.’® Adhyatma et al. (2022) applied a
tree-based LightGBM model to classify doped LLZO
Shear/Bulk  Resistance  DFT /ML Key for compounds by their ionic conductivity levels (high or
& Modulus to Prediction mechanical low).101
(G,K) shear/vol stability ow).
ume (dendrites); e Ensemble Methods: These techniques combine
deformati Requires predictions from multiple individual models (base
on calculation/pr learners) to improve overall performance, robustness,
ediction and reduce overfitting. They often achieve state-of-
the-art results on tabular data.
Kinetic/Dy ~ Migration  Energy DFT(NEB)/  Directly o Algorithms: Random Forest (RF), Gradient Boosting
namic Barrier (Ea barrier for  MD relates to Machi BM. includi ) like XGB d
_Eb) ion conductivity; 'ac ines (GBM, including variants like XGBoost an
hopping Computation LightGBM).
ally very o Applications: RF and GB variants are frequently
expensive employed for both regression (predicting
Phonon Lattice DFT Relates to ion conductivity, formation energy) and classification
Properties  vibrationa  (Phonon dynamics/sta (high/low conductivity, stability) in SSE research. For
I Calc.) bility; instance, Pereznieto et al. (2023) utilized a Random
characteri Computation Forest algorithm to analyze experimental data and
stics ally expensive . i . )
discover new potential Na-ion solid electrolytes
exhibiting high ionic conductivity.’2?2 Kim et al.
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(2023) implemented an ensemble model of gradient
boosting algorithms to classify over 3,500 NASICON
structures, successfully identifying promising Na
superionic conductor candidates with high
accuracy.'93 Tang et al. (2024) applied an XGBoost
algorithm to predict key properties such as band
structure and stability, which enabled the screening
and identification of 194 ideal solid-state electrolyte
candidates from over 6,000 structures.'®* Zhang et
al. (2024) developed Random Forest models
alongside neural networks to predict ionic
conductivity in NASICON materials and to identify
influential factors, highlighting the role of Na
stoichiometric count.1%>
® Clustering: Unsupervised learning algorithms group
similar data points together without
predefined labels.

o Algorithms: k-Means, Agglomerative clustering,
Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN)

o Applications: Park et al. (2024) used HDBSCAN to
cluster over 12,000 Na-containing materials based
on structural properties, identifying 12 groups and
revealing shared characteristics in high-conductivity
clusters.1% Laskowski et al. (2023) applied
agglomerative clustering to ~26,000 Li-containing
structures to identify promising superionic
conductor candidates for further screening.®> Gallo-
Bueno et al. (2022) used unsupervised outlier
detection models to automatically classify
computed Li-argyrodite crystal structures based on
their structural distortion.1%”

The successful application of classical ML algorithms is heavily
dependent on the process of "feature engineering" —the careful
selection, transformation, and combination of descriptors to
best represent the underlying material physics relevant to the
target property. The frequent high performance reported for
ensemble methods like Random Forest and Gradient Boosting
variants (XGBoost, LightGBM)108-111 ynderscores the difficulty in
capturing the complex, often non-linear, structure-property
relationships in SSEs using single, simpler models acting on
these hand-crafted features. Ensemble methods offer
robustness by averaging out errors from individual base
learners (like decision trees) and implicitly handling feature
interactions, making them well-suited to the high-dimensional
and potentially noisy descriptor spaces common in materials
informatics. However, their complexity can sometimes make
direct physical interpretation of the learned relationships
challenging compared to simpler models like linear regression.
Despite these interpretability challenges, classical ensemble
methods remain preferable in scenarios with limited training
data where deep learning models would overfit, or when
transparent decision-making is critical for materials design
insights. For instance, Decision tree models can readily identify
feature importance rankings,%® while XGBoost provides built-in
interpretability tools that can reveal which structural
descriptors most strongly influence ionic conductivity

relying on

8| J. Name., 2012, 00, 1-3

predictions.?12-114 These advantages make classical approashes
particularly valuable in early-stage SSE diS¢dvERHGAHERNARA3ER
are small or when researchers need to understand and
communicate the physical basis underlying model predictions
to experimental collaborators. Unsupervised clustering
techniques, such as HDBSCAN, provide a valuable alternative or
complementary approach.1% By grouping materials based on
similarities in their descriptor vectors (often structural features
derived from large computational databases), clustering can
reveal inherent patterns and identify promising material
families even when labeled target data (like experimental
conductivity) is sparse. This capability allows researchers to
leverage the vastness of computational datasets to guide
exploration before focusing on more data-intensive supervised
prediction tasks. This reliance on feature engineering and the
success of complex ensembles sets the stage for deep learning
approaches (Section 3.3), which aim to automate the feature
learning process itself.

3.3. Neural Network Architectures and Deep Learning
Models

While classical ML methods have proven valuable, their reliance
on hand-crafted descriptors limits their ability to capture
complex, non-linear interactions and spatial correlations within
crystal structures that govern SSE properties. Deep learning
(DL), characterized by artificial neural networks with multiple
layers, enables hierarchical feature learning directly from raw
data, reducing the need for manual feature engineering.

The simplest deep learning architecture, Feedforward Neural
Networks (FNNs) or Multi-Layer Perceptrons (MLPs), consists of
an input layer, one or more hidden layers, and an output layer,
processing information in one direction. They operate on pre-
defined descriptors similar to classical algorithms (Figure 2a)
and have been used as components within ensemble models,
baseline comparisons, or for property prediction based on
manually selected features in SSE research.88105.115

Graph Neural Networks (GNNs) represent a more sophisticated
approach, naturally operating on graph representations of
materials where atoms are nodes and bonds or interatomic
proximity define edges. This allows GNNs to learn
representations that explicitly incorporate atomic connectivity
and local chemical environments, automatically identifying
features relevant to predicting material properties. Capturing
crystal structure nuances, such as periodicity and 3D geometry
(SE(3) invariance/equivariance), is crucial for effective GNN
design. Crystal Graph Convolutional Neural Network (CGCNN)
represents crystals as graphs and uses convolutional layers to
aggregate information from neighboring atoms and bonds to
learn atom-level features, which are then pooled to predict
material properties (Figure 2b). It has been applied to predict
thermodynamic stability and mechanical properties of
SSEs.116117 Improved versions like iCGCNN incorporate Voronoi
tessellation information and explicit many-body interactions to
enhance performance.'® Materials Graph Network (MEGNet)
extends the graph network concept by including global state
variables (like temperature or pressure) alongside atomic

This journal is © The Royal Society of Chemistry 20xx
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(node), bond (edge), and global features, allowing for more
versatile property predictions (Figure 2b). MEGNet and related
architectures like M3GNet!?® have been trained on large
datasets (e.g., Materials Project) for broad applicability in
materials property prediction and can be applied to predict SSE
stability or mechanical properties.’?® SchNet employs
continuous-filter convolutional layers to model quantum
interactions in atomistic systems without using explicit graph
representations, and has been used to predict formation
energies of bulk crystals and potential energy surfaces.'?! The
field continues evolving rapidly, with newer architectures like
ALIGNN (Atomistic Line Graph Neural Network),'22 k-NAGCN (k-
Nearest Atom Graph Neural Network),’?®> and transformer-
based models like CrystalFramer (which introduces dynamic,
attention-based coordinate frames)'?* continuously advancing
accuracy and representational power for crystal structures.

Distinct from structure-based approaches, some deep learning
models prioritize elemental composition, offering advantages
when structural information is unavailable, computationally
expensive to obtain, or for rapid initial screening across vast
chemical spaces. ElemNet learns material properties directly
from elemental compositions represented as fractional counts,
bypassing structural information for rapid composition-based
screening.'?®> CrabNet, a transformer-based model using
attention mechanisms, operates primarily on compositional
data but implicitly learns interactions between elements?®
(Figure 2c). It demonstrated success when trained on the Lilon
dataset for classifying compositions by their likelihood of
exhibiting high lithium-ion conductivity.8” More broadly,
transformer architectures—inspired by their success in natural
language processing and relying heavily on self-attention

mechanisms—can capture long-range interactions within
crystal graphs or learn complex relationships between
constituent elements, as seen in CrabNet'?® and

CrystalFramer.12* Transformer architectures are also being used
to develop powerful interatomic potentials like GPTFF.1%7
While most ML models predict properties of given materials
(forward problem), generative models solve the inverse
problem: generating novel material structures likely to possess
desired properties. Techniques like Generative Adversarial
Networks (GANs), Variational Autoencoders (VAEs), and
diffusion models are being explored for materials
discovery.>>128 These models learn the underlying distribution
of known stable materials and can sample this distribution or be
conditioned to generate new candidates meeting specific
criteria (e.g., high stability, target band gap, specific crystal
structure). MatterGen, a diffusion model operating on 3D
crystal geometry, has demonstrated the ability to generate
novel, stable materials with target properties by learning from
large databases like MP and Alexandria.>® Such approaches
hold significant promise for generating entirely new SSE
candidates beyond modifications of known structures. Other
generative approaches like SHAFT utilize hierarchical
generation based on symmetry constraints.??
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Figure 1: Overview of a machine learning pipeline for the design and discovery
of SSEs. (a) The pipeline begins with data resources such as the Materials Project,
ICSD, and JARVIS, which provide structural and property data for a wide range of
inorganic materials. (b) These data are transformed into meaningful descriptors:
composition-based, structural, and electronic, using tools such as Matminer and
pymatgen. (c) Machine learning models, organized by learning paradigm
(supervised, unsupervised, deep learning), are then trained on these descriptors.
Classical models (e.g., random forests, SVMs) and deep learning architectures
(e.g., CGCNN, MEGNet, CrabNet) are (d) employed to predict key properties such
as ionic conductivity, electrochemical stability, and mechanical robustness. These
models also enable applications including ML-based interatomic potentials and
high-throughput virtual screening for novel multivalent SSEs.
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Figure 2: Schematic overview of representative deep learning architectures for
SSE property prediction. (a) FFN or MLP, which maps a fixed-length vector of
engineered features to a target property. (b) GNN architectures that operate on
graph representations of crystal structures. (i) The CGCNN updates atom features
(v;) by aggregating information from its local atomic neighborhood. (ii) The
MEGNet framework, which iteratively updates atom (v;), bond (eg), and global
state (u) attributes to learn a comprehensive representation of the material. (c)
The CrabNet architecture, a transformer-based model that uses a self-attention
mechanism on elemental composition to predict properties and quantify aleatoric
uncertainty.

3.4. Machine Learning Interatomic Potentials (MLIPs) for
Dynamics (MLMD)

A major breakthrough enabled by deep learning is the
development of highly accurate Machine Learning Interatomic
Potentials (MLIPs), also known as ML force fields. These models
learn the complex relationship between atomic configurations
and the potential energy surface (PES) — including energies,
forces on atoms, and stresses on the simulation cell — directly
from large datasets generated by high-fidelity quantum
mechanical calculations (typically DFT). Once trained, MLIPs can
perform MD simulations, termed MLMD, with an accuracy
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approaching that of DFT but at a computational cost orders of
magnitude lower (closer to classical force fields).

This capability is particularly transformative for SSE
research. Simulating ion transport dynamics — the diffusion
pathways, diffusion coefficients (D), activation energies (Ea),
and ultimately ionic conductivity (o) — requires tracking atomic
motion over long timescales (nanoseconds or more) and large
system sizes (thousands of atoms) to capture statistically
relevant events and collective motion. lon transport in SSEs
involves rare events such as defect formation, migration, and
collective rearrangements that occur over vastly different
timescales: while individual atomic hops happen on picosecond
timescales, macroscopic diffusion processes and phase
transformations relevant to battery operation occur over
seconds to minutes. Such simulations are often computationally
prohibitive using traditional AIMD. MLIPs overcome this
limitation, enabling routine MLMD simulations that provide
direct insights into the mechanisms governing ionic conductivity
in complex SSE materials.

Several MLIP frameworks have been applied to study SSEs:

e  Gaussian Process Regression and Sparse GPR (SGPR)
approaches: Traditional GPR methods provide a
Bayesian framework for learning interatomic
potentials with built-in uncertainty quantification, but
their O(n®) computational scaling with dataset size
becomes prohibitive for large training sets. SGPR

addresses  this  limitation  through low-rank
approximations using reduced "inducing sets" of
representative  local  environments, achieving

computational scaling comparable to linear methods
while retaining the probabilistic advantages of GPR.13°
SGPR has been successfully applied to survey Li
diffusivity across hundreds of ternary crystals and
create transferable universal potentials for complex
electrolytes like LijoGeP;Sq,.131132

e Gaussian Approximation Potential (GAP): Based on
Gaussian process regression. A near-universal GAP
was developed for the Li-P-S (LPS) material class,
enabling studies of conductivity in both crystalline
(e.g., LisPSa, LizP3S11) and glassy phases and revealing
the importance of anion dynamics.33

e Deep Potential Molecular Dynamics (DeePMD /
DeePMD-kit): A deep neural network-based potential
that has seen wide application.!3 It has been used to
model Li diffusion in amorphous LisP0O4,*3> superionic
conductors like LiioGeP2S12 (LGPS) and Nb-doped
garnets, and importantly, to perform microsecond-
long simulations revealing the lack of a significant
"paddle-wheel" effect from polyanion rotations on Li
diffusion in crystalline Li;P3S11 and LizBi;H12 at room
temperature.136

e Crystal Hamiltonian Graph Network (CHGNet): A
GNN-based universal MLIP pre-trained on the
extensive Materials Project trajectory dataset,
uniquely incorporating electronic charge and magnetic
moment information.% It has been demonstrated for

10 | J. Name., 2012, 00, 1-3

charge-informed MD simulations of Li jiptercalation
(LixMnO3y) and Li diffusion in garfet $8¢g387/D5MHO1525A
e M3GNet (Materials 3-Body Graph Network): Another
GNN-based universal potential trained on the
Materials Project database, designed for broad
applicability in structural relaxation and dynamics
simulations.?®
e GPTFF (Graph-based Pre-trained Transformer Force
Field): A recent transformer-based force field trained
on a massive dataset (billions of force components),
aiming for high accuracy and generalizability across
diverse inorganic systems.'?”
MLMD simulations driven by these potentials have provided
crucial insights, such as identifying non-Arrhenius diffusion
behavior in LGPS,'3% elucidating specific diffusion pathways,3”
and quantifying the impact of structural features like defects or
anion dynamics on conductivity.!33 The significant speed-up
factors highlight the potential of MLIPs to dramatically
accelerate the computational assessment of ionic transport.!38
The progression from classical ML to deep learning marks a
significant evolution in the computational toolkit for SSE
discovery. GNNs, in particular, represent a paradigm shift away
from manual feature engineering towards automated learning
of structure-property relationships directly from the atomic
graph representation. This allows models to potentially uncover
more complex and subtle correlations than might be captured
by human-designed descriptors. However, these advances
come with important practical considerations. GNN
architectures like CGCNN and MEGNet require high-quality
crystal structure files (CIFs) with precise atomic positions as
inputs, as they construct graph representations directly from
atomic arrangements and bonding information!720. The
incorporation of both atomic and bond-level descriptors
introduces numerous hyperparameters, necessitating larger
training datasets (typically >10%® samples) and substantial
computational resources compared to classical ML approaches
that rely on pre-computed scalar descriptors!®®. In contrast,
SGPR-based approaches can achieve comparable accuracy with
smaller training datasets due to their efficient use of training
data and adaptive sampling strategies, making them particularly
suitable for data-scarce regimes where generating extensive
DFT training sets is computationally expensive.130,140
Perhaps even more impactful is the development and
application of MLIPs. While classical ML and standard GNNs
often focus on predicting static properties (stability, band gap,
moduli) or rely on computationally expensive methods (AIMD,
NEB) to infer dynamics, MLIPs provide a computationally
tractable route to directly simulate the crucial dynamic
processes governing ionic conductivity. This enables the field to
move beyond predicting prerequisites for good conductivity
towards simulating and understanding the transport
phenomenon itself over timescales reaching microseconds—a
significant computational achievement.?*® However, MLIPs
require careful validation to ensure transferability across
different thermodynamic conditions and structural motifs, as
their accuracy is fundamentally limited by the quality and
coverage of the underlying DFT training set. Additionally, the
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computational overhead of generating sufficient training data
for MLIPs can be substantial, particularly for complex multi-
component systems. Despite these advances, current MLMD
simulations still remain far from capturing the experimentally
relevant timescales (seconds to minutes) over which
macroscopic ionic transport and device-relevant processes
occur, and bridging to true experimental scales may require
hybrid approaches combining MLMD with adaptive KMC
methods.

Models trained predominantly on computational data face
inherent challenges when predicting experimentally observed
ionic conductivities due to systematic discrepancies between
DFT calculations and experimental measurements. Effective
validation strategies require testing against independent
experimental datasets rather than computational holdouts,
implementing cross-validation with available experimental
data, and developing calibration methods that account for
temperature-dependent Arrhenius behavior and experimental
measurement uncertainties.’*?> For SGPR-based approaches,
the inherent uncertainty quantification provides additional
validation capabilities by identifying regions where model

predictions may be unreliable, enabling more robust
assessment of model confidence and guiding iterative
improvement  through  active learning  protocols.1#0

Furthermore, hybrid training approaches that incorporate both
computational and experimental data during model
development can significantly improve predictive accuracy for
experimental properties. As computational materials discovery
matures, adopting rigorous experimental validation protocols
will be critical for establishing ML models as reliable tools for
guiding experimental synthesis efforts. Generative models
represent a further step, shifting the focus from predicting
properties of existing or hypothetical materials to designing
entirely new structures optimized for target performance.
Furthermore, the emergence of large-scale, pre-trained
models signifies a trend towards developing more universal and
transferable tools in materials informatics. Models like
MEGNet, M3GNet, CHGNet, and GPTFF, trained on vast and
diverse datasets such as the Materials Project calculation
database, encapsulate a broad understanding of chemical
bonding and structural stability across the periodic table. This
pre-training allows these foundational models to be potentially
fine-tuned for specific downstream tasks, such as predicting
properties within a particular class of SSEs, using smaller, task-
specific datasets. This strategy leverages the massive amounts
of existing computational data to build general knowledge,
which can then accelerate research on specific material systems
by reducing the burden of generating extensive training data for
every new problem. Nevertheless, practitioners should be
aware that even pre-trained universal models may require
domain-specific fine-tuning and validation, particularly when
applied to novel chemistries or extreme conditions not well-
represented in the original training data. The success of these
approaches ultimately depends on careful consideration of data
quality, model selection criteria, and rigorous benchmarking
against experimental observations. This approach promises to
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significantly enhance the efficiency of ML-driven, materials
discovery pipelines. DOI: 10.1039/D5MH01525A

4. ML-Guided Applications in SSE Discovery
and Design

4.1. Prediction of Key Material Properties

A primary application of ML in SSE research is the rapid and
accurate prediction of crucial material properties. By learning
from existing data, ML models can establish correlations
between easily obtainable features (e.g., composition, crystal
structure) and target properties that are typically expensive or
slow to determine. Ideal SSEs should possess a suite of desirable
characteristics, including high ionic conductivity (often targeting
>1mS cm™ at room temperature), a wide electrochemical
window to ensure stability against high-voltage cathodes and
low-voltage anodes (like Li metal), and sufficient mechanical
strength to suppress lithium dendrite penetration.

4.1.1. lonic Conductivity

lonic conductivity is arguably the most critical performance
metric for an SSE. ML models have been developed to predict
this property, often by correlating structural and chemical
descriptors with experimentally measured or computationally
derived conductivity values. These models can significantly
expedite the identification of promising high-conductivity
candidates from large databases.

The foundational work by Sendek et al. (2017) established
the viability of ML-driven conductivity screening through a
logistic regression classifier trained on 40 lithium-containing
compounds.'3 Despite the limited training set, their model
effectively distinguished fast from slow Li-ion conductors using
atomistic descriptors including Li-Li coordination numbers,
sublattice bond ionicity, and anion coordination environments.
The practical validation of this approach emerged when high-
throughput screening of 12,000 Materials Project compounds
identified 21 fast-conductor candidates, with subsequent DFT-
MD simulations confirming superionic behavior in several
materials, notably LisInCls, which achieved experimental
verification.143144 This early success demonstrated that even
simple ML models, when coupled with physically meaningful
features, could effectively navigate vast chemical spaces.

Building on these classification successes, recent efforts
have focused on regression-based conductivity prediction with
enhanced accuracy. The comparative analysis by Mishra et al.
(2023) systematically evaluated eight predictor models
including Random Forest Regressor, Support Vector Machine,
and shallow neural networks using activation energy, operating
temperature, and lattice parameters as features.!l® Their
findings highlighted the superior robustness of ensemble
methods like Random Forest, while demonstrating that model
stacking prevents overfitting, a critical insight for conductivity
prediction where data scarcity remains a persistent challenge.

The transition toward more sophisticated approaches is
exemplified by studies targeting specific electrolyte chemistries
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with optimized algorithms and novel descriptors. Jaafreh et al.
(2024) developed a targeted framework for Mg-ion electrolytes
by leveraging phonon density of states (PhDOS) data to
calculate "total phonon band center" as a conductivity proxy.4>
Their systematic comparison of Extra Random Trees, Gradient
Boosting, and Extreme Gradient Boosting algorithms revealed
that Extra Random Trees achieved superior performance (R? =
0.964), enabling predictions across ~9,000 Mg compounds. The
chemical insights derived from this model, particularly the
identification of Mg-Se systems as exhibiting the lowest median
band centers (27.5 meV) compared to Mg-S (40.5 meV) and Mg-
O (55.5 meV), demonstrate how ML can simultaneously
accelerate screening and provide mechanistic understanding.14®

Addressing the critical data gap for multivalent systems,
Dong et al. developed a generalizable ML framework specifically
designed for screening Na, Mg, and Al garnet electrolytes.14®
Utilizing carefully designed chemical descriptors, their XGBoost
models achieved 94% accuracy for thermal stability and 89% for
band gap prediction across 43,732 compounds. The framework
identified 1,764 compounds meeting both thermal stability and
electronic criteria, which were further filtered to yield 44
economically viable candidates with high performance
potential. Interpretability analysis revealed that mean
electronegativity is the most critical factor for thermal stability,
while atomic radius range governs band gap properties,
providing actionable design principles for multivalent conductor
development.

Kharbouch et al. (2024) achieved exceptional accuracy for
ionic conductivity prediction (R? = 0.85) for LLZO-type garnets
through meticulous data curation and hyperparameter
optimization using CatBoostRegressor with Optuna framework
tuning.'*” Their emphasis on rigorous preprocessing, including
stoichiometric verification and KNN imputation, underscores
the critical importance of data quality in achieving reliable
conductivity predictions.

Recent developments have integrated pre-trained graph
neural network potentials to generate physics-informed
descriptors. Maevskiy et al. (2025) employed M3GNet to
analyze potential energy surfaces under frozen framework
approximation, deriving heuristic descriptors correlated with
lithium mobility.2#® This approach achieved efficiency gains of
approximately 50x faster than MLIP-driven MD and >3,000x
faster than AIMD, with eight out of ten highest-ranked materials
confirmed as superionic conductors through first-principles
calculations.’® The significance of this work lies in its
demonstration of how powerful, pre-trained "foundation"
models can be adapted to generate specialized, physically
meaningful features for predicting properties like ionic
conductivity, enabling rapid and reliable large-scale screening.

Models trained predominantly on computational data face
inherent challenges when predicting experimentally observed
ionic conductivities due to systematic discrepancies between
DFT calculations and experimental measurements. Effective
validation strategies require testing against independent
experimental datasets rather than computational holdouts,
implementing cross-validation with available experimental
data, and developing calibration methods that account for
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temperature-dependent Arrhenius behavior and experimental
measurement uncertainties.!*2 Furtherf{oréd RybridViraintag
approaches that incorporate both computational and
experimental data during model development can significantly
improve predictive accuracy for experimental properties.’*® As
computational materials discovery matures, adopting rigorous
experimental validation protocols will be critical for establishing
ML models as reliable tools for guiding experimental synthesis
efforts.

4.1.2. Electrochemical Stability

Electrochemical stability is vital for the practical application of
SSEs, ensuring they do not decompose when in contact with
highly reactive electrodes (e.g., Li metal anode) or at the
operating voltages of the battery. ML models contribute by
predicting properties indicative of stability, such as formation
energy (a proxy for thermodynamic stability against
decomposition into competing phases) and band gap (often
correlated with the electrochemical window).

The critical importance of accurate structural sampling for
stability predictions is demonstrated by Ataya et al., who
revealed that conventional Coulomb methods fail to identify the
most stable, low-energy LLTO configurations after DFT
geometry relaxation.'®® This structural misrepresentation led to
overestimated electrochemical stability windows (3.1 V versus
the correct 2.5 V), with prediction errors reaching 0.67 eV. To
address this sampling challenge, the authors developed a SOAP-
KRR machine learning model trained on only 40 DFT-relaxed
structures that accurately predicts energy rankings, providing a
computationally efficient alternative for sampling disordered
materials.1>°

Complementing these structural considerations,
comprehensive screening approaches have emerged that
integrate stability assessments within broader materials
discovery pipelines. Chen et al. (2025) developed a hierarchical
screening strategy starting with 20,717 Li-containing
compounds from the Materials Project database.>! Their multi-
stage process applied thermodynamic stability and electronic
band gap pre-screening, followed by ML classification and
regression models trained on 468 samples to identify high-
conductivity candidates. After electrochemical stability window
assessment and AIMD validation, this approach identified three
promising candidates (Li3BiSs, LisBiSs4, and Li10ZnP4S16) with high
room-temperature ionic conductivities, low activation energies,
and favorable interfacial compatibility with common
cathodes.>!

The relationship between composition, structure, and
electrochemical performance has been further elucidated
through targeted studies of specific electrolyte families. Kireeva
et al. investigated garnet-structured solid electrolytes by
combining experimental data analysis with machine learning,
identifying an optimal lattice constant range of 12.950-12.965 A
for maximum ionic conductivity in LLZO-type garnets.?>! Their
quantitative regression models using SVM, LSTM, GP, and
XGBoost algorithms revealed that Li and La content, atomic
scattering factors at the C site, and Shannon ionic radii of
dopants were the most influential parameters affecting ionic
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conductivity, providing quantitative guidance for compositional
optimization.t>!

4.1.3. Mechanical Stability

The mechanical properties of SSEs are critical, particularly for
their ability to suppress the growth of lithium dendrites, which
can cause short circuits and battery failure, especially when
using Li metal anodes. ML models have been developed to
predict mechanical properties such as bulk modulus (K) and
shear modulus (G), which are key inputs for theories of dendrite
suppression.

Early applications of graph neural networks for mechanical
property prediction established the feasibility of high-
throughput screening approaches. Ahmad et al. employed a
CGCNN trained on 2041 crystal structures with DFT-calculated
elastic moduli to predict mechanical properties for over 12,000
inorganic solids.®® These ML-predicted moduli were then
integrated with the Monroe-Newman stability parameter (x)
framework to assess dendrite initiation propensity at Li
metal/SSE interfaces, identifying over 20 mechanically
anisotropic interfaces involving six solid electrolytes predicted
to suppress dendrite growth.%®

The challenge of limited training data has been
systematically addressed through active learning strategies that
optimize data acquisition. Choi et al. trained a LightGBM model
on 14,238 elasticity structures, initially achieving modest
performance (R? = 0.633 for shear modulus prediction).152
However, their active learning approach, which iteratively
added materials with high prediction uncertainty to the training
set, improved the R? score to 0.802 with only 1,600 strategic
additions compared to 2,800 required for random selection.>?
This efficiency gain highlights the critical importance of
intelligent data acquisition strategies, particularly given the
computational expense of DFT elasticity calculations.

Building on these methodological advances, comprehensive
screening workflows have emerged that integrate mechanical
property prediction with other critical SSE characteristics. Sun
et al. developed a two-stage ML workflow starting with LGBM-
based mechanical property screening of 5,329 LLZO-derived
candidates, followed by superionic conductor classification and
AIMD validation.*® This hierarchical approach successfully
identified 10 new tetragonal-phase materials combining
superior mechanical properties with high ionic conductivity>°.
The interpretability of mechanical property predictions has
been enhanced through feature analysis techniques that
provide physical insight into structure-property relationships.
Wang et al. developed an optimized LGBM model achieving R?
= 0.86-0.87 for both shear and bulk modulus prediction using
8,920 Materials Project samples.’>® Their integration of SHAP
analysis revealed that volume per atom and valence band
maximum are critical predictors, while extrapolation
experiments to datasets containing elements (Mg, Al, K, Ni)
absent from training demonstrated that model transferability
to new chemical spaces can be significantly improved with
strategic addition of diverse samples.'>3

4.2. High-Throughput Virtual Screening (HTVS)

This journal is © The Royal Society of Chemistry 20xx
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HTVS leverages computational power to rapidly exgluate iast
numbers of candidate materials forPCieiredo/ prYpertias)
significantly accelerating the materials discovery cycle. ML plays
a crucial role in making HTVS more efficient and intelligent by
acting as fast and inexpensive filters, prioritizing the most
promising materials for further, more accurate investigation
rather than relying solely on brute-force first-principles
calculations. The integration of ML transforms HTVS from a
potentially exhaustive search into a more guided exploration,
employing classifiers to identify materials belonging to desired
classes (e.g., "superionic conductor"), regression models to
predict continuous property values, and active learning
approaches that iteratively suggest the most informative
candidates to evaluate next. Figure 3 shows a schematic of a
typical ML-driven HVTS workflow.

The scale and sophistication of modern HTVS campaigns are
exemplified by ultra-large screening efforts that combine
multiple ML models in hierarchical filtering approaches. Chen et
al. (2024) demonstrated this approach by screening over 32
million candidates for solid-state electrolytes.’>* Structure
candidates generated via iso-valent substitutions were reduced
to ~589,000 stable materials using ML potentials (M3GNet) for
thermodynamic phase stability assessment. Subsequent funnel-
based screening applied ML models for band gap (> 3 eV) and
electrochemical stability filters, followed by higher-accuracy
DFT calculations, vyielding 18 final candidates with new
compositions. The top candidates, the NayLiz«YCle series, were
synthesized and experimentally validated, confirming both
structure and conductivity predictions.>*

Complementing these massive screening approaches,
targeted studies of specific material families have employed
sophisticated multi-property optimization strategies. Lee et al.
(2025) computationally screened 4,375 hypothetical Na-based
argyrodites using DFT calculations to evaluate energy above
hull, formation energy, band gap, and electrochemical stability
window?>>. Their 4-dimensional Pareto sorting technique
narrowed the field to 15 top candidates, with AIMD simulations
ultimately identifying five promising virtual compositions,
including NaeSiS4Cl, and Naz.755iSs.75Clo.25.2°> This approach
demonstrates how multi-objective optimization can efficiently
navigate complex property trade-offs in materials design.
Similarly employing multi-dimensional optimization, Lee et al.
(2024) combined genetic algorithms with Bayesian optimization
using GPR surrogate models to screen 18,133 hypothetical
antiperovskite electrolytes. Their active learning framework
reduced the computational burden to just 144 strategically
selected DFT calculations while constructing a 4-dimensional
Pareto frontier for thermodynamic stability, band gap,
electrochemical window, and ionic conductivity, ultimately
identifying 22 promising candidates with seven exhibiting
superior room-temperature conductivity (>4 mS cm™).1%6

The integration of experimental insights with computational
screening has enabled more targeted materials design
strategies. Sewak et al. trained a logistic regression model on
170 experimental NASICON materials, using PCA to identify 9
key features governing ionic conductivity.’> The model
revealed that low dopant electronegativity and increased Li
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occupancy at M2 sites are critical for high conductivity, insights
that guided dopant selection for the LiGe,(POa)s system. Bond
valence sum energy calculations further screened dopants by
migration barrier estimation, leading to the design of
Li;Mgo.5Ger.5s(PO4)s with a DFT-validated migration barrier of
0.261 eV.*%7

Advanced ML architectures have been developed
specifically for ionic conductivity screening, leveraging physics-
informed descriptors to enhance prediction accuracy. Xie et al.
performed high-throughput screening of nearly 50,000 Li-
containing compounds using bond-valence kinetic Monte Carlo
simulations, identifying 329 materials meeting stability and
conductivity thresholds.'>® Their graph convolutional network,
trained to predict conductivity directly from bond valence
energy landscapes, outperformed models learning from atomic
structure alone and accelerated screening of 979 additional
candidates generated via isovalent substitution, identifying 239
potential superionic conductors.>8

Specialized neural network architectures have also emerged
for targeted chemical space exploration. Wan et al. (2024)
developed DopNetFC, which outperformed conventional ML
approaches including Random Forest and GBDT for screening
atom substitution schemes.*>® Applied to over 2,208 potential
substitutions in LiioGeP,S1, the most promising ML-identified
candidates were validated through multi-step DFT calculations
assessing thermodynamic, electronic, and mechanical
stability.'>® This approach demonstrates the effectiveness of
task-specific neural architectures for exploring well-defined
chemical modification spaces.

Multivalent conductor screening has been advanced
through comprehensive ML platforms addressing critical data
gaps beyond Li-ion systems. Wang et al. developed Al-IMAE
based on CGCNN, a platform providing real-time activation
energy predictions across nine ionic species (Li*, Na*, Mg?*, Zn?*,
AIP*, Ag*, Cu?*, F-, 0%7) with ~10°k speedup over traditional
methods.'%0 Screening 144,595 compounds identified 316 SSE
candidates and 129 cathode materials across the different ionic
species. Similarly, Cai et al. used XGBoost algorithms to screen
spinel structures for Mg/Zn cathodes, achieving 91.2%
prediction accuracy and identifying six candidates (MgNi,Oa,
MgMo0,Ss, MgCu,Sa, ZnCasSa, ZnCu,04, ZnNi,04) with ionic
diffusion coefficients >1x107° cm2s™' and volume expansions
<22%.161 These targeted approaches demonstrate MlL's
potential for underexplored
multivalent systems.

4.3. Elucidating lon Dynamics via ML Interatomic Potentials
(MLIPs)

accelerating discovery in

Understanding the atomistic mechanisms of ion diffusion is
fundamental to designing SSEs with high ionic conductivity.
Traditional methods like AIMD provide high accuracy but are
computationally expensive, limiting simulations to small system
sizes (hundreds of atoms) and short timescales (picoseconds to
nanoseconds). Classical empirical potentials are much faster but
often lack the accuracy and transferability needed for complex
SSE chemistries or reactive environments. MLIPs have emerged
as a transformative technology, bridging this accuracy-cost gap.
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Trained on extensive datasets of energies and forcgs,generated
by DFT calculations, MLIPs can reproducB@hé0g8tatid - Etesgy
surface with near-DFT accuracy but at a computational cost
order of magnitude lower, enabling large-scale (thousands to
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Figure 3: Schematic illustration of a HTVS workflow for the discovery and
evaluation of SSEs. (a) The chemical space is generated via systematic elemental
substitutions and defect engineering within known crystal structure prototypes.
(b) ML models trained on precomputed datasets are employed to rapidly predict
key properties such as ionic conductivity, formation energy, and shear modulus.
(c) Candidate materials are filtered through a sequential funnel based on physical
criteria including thermodynamic, electronic, electrochemical, and mechanical
stability, followed by ionic conductivity thresholds. The most promising
candidates undergo final validation using first-principles calculations (DFT and/or
AIMD).

millions of atoms) and long-timescale (nanoseconds to
microseconds) MD simulations.

This capability has profound implications. MLIPs allow for
the simulation of complex SSE systems, such as amorphous
phases, grain boundaries, and interfaces, which are often
intractable with AIMD due to their size and disorder.
Furthermore, the extended simulation times accessible with
MLIPs are crucial for capturing rare diffusion events, accurately
calculating diffusion coefficients, and observing collective ionic
motion, leading to unprecedented insights into ion transport
pathways and the role of structural dynamics. Beyond these
mechanistic studies, MLIPs also enable the high-throughput
computational screening of vast design spaces to accelerate the
discovery of entirely new SSE materials (Figure 4).

The theoretical foundation for this field was established by
Behler and Parrinello (2007), who introduced high-dimensional
neural network potentials using symmetry functions to describe
local chemical environments in a rotationally and translationally
invariant manner.’2 This pioneering approach laid the
groundwork for modern MLIPs that enable DFT-accuracy
simulations at significantly reduced computational cost.

Applications of MLIPs in SSE research have progressed from
validating known properties to discovering new transport
phenomena and challenging established mechanisms. Gigli et
al. (2024) exemplified this evolution by investigating charge
transport in all known phases (a, B, and y) of LisPS4 using three
separate potentials trained on different DFT reference levels
(PBEsol, r’SCAN, and PBEO0).183 Their large-scale (768-atom) and
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long-timescale (up to 6 ns) simulations revealed that superionic
behavior results from a structural transition from y to mixed a-
B phases, driven by thermal activation of correlated PS, flips
that reduce Li-ion diffusion activation energy by up to 6-fold.163
Crucially, they refuted the "paddle-wheel" mechanism by
demonstrating that PS,4 flip timescales (nanoseconds) and Li-ion
hopping (picoseconds) are separated by orders of magnitude,
while also showing that the commonly used Nernst-Einstein
approximation underestimates conductivity by more than a
factor of two.163

The power of MLIPs in elucidating complex transport
behaviors extends to understanding  non-Arrhenius
temperature dependence in garnet systems. Dai et al. (2022)
studied LixLasZrx-sTa;-xO12 garnets using MLIPs trained on DFT-
MD trajectories, achieving superior accuracy compared to other
computational models.'®* Their simulations revealed that ionic
conductivity follows Vogel-Tammann-Fulcher rather than
Arrhenius behavior, with maximum conductivity occurring at Li
content between 6.6 and 6.8.1%* This work demonstrates how
MLIPs can capture subtle temperature-dependent transport
phenomena that require extensive sampling.

MLIPs have proven particularly valuable for studying
amorphous systems and interfaces, where structural disorder
demands large simulation cells and long equilibration times.
Seth et al. (2025) investigated Li* transport in amorphous LiPON
and at Li||LIPON interfaces using a neural equivariant
interatomic potential (NequlP) trained on over 13,000 DFT
structures.’®> Their simulations accurately reproduced
experimental room-temperature conductivity in bulk LiPON
while revealing that interfacial transport is one order of
magnitude slower than bulk transport.1%> Similarly, Yang et al.
(2025) combined AIMD with DeePMD MLIPs to study
amorphous LixAlO,Clz.x-2y electrolytes, revealing that Li*
transport is facilitated by Cl atom rotation within tetrahedral
frameworks and that oxygen doping enhances glass-forming
ability while reducing mobile Cl atoms, requiring optimization
of the O/Cl ratio for maximum conductivity.'6®

The integration of MLIPs with materials discovery workflows
has enabled the exploration of composition-structure-property
relationships across extended chemical spaces. Guo et al. (2022)
demonstrated this approach by mapping the phase diagram of
glass-ceramic lithium thiophosphate electrolytes using neural
network potentials coupled with genetic algorithms to explore
amorphous structures along the (Li2S)x(P2Ss)1-x composition
line.18” Through unsupervised structure-similarity analysis, they
identified that local Li environments resembling superionic B-
LisPS, are energetically favorable around x = 0.725, leading to
the design of a new candidate composition with predicted ionic
conductivity exceeding 1072 S cm™.167

Beyond solid-state electrolytes, MLIPs have also provided
valuable insights into ionic transport mechanisms in battery
electrode materials. Ha et al. (2022) demonstrated the
application of SGPR-accelerated molecular dynamics to
investigate the effect of aluminium doping on Li-ion transport
in Li-excess layered oxide cathodes.'®® Their nanosecond-
timescale simulations of Li1.22RUo.61Ni0.11Al0.0602 revealed that
Al-doping reduces the Li-ion diffusion activation energy from
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0.48 eV to 0.40 eV, demonstrating enhanced iopig, transpert
alongside improved structural stabilityO!TRis03Féduétietr2in
activation energy resulted in approximately twice the Li-ion
diffusion coefficient at elevated temperatures. The study
showed how strategic dopant selection can simultaneously
optimize both transport properties and electrochemical
stability, with strengthened AI-O bonding suppressing oxygen
oxidation while facilitating Li-ion mobility.

Despite their transformative potential, MLIP-based MD
simulations require careful validation to ensure reliable
predictions, particularly given inherent uncertainties in force
predictions and energy errors.'®® Best-practice validation
strategies extend beyond simple energy and force comparisons
to include systematic benchmarking against AIMD for key
properties such as diffusion coefficients, phase stability, and
thermal transport.l’® Uncertainty quantification through
ensemble methods, gradient-based approaches, or committee
models provides essential error estimates during simulations,
enabling active learning protocols that iteratively improve MLIP
reliability.171172 Furthermore, domain-specific validation tests,
including rare event prediction and long-timescale dynamical
properties, are crucial for establishing confidence in MLIP
extrapolation beyond training domains.'’3 As the field matures,
standardized validation protocols and uncertainty reporting will
be essential for establishing MLIP credibility in high-stakes
materials discovery applications.

Table 2 summarizes these seminal contributions, illustrating
how MLIPs have advanced our understanding of ion dynamics
in SSEs.

MLIPs: Enabling Rapid & Scalable Exploration of SSE Space

(b) MLIP Training (c) MLIP-Accelerated Simulations
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Figure 4: A schematic of the machine learning interatomic potential (MLIP)
driven workflow for accelerated discovery of solid-state electrolytes (SSEs). (a)
The process begins with generating a dataset of energies and forces from ab-initio
calculations (e.g., DFT). (b) This data is used to train a machine learning model,
such as a neural network, to create an MLIP. (c) The trained MLIP rapidly predicts
the potential energy surface (PES), enabling large-scale and long-timescale
molecular dynamics simulations. These simulations allow for (d) the systematic
exploration of the vast SSE design space, which is constructed by varying
elemental compositions, introducing dopants, and considering diverse crystalline
and amorphous structures. (e) From these simulations, promising candidates are
identified through a screening funnel. (f) The most promising materials are then
validated with targeted, high-fidelity DFT calculations or experimental synthesis.
This framework can operate as a closed loop, where new data from the validation
step is used to further refine the MLIP.
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5. Navigating the Frontiers of Solid-State
Electrolyte Discovery: Addressing Key
Challenges

Despite the considerable enthusiasm and initial successes, the
application of ML in SSE research is confronted by several
deeply ingrained challenges that currently limit its full potential.
These research gaps, which form the central motivation for this
review, include pervasive data scarcity, particularly for
emerging material systems; the complex demands of multi-
objective optimization for practical applications; the often-
opaque nature of ML models, which hinders scientific
understanding and trust; issues with the transferability and
generalization of models to new chemical domains; and the
need to move beyond simple screening towards generative
design frameworks capable of proposing entirely novel
materials. These challenges are not merely isolated obstacles
but are often interconnected, where, for instance, a lack of
sufficient high-quality data directly impedes the development
of generalizable models capable of robust multi-objective
optimization. Addressing these interconnected hurdles is
paramount for ML to truly catalyze a paradigm shift in materials
discovery, transitioning from serendipitous discovery to a more
predictive, efficient, and accelerated design cycle for SSEs and,
by extension, other advanced functional materials. Figure 5
provides a schematic overview of the key machine learning
methodologies that have emerged to address these core
challenges.
5.1. Challenge 1: Navigating Data Deficiencies in ML-Driven
SSE Discovery

The fundamental challenge limiting ML-driven SSE discovery is
the pervasive scarcity of high-quality training data, particularly
for multivalent ion conductors. This data deficit manifests in
three critical dimensions: insufficient quantity, poor quality
heterogeneity, and severe chemical imbalance across ion types.

The Non-Lithium Data Crisis

While Li* systems benefit from decades of intensive research
generating relatively substantial datasets, non-lithium ion
conductors including Na* and multivalent systems (Mg?*, Ca?*,
Zn%*, APP*) remain critically underrepresented.l74-17¢ This
disparity is not merely quantitative. Non-lithium ions exhibit
fundamentally different transport mechanisms characterized
by varying ionic radii, coordination preferences, and in the case
of multivalent systems, stronger Coulombic lattice interactions
and sluggish diffusion kinetics.1”” Consequently, ML models
trained on Li* data cannot reliably extrapolate to these
alternate systems, as evidenced by uMLIPs failing to generalize
beyond their chemical training space.'’® The fundamental
differences in transport mechanisms, optimization priorities,
and critical descriptors across Li, Na, Mg, and Al systems
(summarized in Table S3) necessitate system-specific ML
framework design.

The data quality problem compounds this scarcity. SSE
datasets aggregate information from disparate experimental
protocols, computational methods with varying theoretical
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rigor, and literature reports lacking standardizegd. metrics,72
This heterogeneity introduces systemati®fbise; | ARSI A Nl eres)
and conflicting measurements that undermine model reliability.
The absence of centralized, standardized databases for
multivalent SSE properties forces fragmented, redundant
curation efforts across research groups,® impeding
collaborative progress.

Solution 1: Leveraging Existing Scarce Data Through
Advanced Learning Paradigms

Unsupervised Learning for Pattern Discovery

When labeled data is scarce, unsupervised learning methods
like clustering, dimensionality reduction, and representation
learning can extract meaningful structural patterns from
abundant unlabeled datasets. This approach is particularly
useful for hypothesizing which features might transfer from
data-rich systems (e.g., Li*, Na*) to data-scarce ones (e.g.,
multivalents). For example, Park et al. successfully applied
clustering to over 12,000 Na-containing materials, revealing
that high-conductivity candidates consistently shared specific
structural characteristics, such as the abundance of certain
polyhedral motifs (XO, tetrahedra) and the presence of
spacious ion channels.’% This finding suggests a path for
methodological transfer to beyond-lithium systems. While the
optimal structural features for a Mg?* conductor will differ from
those for Na*, the types of descriptors identified as critical such
as coordination environments, polyhedral packing, and
framework connectivity, are likely to be fundamentally
important across different ion systems. An effective strategy,
therefore, involves using unsupervised learning on large Li* or
Na* datasets to identify these critical feature classes, which can
then guide the engineering of more targeted descriptors for the
subsequent supervised modeling of multivalent systems.

Transfer Learning for Cross-Domain Knowledge

Transfer learning offers a strategic pathway to leverage
knowledge from data-rich domains (e.g., Li* systems, general
materials databases) for data-scarce targets (multivalent
conductors). A compelling demonstration showed successful
cross-domain ionic conductivity classification, where models
trained exclusively on Na*-based NASICON compounds
accurately predicted Li*-based materials.#’” However, the
chemical similarity between Na* and Li* likely enabled this
success. Extending transfer learning to multivalent systems with
fundamentally different coordination preferences and
transport mechanisms may require sophisticated domain
adaptation techniques or physics-informed constraints to
bridge the mechanistic gap.

Semi-Supervised Learning for Hybrid Data Exploitation

Semi-supervised learning provides a middle ground between
fully supervised and unsupervised approaches by leveraging
both labeled and unlabeled data simultaneously. This paradigm
is particularly valuable for SSE discovery where experimental
conductivity measurements are sparse but structural databases
are abundant. The methodology typically involves clustering a

This journal is © The Royal Society of Chemistry 20xx
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large, unlabeled dataset based on descriptor similarity and then
labeling the resulting clusters with the few available
experimental data points to identify promising regions of the
materials space. This strategy was exemplified by Laskowski et
al., who applied unsupervised agglomerative clustering to
approximately 26,000 lithium-containing compounds and
subsequently annotated the resulting clusters using a limited
set of experimental conductivity measurements.®>

Table 2: Seminal Contributions of ML Interatomic Potentials to Understanding lon
Dynamics in SSEs

Materials-Horizons

initial "seed" labels. Subsequent experimental efforts could
then be prioritized on the unlabeled®®dterdakDWNitHIF2ok
adjacent to clusters containing the most promising initial
results, thereby maximizing the value of each experiment and
accelerating the identification of novel beyond-lithium SSEs.

Solution 2: Targeted Data Generation Through Computational
High-Throughput Screening

High-throughput density functional theory (HTP-DFT)
calculations provide a systematic approach to generate large,

internally  consistent datasets for intrinsic material
Study/MLIP MLIP Type/Focus  SSE System(s) Investigated  Key Insights into lon Significance/Impact
Development Dynamics/Mechanisms
(Primary
Citation)
Behler and HDNNPs using Bulk Silicon (as proof-of- Decomposes total energy into local atomic Foundational theoretical and
Parrinello atom-centered concept for general contributions, enabling simulations of methodological work that established the
(2007)162 symmetry condensed matter arbitrarily sized systems with DFT accuracy modern framework for atomistic MLIPs,
functions systems). by learning the potential energy surface making large-scale, long-timescale
(PES) simulations of SSEs feasible
Guo et al. ANN potential Glass-ceramic Lithium Discovered that local Li environments Demonstrated a powerful workflow
(2022)167 combined with a Thiophosphate (LPS) similar to the superionic B-LisPSs phase are combining MLIP-accelerated sampling
Genetic systems: (LizS)x(P2Ss)1-x energetically favored around composition x and structural analysis to design novel,
Algorithm (GA) =~ (0.725. Mapped the amorphous phase high-conductivity amorphous SSE
for Al-aided diagram and identified miscibility gaps compositions
sampling
Gigli et al. GAPs trained on All known polymorphs (a, Showed superionic behavior is driven by a Resolved a long-standing controversy
(2024)163 multiple DFT B, y) of Lithium structural transition activated by correlated over the transport mechanism in LisPSa
levels (PBEsol, Thiophosphate (LisPSa) PS, flips, not a "paddle-wheel" effect. The and highlighted the necessity of using
r2SCAN, and Nernst-Einstein approximation higher-accuracy functionals (PBEQ) and
PBEO) underestimates conductivity by over a correlation-aware analysis for predictive
factor of 2 due to strong ionic correlations simulations.
Dai et al. Artificial Neural Lithium garnet oxides: Revealed that ionic conduction in garnets Provided a highly accurate potential for
(2022)164 Network LixLasZry-sTaz-xO12 follows a non-Arrhenius temperature the garnet family, resolving ambiguity
(SIMPLE-NN) dependence, better described by the VTF around the optimal composition for
using atom- equation. Calculated Haven ratio of 0.1-0.4 conductivity (x = 6.6 to 6.8) by combining
centered indicates strong concerted motion of Li-ions  simulations with experimental data
symmetry
functions.
Seth et al. NequlP, an E(3)- Amorphous Lithium LiPON interface Accurately modelled the amorphous
(2024)165 equivariant GNN Phosphorus Oxynitride LiPON structure and bulk Li* conductivity.
(LiPON) and Li Found that Li* transport across the Li
Yang et al. DeePMD Amorphous oxychloride Uncovered that Li* transport is facilitated by~ Elucidated a novel transport mechanism
(2025)166 electrolytes: LixAlOyClzix-2y the rotation of Cl atoms within a structural in an emerging class of amorphous
skeleton of Al-chains. Found that O-doping oxychloride SSEs and provided a clear
enhances amorphization (enabling Cl design principle based on balancing glass-
rotation) but reduces mobile Cl atoms, forming ability with mobile anion
creating an optimal O/Cl ratio for concentration
conductivity
Ha et al. SGPR with on- Al-doped Li-excess layered Demonstrated that Al-doping reduces Li-ion Demonstrated how dopant-induced
(2022)168 the-fly training oxide cathodes: diffusion activation energy from 0.48 eV to electronic structure modifications can

Li1~ZZRuO-6'INi0~11A|0-0602

0.40 eV, enhancing ionic transport while
strengthened Al-O bonding suppresses
oxygen oxidation and improves structural
stability

simultaneously enhance ionic transport
and suppress degradation mechanisms,
providing design principles for stable
high-energy-density electrode materials
with improved Li-ion mobility

This methodology successfully identified a cluster exhibiting
high probability for superionic conduction, which led to the
experimental confirmation of LisBS; as a novel ionic conductor.
The success of this approach provides a template for a targeted
discovery pipeline in underexplored chemical spaces, such as
those for multivalent conductors. Such a workflow would
involve first clustering the vast space of hypothetical
multivalent host structures using reliable structural descriptors.
Following this, a small and diverse set of compounds from
different clusters could be strategically synthesized to serve as

This journal is © The Royal Society of Chemistry 20xx

properties.’® This computational pipeline can systematically
evaluate thousands of candidate materials, creating valuable
training data while maintaining theoretical consistency.
Furthermore, ML models can be trained to predict expensive
DFT results, enabling large-scale screening by circumventing
first-principles calculations for every candidate.?®

Successful liquid electrolyte platforms like the Electrolyte
Genome!8l demonstrate the value of systematic property
correlation mapping and automated screening workflows
beyond simple high-throughput calculation. These liquid-phase
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systems also offer opportunities for cross-domain learning: ion
transport patterns in liquid and polymer electrolytes including
solvation dynamics, coordination environment effects, and
structure-transport  correlations can inform descriptor
engineering and mechanistic understanding for solid
electrolytes, particularly for data-scarce multivalent systems
where liquid-phase computational studies are more prevalent.
Adapting these methodologies to solid-state systems could
establish not only standardized data specifications but also
automated multi-property optimization pipelines that integrate
atomic-scale MLIP predictions with mesoscale grain boundary
and interface modelling.

The synergy between HTP-DFT and ML creates a self-reinforcing
cycle: computational data trains ML models, which
subsequently accelerate screening by reducing computational
bottlenecks.

Solution 3: Active Learning for Intelligent Data Acquisition

Active learning addresses the resource constraints of both
experimental synthesis and computational simulations by
strategically selecting the most informative data points for
generation.'®? In this iterative framework, ML models identify
candidates where they exhibit maximum uncertainty or where
new data would optimally improve performance. These
selections are then prioritized for experimental characterization
or DFT calculation.

This approach has demonstrated practical success in
optimizing doping strategies for LLZO electrolytes.”” By
combining ML models with uncertainty quantification, the
active learning framework efficiently navigated the vast
compositional space, identifying promising  dopant
combinations while minimizing required simulations and
experiments.>’

However, the effectiveness of these data-centric approaches
depends critically on establishing clear prioritization criteria for
data collection efforts. Future experimental and computational
campaigns should prioritize: (1) multivalent systems with
intermediate ionic radii (Mg?*, Zn?*) that bridge the gap
between monovalent and highly charged species, (2) materials
exhibiting mixed ionic-electronic conductivity where transport
mechanisms remain poorly understood, and (3) interfacial
properties and degradation pathways that are systematically
underrepresented in current databases. Computationally,
emphasis should be placed on generating temperature-
dependent transport data and correlated ionic motion
descriptors, as these are essential for capturing the non-
Arrhenius behavior observed in many superionic conductors yet
remain scarce in existing datasets. The choice among these
strategies or, more likely, a combination thereof will depend
critically on the specific SSE system under investigation, the
target property, and the nature of the available data. For
instance, while transfer learning might be effective for
predicting properties of Na-ion conductors based on Li-ion data
due to their chemical similarities, discovering novel multivalent
conductors might necessitate more extensive de novo data
generation via HTP-DFT, guided by active learning, to capture

18 | J. Name., 2012, 00, 1-3
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approaches

summarizes the key data challenges encountered

is essential for continued progress. Table 3
in the

application of ML to SSE discovery and outlines potential
mitigation strategies.

Table 3: Summary of Data Challenges in ML for SSEs and Mitigation

Strategies.

Data Challenge

Impact on ML Model
Development

Key Mitigation
Strategies &
Supporting Evidence

Overall Scarcity

Poor generalization,

HTP-DFT Data

for SSEs difficulty modelling Generation'®?,
complex phenomena, Development of
bias towards well- Curated Databases?®’,
studied systems. Active Learning®’,
Semi-supervised
learning®
Specific Scarcity Inability to model Targeted HTP-DFT for

for Multivalent
lon Conductors

distinct physics (e.g.,
stronger Coulombic
interactions, sluggish
diffusion) accurately,
poor extrapolation
from Li-ion systems.

Multivalents, Transfer
Learning*’, Physics-
Informed ML!83:184
Unsupervised Learning
for feature
discovery!06.185

Data Reduced model Rigorous Data Curation
Heterogeneity/Q reliability, inconsistent & Preprocessing'”®,
uality (Multi- predictions, difficulty Standardized Data

source, noise, in training robust Reporting Protocols,

missing values) models. Robust ML algorithms
tolerant to noise.
Small Sample High risk of Generative Models for

candidate proposal'$¢,
Transfer Learning from
broader chemical
domains!®’, LOGO-CV
for realistic
performance
assessment!88

Sizes for Truly
Novel Chemistries

overfitting, poor
predictive power for
unexplored chemical
spaces.

5.2. Challenge 2: Multi-Objective Optimization: Balancing
Performance Metrics in SSE Design

Commercially viable SSEs require concurrent optimization of
multiple, often conflicting properties rather than maximizing a
single parameter. Practical SSEs must satisfy stringent
requirements including:

e  High lonic Conductivity (o): Typically targeted to be >
10~%S cm-1 at room temperature, approaching or
exceeding that of liquid electrolytes, to enable high
power densities.

e Wide Electrochemical Stability Window (ESW): The
electrolyte must remain stable against both highly
reducing (anode) and highly oxidizing (cathode)
potentials, ideally > 5.5V vs. Li/Li+ for high-voltage
applications.

This journal is © The Royal Society of Chemistry 20xx
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e Good Electrode Compatibility: Minimal chemical and
electrochemical reactivity with both anode (especially
Li metal) and cathode materials to prevent detrimental
interfacial layer growth and impedance rise.

e Sufficient Mechanical Strength and Appropriate
Moduli: The SSE should possess adequate mechanical
robustness to suppress lithium dendrite penetration
and withstand the stresses induced by electrode
volume changes during cycling, while also maintaining
good interfacial contact.

e High Li* Transference Number (tLi+): Ideally close to
unity, indicating that Li* ions are the primary charge
carriers, which minimizes concentration polarization
and improves rate capability.

e Other Considerations: Factors such as ease of
processing, scalability, low cost, and environmental
impact also play crucial roles in practical viability.

These requirements, however, must be contextualized within
the distinct challenges posed by different battery chemistries.
Li-ion systems prioritize dendrite suppression and require
stable solid electrolyte interphases (SEI) compatible with
graphite anodes, necessitating optimization for both
mechanical strength and interfacial stability.18° Na-ion systems
face  fundamentally different  constraints, requiring
compatibility with hard carbon anodes due to graphite's
incompatibility with Na* ions, which shifts the optimization
focus toward different voltage windows and interfacial
chemistries.’®® Mg-ion systems naturally avoid dendrite
formation due to the divalent nature of Mg?*, but face critical
challenges from sluggish ion transport kinetics caused by strong
solvation effects and higher activation energies, requiring
optimization strategies that prioritize conductivity
enhancement over mechanical dendrite suppression.1®? Al-ion
systems present additional complexity, demanding electrolytes
compatible with limited cathode options while managing the
high charge density effects of trivalent AI** ions.'%2 Silicon-based
Li systems introduce further complications through large
volume changes (>300%) that destabilize conventional SEls,
requiring electrolytes optimized for mechanical flexibility and

stable interfacial reformation rather than static interfacial
stability.1%3
The interplay between these properties is complex;

materials with very high ionic conductivity might exhibit poor
mechanical properties or a narrow electrochemical stability
window. Traditional single-objective ML approaches,
predominantly focused on maximizing ionic
conductivity,01109.194 f3j| to capture these trade-offs and
produce materials unsuitable for practical applications. A
critical limitation lies in the lack of frameworks that account for
the distinct physics governing different ionic species and their
corresponding electrode compatibility requirements.
Additionally, the computational expense of evaluating multiple
properties for every candidate material during multi-objective
optimization searches can be substantial, even when using ML-
based surrogate models for property prediction.

This journal is © The Royal Society of Chemistry 20xx
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Solution 1: Bayesian Optimization for Multi-Objegtive, . .c onine
Materials Discovery DOI: 10.1039/D5MH01525A

Bayesian Optimization (BO) frameworks efficiently navigate
high-dimensional design spaces by constructing probabilistic
surrogate models (typically Gaussian Processes) for each
objective property. Specialized acquisition functions can
incorporate  system-specific constraints and property
weightings that reflect the distinct requirements of different
battery systems. Harada et al. demonstrated this approach by
optimizing NASICON-type LiZr,(PO4)s composition co-doped
with Ca and Y, simultaneously enhancing Li-ion conductivity,
phase stability, and densification.1®> Similarly, BO has been
applied to maximize lithium diffusivity while incorporating
computational checks for electronic bandgap and stability at
lithium metal interfaces, effectively handling multiple criteria
through sequential, guided evaluation.>8 Future
implementations should incorporate objective
weightings—prioritizing mechanical properties for Li systems
prone to dendrite formation while emphasizing transport
kinetics for Mg systems where sluggish diffusion dominates
performance.

tailored

Solution 2: Evolutionary Algorithms for Pareto-Optimal
Solutions

Evolutionary Algorithms (EAs), including Genetic Algorithms
(GAs), inherently support multi-objective optimization through
population-based approaches. These algorithms can be
enhanced with tailored fitness functions that reflect the distinct
physical constraints and performance priorities of different
ionic systems. These algorithms apply bio-inspired operators
(selection, crossover, mutation) to iteratively improve
candidate populations against multiple fitness criteria,
generating Pareto-optimal solution sets representing optimal
trade-offs where no objective can be improved without
degrading others. While direct applications to comprehensive
inorganic SSE discovery remain limited, frameworks like
evolutionary variational autoencoders (EVAPD) developed for
perovskite discovery!®® demonstrate adaptability to SSE
applications through suitable multi-objective fitness function
definitions.

Solution 3: Collaborative Framework Development and
Physics-Informed Search Strategies

Effective multi-objective optimization requires enhanced
collaboration between ML specialists and battery application
experts to define meaningful optimization targets with
application-specific weighting schemes and constraint
hierarchies. Electric vehicle batteries might prioritize safety-
related mechanical strength and electrochemical stability
alongside cycle life, accepting reduced peak ionic conductivity,
while high-power portable devices might emphasize maximizing
ionic conductivity above other metrics. For Na-ion systems,
optimization frameworks should prioritize compatibility with
hard carbon anodes and appropriate voltage windows, while
Mg-ion systems require frameworks emphasizing transport
enhancement strategies such as optimized coordination
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environments. Advanced strategies can leverage physical
understanding to focus searches on design space regions where
multiple desirable properties are more likely to be co-
optimized, reducing computational requirements while
maintaining search effectiveness by incorporating fundamental
materials science principles into the optimization process. This
approach addresses both the challenge of defining quantitative
targets and minimizing expensive multi-property evaluations
through intelligent, system-specific search space reduction.

5.3. Challenge 3: llluminating the "Black Box": Enhancing
Interpretability in ML for SSEs

Complex ML models, particularly deep neural networks, achieve
remarkable predictive accuracy but function as "black boxes"
that obscure the reasoning behind their predictions. For
materials scientists, this lack of transparency presents a
significant barrier to trust and adoption, limiting the potential
for extracting new scientific understanding. Simply predicting
high-performing SSE candidates is insufficient; scientists require
insights into why particular materials exhibit desirable
properties and what underlying structural features or chemical
principles drive performance. Black-box predictions, devoid of
such explanations, offer limited utility for advancing
fundamental knowledge or formulating new design hypotheses.
This interpretability challenge is particularly acute for
multivalent systems, where the distinct physics governing Mg?*,
Zn?*, and AI?* transport requires understanding of system-
specific structure-property relationships that may differ
fundamentally from well-studied Li-ion systems.

Solution 1: Model-Agnostic Explainability Methods

Model-agnostic explainability techniques provide insights into
ML model behavior without requiring modifications to the
underlying algorithms. SHAP (SHapley Additive exPlanations)
values, based on game theory, quantify each feature's
contribution to specific predictions, while LIME (Local
Interpretable Model-agnostic Explanations) explains individual
predictions by learning simpler, interpretable models locally
around the prediction.’®” The XpertAl framework exemplifies
advanced implementation by integrating XAl methods with
Large Language Models (LLMs) to automatically generate
human-understandable natural language explanations of
structure-property relationships.’®® This framework identifies
crucial features using XAl and draws upon scientific literature to
articulate connections, providing a methodology highly
pertinent to understanding ML models for SSEs. A key
application is the direct comparison of feature importance, for
example, using SHAP values to contrast the governing principles
in lithium-based SSEs with those in multivalent systems,
identifying which structural motifs (e.g., tetrahedral
coordination environments, face-centered lattice
arrangements, radial distribution patterns between mobile ions
and framework anions) and compositional parameters (e.g.,
cation electronegativity differences, framework atom ionization
energies, anion polarizability) are universal versus cation-
specific descriptors.

20 | J. Name., 2012, 00, 1-3

Solution 2: Interpretable Algorithm Design and Physicsz c onine
Informed Architectures DOI: 10.1039/D5MH01525A

Interpretable tree-based ensemble learning methods and graph
neural network approaches specifically designed for SSE
applications focus on learning and explaining relationships
between crystal structures and their corresponding
thermodynamic and kinetic properties.’®®20° For multivalent
systems, this approach is particularly powerful for extracting
explicit design rules from classification models; for instance, a
decision tree trained to identify stable hosts could yield a
human-readable rule like, ‘IF the cation coordination number is
> 6 AND the anion framework has a specific void volume, THEN
the material is likely to be stable,” directly guiding experimental
efforts. Chemistry-informed ML models enhance
interpretability by incorporating known physical relationships
directly into model architecture. For example, a model for solid
polymer electrolytes explicitly encoded the Arrhenius equation
in its readout layer, enabling prediction of physically meaningful
parameters like activation energy (Ea) and pre-exponential
factor (A), making temperature-dependent conductivity
predictions directly interpretable in terms of fundamental
parameters.201

Solution 3: Extraction of Scientific Insights and Design
Principles

XAl applications in SSE research have successfully extracted
human-understandable insights that translate into actionable
design principles. Studies examining factors affecting dendrite
suppression revealed that material stiffness increases with
mass density and the ratio of Li to sublattice bond ionicity while
decreasing with increasing volume per atom and sublattice
electronegativity.2°2 Universal machine learning interatomic
potentials have uncovered how crystal structure, anion disorder
levels, and mobile ion arrangement influence ionic transport.
Simulations demonstrated that appropriate S/Cl disorder in
LiePSsCl enhances diffusion pathway connectivity, improving
ionic conductivity.1’® Extending this approach, XAl can help
answer related questions in multivalent systems by revealing
how system-specific descriptors, such as the migrating cation's
ionic radius and charge density, supplant or interact with the
framework properties that are dominant in lithium conductors.
Heuristic structure descriptors derived from universal
interatomic potential analysis rank materials by expected ionic
mobility, reflecting potential energy surface properties that
correlate with ion hopping.203

Solution 4: Iterative Model Refinement Through
Explainability

XAl insights create a virtuous cycle by informing future feature
engineering efforts and model development. When XAl
consistently highlights specific structural motifs (coordination
environments for Li* ions, framework topologies) or chemical
attributes as critical for high performance across diverse SSE
candidates, this leads to formulation of new, generalizable
scientific knowledge and design principles. For example, if XAl
consistently identifies cation coordination environments as

This journal is © The Royal Society of Chemistry 20xx
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critical for multivalent ion mobility, this insight can be used to
engineer more sophisticated features for the next generation of
models, thereby accelerating the discovery cycle for novel
battery chemistries. Complex derived features identified as
highly predictive (combinations of bond angles and lengths
defining specific local environments) can be explicitly calculated
and incorporated into subsequent, potentially simpler and
more robust ML models.

Emerging approaches promise to advance beyond feature
importance quantification toward mechanistic discovery.
Causal machine learning methods can distinguish genuine
causal relationships from spurious correlations in structure-
property data, revealing which structural modifications directly
influence ionic conductivity versus those that merely
correlate.??* Symbolic regression techniques, which search for
explicit mathematical equations governing material properties,
offer an alternative path to interpretability by automatically
discovering closed-form expressions that relate compositional
and structural descriptors to transport properties or rediscover
interatomic potentials.20> These
approaches could uncover governing equations analogous to
how the Arrhenius relation describes temperature-dependent
conductivity, potentially revealing universal scaling laws across
different ionic systems.

This iterative refinement, guided by explainability, produces
models that are both accurate and grounded in scientifically
meaningful parameters, representing a shift from ML merely
predicting outcomes to actively contributing to fundamental
understanding of solid-state ionics.

physics-discovering

Despite  these  promising  developments, successful
implementation of XAl in SSE research requires awareness of
key methodological limitations. SHAP values exhibit instability
in highly correlated feature spaces typical of materials datasets,

where structural descriptors often show strong
interdependencies.?®® LIME's local approximations may
inadequately represent global model behavior, particularly

problematic for complex structure-property relationships.2?
Both approaches assume feature independence, which conflicts
with the intrinsically coupled nature of atomic positions,
coordination environments, and bonding in crystalline
materials. Best practices include validating XAl outputs through
multiple complementary methods, examining feature
correlation matrices before interpretation, and systematically
cross-checking computational insights against experimental
observations and established physical principles.

5.4. Challenge 4: Bridging Chemical Spaces: Enhancing
Model Transferability and Generalization

A significant hurdle for the practical application of ML in SSE
discovery is the ability of models to generalize from known
materials to novel chemical compositions and crystal
structures. Models trained on specific datasets, often limited to
well-explored Li-based compounds, frequently exhibit poor
performance when tasked with extrapolating to uncharted

This journal is © The Royal Society of Chemistry 20xx
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territories, such as Na*-based systems or, more.drastically,
multivalent ion conductors.
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Figure 5: Key Machine Learning Strategies to Accelerate Solid-State Electrolyte
(SSE) Discovery. This figure illustrates five classes of ML methods used to address
critical challenges in SSE research, from data scarcity to de novo design. (a) Data
scarcity: To combat data scarcity, (i) active learning based iterative loops are used
to intelligently guide expensive data acquisition, (ii) transfer learning mitigates the
need for a large dataset in a target domain by leveraging knowledge gained from
a related, data-rich source domain and (iii) unsupervised learning to identify
patterns and promising candidates in unlabeled data. (b) Multi-Objective
Optimization (MOO): To reconcile competing material properties, techniques like
(i) Evolutionary Algorithms and (ii) Bayesian Optimization navigate design trade-
offs (e.g., ionic conductivity vs. stability) to identify Pareto-optimal materials. (c)
Explainable Al (XAl): To overcome the "black-box" nature of ML models, methods
like (i) SHAP (Shapley values) and (ii) LIME are applied to quantify feature
importance, providing human-understandable insights into structure-property
relationships. (d) Transfer Learning: To improve model generalization across
different chemical families, knowledge from a data-rich source (e.g., Li-ion
systems) is transferred to a data-scarce target (e.g., multivalent conductors) using
methods like (i) domain adaptation or (ii) Physics informed neural networks. (e)
Generative & Hybrid Frameworks: For de novo material design, generative
models like (i) VAEs, (ii) GANs, and (iii) Diffusion Models propose novel
compositions and crystal structures, which are then validated in a (iv) closed-loop
with DFT/AIMD simulations to enable rapid, autonomous discovery.

A significant hurdle for practical ML application in SSE discovery
is the ability of models to generalize from known materials to
novel chemical compositions and crystal structures. Models
trained on specific datasets, often limited to well-explored Li-
based compounds, frequently exhibit poor performance when
extrapolating to uncharted territories such as Na*-based
systems or multivalent ion conductors. The core issue is that ML
models excel at interpolation within their training data domain
but struggle with extrapolation to chemically distinct regions.
Conventional cross-validation techniques, which randomly split
data into training and test sets, often overestimate a model's
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true extrapolative power because test sets usually contain
materials chemically similar to training data. More rigorous
"leave-one-group-out cross-validation" (LOGO-CV), where
entire chemical families are held out for testing, has
demonstrated that conventional ML methods can fail when
predicting properties of completely novel compound classes.88
This presents a critical concern for SSE discovery, where the goal
is often to identify entirely new material families with
breakthrough properties. While universal interatomic
potentials like M3GNet are trained on vast databases (e.g., the
Materials Project) and aim for broad applicability across diverse
chemical spaces,?%8 achieving reliable extrapolation remains a
frontier challenge.

Solution 1: Domain Adaptation Techniques

Domain adaptation encompasses ML techniques designed to
leverage knowledge from a "source" domain, where data may
be abundant, to improve model performance on a "target"
domain that might be data-scarce or have different underlying
data distributions. In SSE contexts, this involves adapting
models trained on Li-ion conductors to predict properties for
Na-ion or K-ion conductors, or transferring knowledge from
computational data to guide experimental outcome
predictions. A multi-stage ML approach for electrocatalyst
discovery successfully integrated domain adaptation to
enhance theoretical simulations and align them with
experimental findings,?®® demonstrating a concept directly
transferable to SSE research. However, the effectiveness of
domain adaptation is intrinsically linked to the relevance of
incorporated knowledge; if source and target domains are too
disparate in their underlying physics or chemistry, transferred
knowledge may be of limited value or even detrimental.

Solution 2: Physics-Informed Machine Learning (PIML)

PIML improves model generalization and physical consistency,
especially in data-limited scenarios, by embedding known
physical laws, constraints, or symmetries directly into ML model
architecture, loss functions, or feature representations. By
constraining models to adhere to fundamental physics, PIML
can lead to more robust and interpretable predictions that
extrapolate better to unseen data. Universal ML potentials for
liquid electrolytes, trained via iterative DFT calculations,
accurately predict physical properties like density, viscosity, and
ionic conductivity, implying that models have learned
underlying physical consistencies.?’® The DiffMix model, a
differentiable geometric deep learning approach for chemical
mixtures, explicitly extends thermodynamic and transport laws
(e.g., Vogel-Fulcher-Tammann for ionic conductivity) with GDL-
learnable physical coefficients, demonstrating improved
accuracy and robustness for predicting liquid electrolyte
properties.?’? Nevertheless, PIML success hinges on the
accuracy and completeness of embedded physical laws; overly
simplified or incomplete physical constraints can restrict a
model's ability to learn complex phenomena and generalize
correctly.

Solution 3: Advanced Universal Representation Learning

22 | J. Name., 2012, 00, 1-3

Achieving truly "universal® ML models that \can,reliably
extrapolate across vastly different chemi&¥PspaéesHnadiscéver
entirely new material classes remains a formidable scientific
challenge. This likely necessitates a paradigm shift towards
models that can learn or infer fundamental physical laws more
directly from data, rather than relying solely on statistical
correlations or pre-defined explicit constraints. Promising
approaches include more sophisticated PIML frameworks,
integration of ML with symbolic regression techniques to
discover governing equations, or development of Al systems
capable of formulating and testing new physical hypotheses.
Such advanced approaches could potentially overcome the
limitations of current transferability strategies by learning more
fundamental representations of chemical and physical
relationships that generalize across diverse material systems.

5.5. Challenge 5: Beyond Screening: Generative and Hybrid
Frameworks for Novel SSE Design

Traditional computational materials discovery, even when
augmented by ML, relies on screening predefined candidate
lists derived from existing databases or combinatorial variations
of known crystal structures. While efficient for exploring local
chemical space, these methods are less effective at proposing
radically new compositions or structural archetypes that lie
outside the initial search parameters. They are fundamentally
tools for evaluation rather than de novo creation, inherently
limiting the scope of discovery to variations of known materials
rather than truly novel SSEs with unprecedented properties.

Solution 1: Deep Generative Models for Novel Material
Design

Deep generative models offer a paradigm shift by learning
underlying patterns and design rules from existing materials
data and using this knowledge to propose entirely new
candidate compositions or crystal structures from scratch, often
guided by desired performance criteria.
e VAEs learn a compressed,
representation of materials,
candidates can be generated by sampling points in this
latent space and decoding them back into material
structures or compositions. Noh et al. applied a VAE-
based framework to the inverse design of solid-state
materials, efficiently exploring chemical compositional
spaces to generate novel candidates with desired
properties.>
® GANs employ a two-network architecture: a generator
that creates new material candidates and a
discriminator that tries to distinguish these synthetic
candidates from real materials in a training dataset.
Through this adversarial training, the generator learns
to produce increasingly realistic and potentially novel
materials.
e Diffusion Models are an emerging class of powerful
generative models that operate by learning to reverse
a gradual noise-adding process. They have shown
significant promise for generating high-quality

continuous latent

from which new
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samples in various domains, like crystal structure exemplifies an open-source EA for crystal,, strrcture
DOI: 10.1039/D5MH01525A
Generative Core Working Principle Strengths for SSE Design Limitations/Challenges in SSE Key
Model Type Context Examples/Potential
Variational Learns a continuous latent Smooth latent space allows Quality of Inverse material
Autoencoders representation of data; new for interpolation and reconstructed/generated design®.
(VAEs) samples generated by generation of similar but materials can be an issue;
decoding points from this novel ensuring chemical validity and
latent space. structures/compositions; can  stability of generated crystal
be conditioned on structures.
properties.
Generative A generator network creates Capable of generating highly Training can be unstable Crystal structure
Adversarial candidates, and a novel and diverse (mode collapse); ensuring prediction'?®; Inverse
Networks discriminator network tries to candidates; can learn generated crystal structures design of materials
(GANSs) distinguish them from real complex data distributions. are physically realistic and (MatGAN)>*

data; adversarial training
improves generator.

stable is challenging.

Evolutionary

Population-based search;

Robust global search

Can be computationally

Crystal structure

Algorithms applies operators (mutation, capabilities; can explicitly expensive if fitness evaluation prediction (XtalOpt)?'4;
(EAs) / Genetic  crossover, selection) guided handle multiple objectives (e.g., DFT calculation) is slow Guiding phase field
Algorithms by a fitness function (target and complex constraints for each candidate; defining exploration for Li-ion
(GAs) properties). (e.g., stability, effective representations and conductors?'5;

synthesizability). evolutionary operators for

crystal structures.

Diffusion Learns to reverse a noise- Can generate very high- Can be computationally General crystal
Models adding process; new samples quality, realistic samples; intensive for sampling; structure

generated by iterative
denoising from a random
starting point.

emerging as state-of-the-art
in many generative tasks.

developing effective
conditioning mechanisms for
specific material properties
and crystal symmetries.

generation?'?;
MatterGen (fine-
tuneable generative
model)?!3.

Hybrid Models
(e.g., VAE-GA)

Combines strengths of
different generative
approaches, e.g., VAE for
generation and GA for
optimization.

Potential to overcome
limitations of individual
methods; e.g., VAE explores
broadly, GA refines
promising candidates.

Increased model complexity;
requires careful integration of
components.

EVAPD for
perovskites!*.

Integrated ML proposes candidates - Combines theoretical
Closed-Loop computational validation prediction with experimental
Frameworks (DFT) = experimental validation; continuous model

synthesis/characterization -
feedback to refine ML models
in iterative cycles.

improvement; reduces
experimental waste through
guided exploration.

Requires substantial
infrastructure investment;
standardized synthesis
protocols needed; complex
integration of computational
and experimental platforms;
slower iteration cycles.

CAMEO system;?!¢
Electrolytomics;?7
NaxLizYClg
discovery;?®

DiffMix for electrolyte
optimization?!?

generation.?!2 The MatterGen model, for example, can

generate stable, diverse inorganic materials and can

be fine-tuned to steer generation towards specific
property constraints, including chemistry, symmetry,
and various physical properties, with one generated

prediction.?* Unsupervised ML has also guided the

Table 4: Comparison of Generative Model Approaches for Novel SSE Discovery.

prioritization

of elemental

phase fields for

synthetic

structure successfully synthesized and validated.213

Solution 2: Evolutionary Algorithms and Hybrid Generative
Approaches

Evolutionary Algorithms serve as powerful generative tools,
particularly for crystal structure prediction and compositional
optimization. EAs maintain a population of candidate solutions
(materials) and iteratively apply evolutionary operators like
mutation (small changes to composition or structure) and
crossover (combining features of good candidates) to generate
new candidates. A fitness function incorporating predicted
stability, ionic conductivity, and other desired properties guides
the selection of candidates for subsequent generations. XtalOpt

This journal is © The Royal Society of Chemistry 20xx

exploration, leading to the discovery of a novel quaternary
lithium solid electrolyte in a collaborative workflow resembling
evolutionary search.??>

A hybrid approach combining a VAE with a genetic
algorithm, termed the Evolutionary Variational Autoencoder for
Perovskite Discovery (EVAPD), has been developed to discover
new perovskite materials.’®® This framework leverages the
VAE's ability to generate diverse candidates from a learned
latent space and the GA's strength in optimizing these
candidates based on a defined fitness function (e.g., predicted
stability). Such hybrid generative approaches hold considerable
potential for SSE discovery if adapted with relevant property
targets.
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The success of these generative models is critically
dependent on the quality and relevance of the design rules or
property targets they are given. If these targets are ill-defined,
incomplete (focusing only on ionic conductivity without
considering stability or synthesizability), or do not capture all
essential practical constraints, the generated candidates may
be theoretically interesting but practically irrelevant or
impossible to realize. The ability of models like MatterGen to be
fine-tuned for a broad range of property constraints, and its
subsequent experimental validation, underscores the
importance of multi-faceted and accurate guidance for
generative design.?3

Solution 3: Integrated Closed-Loop Experimental-
Computational Frameworks

The true acceleration in SSE discovery is anticipated from hybrid
design frameworks that tightly integrate ML predictions with
DFT calculations for validation and, crucially, with experimental
synthesis and characterization in a closed-loop or active
learning fashion. These "predictive synthesis" pipelines allow
ML models to propose candidate materials, which are then
computationally validated (e.g.,, by DFT for stability and
preliminary property estimates) and/or experimentally
synthesized and tested. The results feed back into the ML
model, refining its predictions and guiding the next iteration of
discovery.

Several pioneering efforts exemplify this approach:

e The CAMEO system is a real-time, closed-loop
autonomous materials exploration platform that uses
Bayesian active learning integrated with synchrotron
beamline experiments for on-the-fly phase mapping
and property optimization.?6

e  The "Electrolytomics" initiative describes an Al-guided
approach that combines data science, robotic
experimentation for validation, and computation,
leading to the discovery and experimental
confirmation of high-performance liquid
electrolytes.?l”

e A computational-experimental pipeline successfully
combined Al models, physics-based simulations on
cloud HPC for large-scale screening, and subsequent
experimental synthesis and characterization to
discover promising new SSE compositions like NaxLis-
xYClg.218

e The DiffMix model, a differentiable GDL model, has
been used to guide robotic experimentation for
optimizing fast-charging liquid battery electrolytes,
achieving significant conductivity improvements in
few experimental steps.211

e An integrated high-throughput robotic platform
combined with active learning has been developed to
accelerate the discovery of optimal liquid electrolyte
formulations. This approach efficiently identifies high-
solubility redox-active molecules by evaluating a small
fraction of  candidates, demonstrating  the
effectiveness of closed-loop frameworks in materials
discovery.???

novel

24 | J. Name., 2012, 00, 1-3

® lterative training of universal MLPs, where. RART
calculations are performed on¥eruétiey RaHErESEhe
MLP shows high uncertainty, also represents a form of
closed-loop learning to refine the potential across a
wide chemical space.?10
Fully autonomous closed-loop systems, often termed "self-
driving laboratories," represent the apex of accelerated
materials discovery. However, their widespread adoption for
SSE research faces significant hurdles. Beyond the continued
advancement of ML algorithms and robotic platforms, a major
challenge lies in the development of standardized,
automatable, and rapid synthesis and characterization
protocols suitable for the diverse range of solid-state
chemistries. The synthesis of inorganic solids often involves high
temperatures, controlled atmospheres, and multi-step
processes that are not as easily automated as liquid-phase
formulations. Furthermore, critical to the success of these
frameworks is the implementation of robust validation
workflows that prevent costly experimental efforts on
unfeasible materials. Effective validation protocols should
include thermodynamic stability screening via DFT hull distance
calculations, with chemistry-dependent thresholds based on
the metastability scales established for different material
classes,??0  kinetic  accessibility  assessment  through
thermodynamic upper bounds such as the amorphous limit for
polymorph  synthesizability,??! and rapid experimental
validation using automated characterization techniques??? such
as XRD phase identification and impedance spectroscopy.??3.224
These multi-tier filters ensure that generative models guide
experimental efforts toward genuinely promising candidates
rather than thermodynamically unstable or synthetically
inaccessible compositions.

The cost and complexity of establishing and maintaining
such highly integrated experimental and computational
platforms, combined with the need for standardized validation
protocols, require substantial investment and interdisciplinary
expertise.

Table 4 provides a comparative overview of different
generative model approaches and their potential in the context
of novel SSE discovery.

6. Conclusion: Charting the Path Forward for
Al-Accelerated SSE Innovation

The journey towards high-performance, safe, and commercially
viable solid-state electrolytes is complex, yet the integration of
machine learning offers unprecedented opportunities to
accelerate progress. This review has highlighted several critical
research gaps and challenges that currently temper the full
impact of ML in this domain: the persistent scarcity of diverse,
high-quality data, especially for multivalent ion systems and
interfacial phenomena; the necessity for multi-objective
optimization to balance competing performance metrics; the
demand for interpretable ML models that provide scientific
insights rather than just black-box predictions; the crucial need
for models that can generalize and transfer knowledge across
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diverse chemical spaces and novel material classes; and the
imperative to move beyond screening predefined candidates
towards generative design of entirely new materials within
hybrid, closed-loop discovery frameworks.

The data scarcity challenge is particularly acute for
multivalent systems (Mg2*, Ca?*, Zn?*, AI**), where solid-state
battery research remains in its early stages both experimentally
and computationally. Beyond the stark quantitative disparity
with Li-ion SSE databases containing thousands of compounds
while Mg?*, Ca?*, Zn?*, and AI** conductors each number in the
tens to low hundreds??>, these systems exhibit fundamentally
different physics that cannot be addressed through simple data
augmentation. Multivalent ions face stronger Coulombic
interactions with the host lattice due to their higher charge
densities, leading to sluggish diffusion kinetics and significantly
higher activation energies compared to monovalent systems.7”
The migration mechanisms differ qualitatively: while Li*
transport often proceeds via direct hopping between
tetrahedral sites, Mg?* migration typically requires concerted
structural relaxation or even temporary coordination changes
to overcome the strong cation-anion binding. Additionally,
defect chemistry and strain accommodation mechanisms vary
substantially—multivalent dopants introduce different charge
compensation schemes and elastic distortions that alter
migration pathways in ways not captured by Li-based training
data. These mechanistic distinctions mean that ML models
trained predominantly on Li-ion data lack the physical
descriptors and feature representations necessary to capture
the governing principles in multivalent systems, creating a
critical bottleneck for advancing beyond lithium-ion
technologies that cannot be resolved by transfer learning alone
without substantial new data generation and physics-informed
constraints.

Encouragingly, the research landscape is actively addressing
these challenges. Strategies such as transfer learning,
unsupervised learning, and advanced data augmentation
techniques are being developed to combat data limitations.
Physics-informed machine learning and the pursuit of universal
descriptors and interatomic potentials aim to enhance model
transferability and generalization. Explainable Al methods are
beginning to shed light on the complex structure-property
relationships learned by ML models, fostering trust and guiding
scientific intuition. Furthermore, generative models, including
VAEs, GANs, EAs, and diffusion models, are showing increasing
promise in proposing novel SSE candidates from scratch, while
sophisticated multi-objective optimization algorithms are
helping to navigate the intricate trade-offs inherent in materials
design. The most transformative advances, however, are
emerging from hybrid frameworks that tightly integrate ML
predictions with high-fidelity computations (like DFT) and,
crucially, experimental validation, often within automated,
closed-loop "predictive synthesis" pipelines.

This review provides several distinctive contributions that
advance the field beyond existing literature. We present the
first systematic mapping of five interconnected challenges with
corresponding emerging solutions, providing a strategic
roadmap for practitioners. Unlike previous reviews that
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predominantly focus on Li-ion systems, we emphasizeothe
critical data gap for multivalent system®@nt) proviefdVspécific
strategies for addressing this limitation through transfer
learning and physics-informed approaches. We uniquely bridge
conventional computational methods with cutting-edge ML
techniques, demonstrating how hybrid workflows can
overcome individual limitations while leveraging
complementary strengths. Rather than merely surveying
techniques, we provide actionable recommendations for data
collection priorities, validation strategies, and best practices for
applying explainable Al methods to materials discovery.

To further propel Al-accelerated SSE innovation, future
research should prioritize several key directions. The
development of next-generation multi-objective optimization
algorithms that can simultaneously optimize ionic conductivity,
electrochemical  stability, mechanical properties, and
synthesizability while incorporating real-world constraints
represents a critical need. Physics-informed universal models
that embed fundamental physical laws governing ionic
transport and electrochemical stability directly into model
architecture require immediate attention. These must learn
temperature-dependent behavior, incorporate many-body
interactions, and predict interfacial stability through first-
principles constraints.

Robust uncertainty quantification methods for ML
predictions, particularly when extrapolating to novel chemical
spaces, represent another urgent priority. Cross-domain
transfer learning protocols must be established to enable
knowledge transfer between different ion types and between
computational and experimental domains. Several fundamental
research questions require immediate investigation: How can
we systematically quantify and improve model transferability
across different crystal structure families and ionic species?
What are optimal strategies for incorporating experimental
uncertainty into ML training datasets? How can we develop
models that predict long-term degradation and interfacial
evolution beyond static property prediction?

The practical implementation of these advances requires
immediate action across multiple fronts. A concerted
community-wide effort is essential to build FAIR??6 databases
that encompass multivalent systems and include
comprehensive interfacial property data with standardized
metadata. The integration of automated synthesis platforms
specifically designed for SSE discovery represents a
transformative opportunity, requiring real-time
characterization capabilities and automated feedback loops.
Comprehensive validation workflows for generative models
must include thermodynamic stability screening, kinetic
accessibility assessment, and rapid experimental validation
using automated characterization techniques.

Future experimental and computational campaigns should
prioritize multivalent systems with intermediate ionic radii,
materials exhibiting mixed ionic-electronic conductivity, and
interfacial properties that remain underrepresented in current
databases. The establishment of industry-academic
partnerships will be crucial for scaling promising discoveries to
commercial applications, while advanced generative models
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must be refined to ensure chemical validity, thermodynamic
stability, and practical synthesizability of proposed candidates.
The path forward for revolutionizing SSE development lies in a
deeply synergistic approach where machine learning realizes its
transformative potential through intimate integration with
fundamental domain knowledge from physics and chemistry,
rigorous computational modeling, and iterative experimental
validation. As these integrated intelligence frameworks mature,
particularly those enabling autonomous closed-loop discovery,
the pace of innovation in solid-state electrolytes is poised for
significant acceleration, bringing the promise of safer, more
energy-dense, and longer-lasting battery technologies closer to
reality.
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