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Wider Impact Statement

This review addresses the critical intersection of machine learning and solid-state electrolyte 
development, a field experiencing unprecedented growth with hundreds of publications emerging 
in recent years. Key developments discussed include the evolution from classical ML screening 
approaches to sophisticated deep learning architectures like graph neural networks, the 
emergence of ML interatomic potentials enabling large-scale dynamics simulations, and the 
transition toward generative models for de novo materials design. The field's significance 
extends beyond academic interest: solid-state electrolytes are essential for next-generation 
batteries that promise enhanced safety, energy density, and sustainability for electric vehicles and 
grid storage applications. The rapid pace of innovation has created both opportunities and 
challenges: while ML has accelerated SSE discovery timelines from decades to years, the 
proliferation of disparate approaches, limited data availability for non-Lithium systems, and lack 
of standardized evaluation metrics have hindered systematic progress. This review's forward-
looking perspective on autonomous discovery platforms, physics-informed generative models, 
and integrated experimental-computational workflows will shape the field's trajectory toward 
predictive materials design. By providing strategic directions for addressing current limitations, 
from developing universal descriptors to establishing closed-loop discovery systems, this work 
positions the materials science community to realize the transformative potential of AI-driven 
SSE innovation, ultimately accelerating sustainable energy storage technology development.
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Data Availability

No primary research results, software or code have been included, and no new data were 
generated or analysed as part of this review.
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Machine Learning Pipelines for the Design of Solid-State 
Electrolytes
Vinamr Jain,a Zhilong Wang,a,b Fengqi You*a,b,c,d

The development of solid-state electrolytes (SSEs) is critical for enabling safer, high-energy-density batteries. However, the 
discovery of new inorganic SSEs is hindered by vast chemical search spaces, complex multi-property requirements, and 
limited experimental data, especially for multivalent systems. This review presents the first systematic framework mapping 
five interconnected challenges in SSE discovery to emerging AI solutions, providing a strategic roadmap for practitioners. 
We comprehensively survey machine learning pipelines from data resources and feature engineering to classical models, 
deep learning architectures, and cutting-edge generative approaches. Key breakthroughs include: (1) machine learning 
interatomic potentials enabling microsecond-scale molecular dynamics simulations at near-DFT accuracy, revealing non-
Arrhenius transport behavior and overturning established transport mechanisms; (2) advanced neural network architectures 
achieving unprecedented accuracy in ionic conductivity prediction across diverse chemical spaces, including transformer-
based and graph neural network approaches; (3) generative models successfully proposing and experimentally validating 
novel SSE compositions through diffusion-based design frameworks; and (4) autonomous closed-loop discovery platforms 
integrating ML predictions with experimental synthesis, achieving order-of-magnitude efficiency gains over traditional 
approaches. Unlike previous reviews focused on Li-ion systems, we explicitly address the critical data gap for multivalent 
conductors (Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺) and provide concrete strategies through transfer learning and active learning frameworks. 
We bridge conventional computational methods (DFT, molecular dynamics) with modern ML techniques, demonstrating 
hybrid workflows that overcome individual limitations. The review concludes with actionable recommendations for multi-
objective optimization, explainable AI implementation, and physics-informed model development, establishing a 
comprehensive roadmap for the next generation of AI-accelerated solid-state battery materials discovery.

1. Introduction
Renewable energy growth and electrified transportation are 
creating an urgent demand for efficient, safe energy storage.1,2 
Rechargeable lithium-ion batteries (LIBs) have dominated 
portable electronics and electric vehicles due to their high 
energy density and long cycle life3. However, conventional LIBs 
rely on liquid electrolytes that are flammable and volatile, 
raising serious safety concerns (fires and leakage) especially in 
large-scale applications.4,5 These liquid electrolytes also have 
limited electrochemical stability windows, effectively capping 
the LIB energy density by constraining high-voltage cathodes 
and prohibiting the use of lithium metal anodes.6–8 Dendritic 
lithium growth and side reactions in liquid electrolytes pose 
risks of short-circuit and cell failure, highlighting the need for 
alternative electrolyte technologies to enable safer, higher-
energy batteries.9

 
All-solid-state electrolytes are being intensively explored as 

a next-generation solution to overcome the limitations of liquid 
electrolytes.10–12 By replacing the flammable liquid with a non-
combustible solid, SSE-based batteries promise vastly improved 
safety and thermal stability.13 Moreover, the mechanical rigidity 
of inorganic SSEs can suppress dendrite propagation, 
potentially allowing the pairing of high-capacity lithium metal 
anodes with high-voltage cathodes for higher energy density 
cells.14 SSE materials fall into two broad classes: inorganic 
crystalline or glassy ceramics (oxide or sulfide based) and solid 
polymers (or polymer–ceramic hybrids).15,16 Inorganic SSEs such 
as oxide “garnet” Li7La3Zr2O12 and sulfide Li10GeP2S12 have 
achieved room-temperature Li⁺ conductivities on the order of 
10⁻³–10⁻² S cm⁻¹,17–19 approaching those of liquid electrolytes. 
Polymer SSEs (e.g., PEO-based systems) offer flexibility and 
facile processing, but typically display lower ionic conductivities 
(~10⁻8–10⁻6 S cm⁻¹ at ambient temperature) and often require 
heating to 60–80°C to reach optimal conduction.20–22 Each SSE 
family has its own challenges: ceramic electrolytes can suffer 
from grain-boundary resistance and brittle interfaces, whereas 
polymer electrolytes tend to have narrower electrochemical 
stability windows and lower transference numbers.23,24 
Ongoing research is addressing these issues (e.g., novel glassy 
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sulfide compositions and composite electrolytes) to realize the 
full safety and performance advantages of SSEs.25,26

Prior to the rise of ML, researchers relied on first-principles 
computations and atomistic methods have been widely used to 
predict phase stability and Li⁺ chemical potentials, and to 
calculate migration barriers via nudged elastic band (NEB) 
pathways for candidate electrolytes.27,28 These calculations 
yield valuable atomistic insights – for example, clarifying ion 
conduction mechanisms in fast-ion conductors and screening 
thermodynamically stable electrolyte/electrode simulations to 
guide SSE discovery and optimization.29–31 DFT calculations 
combined with other computational approaches have proven 
valuable for materials discovery.32,33 Molecular dynamics (MD) 
simulations (both classical and ab initio (AIMD)) are another 
important tool, enabling the computation of ionic diffusivities 
and conductivities in SSE frameworks.34 Indeed, AIMD 
simulations on prototypical superionic solids like Li₁₀GeP₂S₁₂ and 
cubic Li₇La₃Zr₂O₁₂ have reproduced experimental ionic 
conductivities, confirming the capability of simulations to 
evaluate candidate SSE performance.35 However, DFT and MD 
are computationally intensive and scale poorly to the enormous 
compositional space of solid materials.36 High-throughput DFT 
screening is typically limited to evaluating hundreds of 
candidates at best, after preliminary filtering by simpler 
models.37 This bottleneck has motivated the emergence of ML 
approaches in electrolyte research, which can learn complex 
composition–structure–property relationships from data and 
make rapid property predictions.38 For instance, ML interatomic 
potentials trained on DFT data can act as surrogates to rapidly 
estimate ion migration barriers or perform MD simulations at a 
fraction of the cost.39,40  More broadly, regression and 
classification models have been trained to predict SSE ionic 
conductivity or stability from compositions and structures, 
enabling fast screening of thousands of unexplored 
chemistries.41,42 Early studies using data-driven models have 
already identified new Li-ion conductors that were missed by 
intuition or limited DFT searches,43,44 underscoring the promise 
of ML in accelerating materials discovery.

Despite this progress, several key research gaps and 
challenges remain, which form the motivation for this review. A 
fundamental hurdle is the limited availability of comprehensive 
datasets, particularly for solid conductors beyond well-studied 
Li⁺ systems, such as those for multivalent ions (Mg²⁺, Ca²⁺, Zn²⁺, 
Al³⁺).45,46 This scarcity impedes the ability of supervised ML 
models to generalize effectively.47,48 Relatedly, a significant 
concern is the limited transferability of models, as those trained 
on known compounds, may perform poorly when extrapolated 
to novel crystal structures or to different ion chemistries.47 
Furthermore, designing practical materials requires a holistic, 
multi-objective approach. While most studies have focused on 
optimizing a single property like ionic conductivity,49–51 practical 
SSEs must simultaneously satisfy multiple criteria, including a 
wide electrochemical stability window and sufficient 
mechanical strength to suppress dendrite formation.
Another challenge is the "black-box" nature of many advanced 
ML models, which limits their utility when they cannot provide 
insights into the underlying factors governing material 

properties.52,53 Finally, there is a pressing need to move beyond 
the passive screening of predefined candidate materials toward 
proactive, generative design. This requires employing 
generative algorithms to propose novel electrolyte 
compositions and structures54–56 and developing closed-loop 
"predictive synthesis" pipelines, which iteratively couple ML 
predictions with DFT validation and experimental feedback to 
accelerate the discovery of new materials.57,58 Addressing these 
five interconnected challenges – data limitations, multi-criteria 
optimization, interpretability, model generalization, and 
generative design – is crucial for unlocking the next wave of 
breakthroughs in solid-state electrolyte development.

This review addresses several critical gaps that distinguish it 
from existing literature on ML-driven SSE discovery. While 
previous reviews have largely focused on cataloguing ML 
techniques applied to battery materials broadly or examining 
specific electrolyte systems59 within traditional experimental 
and computational frameworks, we provide the first systematic 
framework that maps specific challenges in SSE discovery to 
emerging AI solutions, offering a strategic roadmap for 
practitioners. Most existing reviews emphasize Li-ion systems 
exclusively, whereas we explicitly address the critical data 
scarcity for multivalent ion conductors and provide concrete 
strategies for extending ML approaches to these underexplored 
but technologically important systems. Importantly, we bridge 
the gap between traditional computational methods (DFT, MD, 
KMC) and modern ML techniques, demonstrating how hybrid 
workflows can overcome individual limitations while leveraging 
complementary strengths. Rather than merely surveying 
available techniques, we provide actionable guidance for data 
collection priorities, validation strategies, and implementation 
of explainable AI methods specifically tailored to solid-state 
electrolyte discovery. Finally, we emphasize emerging 
paradigms like autonomous discovery platforms and physics-
informed machine learning that represent the next frontier in 
AI-accelerated materials discovery, going beyond conventional 
property prediction to enable true generative design of novel 
SSE materials.

We begin by examining the traditional computational 
methods that have historically guided SSE discovery, including 
NEB, molecular dynamics, and kinetic Monte Carlo simulations. 
We then detail the data resources and feature engineering 
strategies critical to enabling ML in this domain, followed by a 
survey of classical and deep learning models, including graph 
neural networks and ML-based interatomic potentials. We 
explore how these models have been applied to predict key 
properties (such as ionic conductivity, phase stability, and 
electrochemical compatibility), perform high-throughput 
screening to discover promising SSE candidates, and model ion 
diffusion mechanisms. Next, we address key challenges in ML-
driven SSE discovery, including data scarcity, limited model 
transferability, and multi-objective optimization. We then 
discuss emerging solutions such as active and transfer learning, 
explainable AI, and physics-informed models. Finally, we 
highlight opportunities for autonomous discovery through 
generative design, ML interatomic potentials, and closed-loop 
pipelines integrating computation and experiment. Through 
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this synthesis, we aim to clarify the evolving role of machine 
learning in SSE development and highlight strategic directions 
for the field’s continued advancement.

2. Conventional Computational Methods
Before the rise of ML, computational approaches including 
nudged elastic band (NEB) calculations, kinetic Monte Carlo 
(KMC) simulations, and molecular dynamics (MD) have been 
instrumental in SSE discovery. These methods provide the 
foundational data and physical insights that now enable ML-
driven discovery. Understanding their capabilities and 
limitations is essential for designing effective hybrid 
computational workflows that combine traditional physics-
based methods with modern ML techniques. A comparative 
summary of all computational methods discussed in this section 
is provided in Table S1 (Supplementary Information), 
highlighting their primary applications, advantages, limitations, 
and typical system sizes for SSE design.

2.1. Nudged Elastic Band (NEB) Method

NEB is an algorithm designed to find the Minimum Energy Path 
(MEP) and the associated saddle point (transition state) 
between known initial and final states on a potential energy 
surface. Its primary benefit is the direct calculation of the 
activation energy barrier (𝐸𝑎) for specific atomic or ionic hops, 
providing crucial atomistic details of migration mechanisms. A 
crucial refinement, climbing image NEB (CI-NEB), addresses the 
challenge of accurately locating the true saddle point by driving 
one image uphill to converge precisely onto the saddle point.60 
This is vital for screening materials and dopants based on ion 
mobility. The 𝐸𝑎 values derived from NEB calculations are also 
essential inputs for higher-scale simulations like Kinetic Monte 
Carlo.

The method has evolved from characterizing single 
materials to enabling high-throughput discovery. Early work 
mapped anisotropic Li-ion diffusion pathways in β-Li₃PS₄,61 
while automated path search methods have efficiently 
evaluated activation energies.62 Automated high-throughput 
DFT workflows integrated with materials databases like the 
Materials Project, AFLOW, OQMD, and NIST-JARVIS have 
transformed materials discovery, allowing systematic 
exploration of thousands of potential SSE compositions with 
standardized protocols for convergence and property 
extraction.63 Recent integration of NEB into high-throughput 
workflows enables screening of entire material classes like 
antiperovskites.64 Modern implementations incorporate ML-
guided path initialization using graph neural networks to 
generate superior initial guesses, dramatically improving 
convergence rates and reducing spurious local minima,65 
alongside adaptive sampling techniques with Gaussian process 
regression for efficient high-dimensional configuration space 
exploration. NEB can be combined with different levels of 
theory. DFT-NEB provides high accuracy but is computationally 
expensive, while classical NEB using empirical potentials offers 
computational efficiency at the cost of accuracy dependent on 

force field quality. Critical implementation challenges are 
discussed in detail in SI Section S1.1.

2.2. Kinetic Monte Carlo (KMC) simulations

KMC is a stochastic simulation technique modeling system 
evolution through discrete events with known rate constants. 
KMC excels at accessing experimentally relevant timescales 
(microseconds to seconds or longer), far exceeding typical MD 
simulations. This enables study of slow diffusion phenomena, 
SEI layer growth, or defect kinetics while efficiently bridging 
atomistic event rates to macroscopic properties like diffusion 
coefficients and ionic conductivity.

Recent methodological advances have significantly 
enhanced KMC capabilities for materials simulations. Adaptive 
kinetic Monte Carlo (aKMC) methods such as the kinetic 
Activation-Relaxation Technique (k-ART)66 and Self-Evolving 
Atomistic Kinetic Monte Carlo (SEAKMC)67 eliminate the need 
for pre-defined event catalogs by identifying transitions on-the-
fly, enabling simulations of complex disordered systems. 
Accelerated techniques including the Mean Rate Method and 
First Passage Time Analysis have been developed to overcome 
kinetic trapping in superbasins,68 extending the accessible 
timescales for materials with complex energy landscapes. 
Applications include active learning integration with KMC to 
explore SEI formation reaction barriers69 and ab initio-based 
KMC investigating polyanion mixing effects on Na-ion transport 
in NASICON electrolytes.70 Implementation considerations are 
discussed in SI Section S1.2.

2.3. Molecular dynamics (MD) simulations

2.3.1. Classical MD simulations

Classical MD simulates the atomic-scale motion of particles by 
numerically integrating Newton's equations of motion.  MD 
allows for the simulation of significantly larger systems (103 ―
106+ atoms) and longer timescales (nanoseconds to 
microseconds) compared to ab initio methods. It directly 
simulates ion dynamics at finite temperatures, enabling the 
calculation of transport properties (diffusion coefficients D, 
ionic conductivity σ, activation energies 𝐸𝑎), structural analysis 
via RDFs and coordination numbers, and prediction of 
mechanical properties. 

The primary limitation is that accuracy hinges entirely on 
force field quality and transferability—the "force field 
bottleneck." Classical force fields do not explicitly treat 
electrons, precluding description of electronic phenomena like 
charge transfer or bond breaking/formation unless specialized 
reactive force fields are used. Applications include studying ion 
transport in polymer-argyrodite interfaces using newly 
developed OPLS-AA based force fields,71 analyzing how Li 
vacancies or interstitials in β-Li₃PS₄ enhance conductivity by 
facilitating three-dimensional diffusion pathways,72 and 
examining Li⁺ transport in dilithium ethylene dicarbonate 
(Li₂EDC), a primary SEI component.73 Software packages and 
implementation considerations are provide in SI sections S1.3-
S1.5.
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2.3.2. AIMD for ionic conductivity validation

AIMD combines molecular dynamics with quantum mechanical 
calculations (typically DFT) to determine interatomic forces on-
the-fly at each simulation time step. This avoids empirical force 
field requirements, making AIMD particularly useful for novel or 
complex materials. It can implicitly account for electronic 
effects like dynamic polarization and charge distribution during 
ion motion, potentially offering higher accuracy than classical 
MD where these are prominent. AIMD serves as a crucial tool 
for benchmarking and parameterizing classical force fields or 
machine learning potentials.

However, AIMD is extremely computationally expensive. 
This restricts simulations to small system sizes (typically a few 
hundred atoms) and very short physical timescales 
(picoseconds to a few nanoseconds). Consequently, to observe 
sufficient diffusion events for calculating transport properties, 
AIMD simulations of SSEs are often run at very high 
temperatures, with room-temperature properties extrapolated 
via the Arrhenius relation, which can be unreliable if diffusion 
mechanisms change, or phase transitions occur. The accuracy of 
AIMD also remains dependent on the approximations within 
the underlying DFT calculation (e.g., the exchange-correlation 
functional). Applications include investigating lithium-ion 
diffusion in garnet-type materials74 and studying chemical 
processes at the Li/Li₆PS₅Cl interface at different 
temperatures.75 Sampling considerations are discussed in SI 
section S1.6.

3. Machine Learning Algorithms and Model 
Architectures for SSEs

In recent years, ML has emerged as a powerful paradigm to 
accelerate the design and discovery of novel SSEs. By learning 
complex relationships between material features and target 
properties, ML techniques can efficiently screen vast numbers 
of candidate materials, predict key performance metrics, and 
guide experimental synthesis efforts. This section reviews the 
key ML algorithms, model architectures, and the essential data 
resources that underpin the application of ML in the search for 
high-performance inorganic SSEs.
3.1. Data Resources for SSE Machine Learning

The efficacy and reliability of any ML model are inextricably 
linked to the quality, quantity, and relevance of the underlying 
data used for training and validation. In the context of SSE 
discovery, acquiring sufficient high-quality data presents a 
significant challenge, particularly for experimentally measured 
properties like ionic conductivity. This data scarcity can limit the 
predictive power and generalizability of ML models. SSE 
research leverages data from diverse sources, broadly 
categorized into large-scale computational databases and 
smaller, curated experimental datasets.

3.1.1. Computational Databases

These repositories primarily contain material properties derived 
from computational methods, most notably DFT and MD 
simulations. They serve as invaluable resources for high-

throughput computational screening (HTS), allowing 
researchers to filter vast numbers of candidate materials based 
on predicted fundamental properties such as thermodynamic 
stability, electronic structure (e.g., band gap), crystal structure, 
and mechanical properties. While these databases contain 
diverse materials beyond SSEs, they serve as critical sources for 
identifying promising SSE candidates and training predictive 
models.

Materials Project (MP): The most prominent open-source 
database with DFT-calculated properties for hundreds of 
thousands of inorganic compounds.63 MP provides 
formation energies, band gaps, elastic tensors, and crystal 
structures—all accessible via web interface and API. Its 
integration with pymatgen76 and matminer77 facilitates 
automated data retrieval and feature generation for ML 
workflows. MP is frequently used to identify Li-containing 
structures as initial SSE candidates.
Inorganic Crystal Structure Database (ICSD): Contains over 
300,000 experimentally determined crystal structures,78 
providing reliable crystallographic information that serves 
as starting points for DFT calculations or structural 
descriptor generation.
AFLOW, OQMD, and NIST-JARVIS: These repositories offer 
additional DFT-calculated properties across millions of 
materials. AFLOW provides extensive electronic, 
thermodynamic, and mechanical properties via its REST API 
(AFLOWLIB).79 OQMD focuses on thermodynamic stability 
through formation energies relative to the convex hull.80  
JARVIS offers comprehensive properties including elastic 
tensors, dielectric constants, and phonon properties for 
tens of thousands of materials.81 
Other Computational Repositories: Additional databases 
contribute to the materials data ecosystem. The 
Computational Materials Repository (CMR) aggregates 
electronic structure data from various projects, including 
C2DB and QPOD.82 Materials Cloud supports reproducible 
computational workflows and integrates with AiiDA for 
provenance tracking.83 The Crystallography Open Database 
(COD) aggregates over 520,000 crystal structures of 
organic, inorganic, and metal-organic compounds.84 
GNoME, developed by DeepMind, has used deep learning 
to predict the stability of over 2 million inorganic crystals.85 
The Alexandria database provides DFT-calculated 
properties for millions of materials and is used to train 
large-scale ML models.86

3.1.2. Experimental and Curated Datasets

While computational databases offer breadth, datasets 
containing experimentally measured properties, particularly 
ionic conductivity, are essential for training models to predict 
real-world performance. These datasets are often smaller, 
compiled through painstaking literature surveys or expert 
curation.

• LiIon Dataset: An expert-curated collection focusing 
on lithium-ion conductors, containing 820 entries from 
214 literature sources.87 Each entry includes chemical 
composition, an assigned structural label (e.g., garnet, 
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LISICON), and AC impedance-measured ionic 
conductivity at specific temperatures. With 403 
unique compositions having near-room-temperature 
conductivity data, it has been instrumental in training 
ML classifiers (like CrabNet) to distinguish between 
high and low conductivity compositions.87

• OBELiX Dataset: A more recent effort specifically 
designed for benchmarking ML models for SSE 
conductivity prediction. It comprises approximately 
600 synthesized solid electrolyte materials with 
experimentally measured room-temperature ionic 
conductivity, along with composition, space group, 
lattice parameters, and, for about half the entries, full 
crystallographic information files (CIFs).88

• Literature-Mined Datasets: Several studies have 
employed natural language processing (NLP) and text 
mining techniques to automatically extract relevant 
data (e.g., ionic conductivity values, synthesis 
parameters, structural types) directly from the vast 
body of scientific literature. While powerful for data 
aggregation, these approaches face challenges related 
to the heterogeneity of reported data, inconsistencies 
in experimental conditions, and the accuracy of 
automated extraction.89 An example includes the work 
by Shon & Min (2023), which extracted over 4000 
conductivity measurements from nearly 1500 
papers.90

3.1.3. Data Challenges

The effective application of ML in SSE discovery is often 
hampered by several data-related challenges. As mentioned, 
experimental data, especially reliable room-temperature ionic 
conductivity measurements, remains relatively scarce 
compared to the vastness of the chemical space being explored. 
Data heterogeneity is another issue, arising from differences 
between computational predictions and experimental realities, 
variations in experimental protocols and measurement 
conditions across different studies, and the diverse formats 
used for data reporting. Furthermore, both computational and 
experimental data contain inherent uncertainties and potential 
errors as DFT calculations rely on approximations, while 
experimental measurements are subject to synthesis variations 
and characterization limitations.91 These issues often result in 
datasets with missing values and significant class imbalance, 
where high-performing electrolytes are severely 
underrepresented. To mitigate these challenges, researchers 
employ various strategies, including data imputation to 
estimate missing entries and resampling techniques such as the 
Synthetic Minority Over-sampling TEchnique (SMOTE) to create 
more balanced training sets.92 Finally, data accessibility varies, 
with some key databases requiring subscriptions while others 
are open access.

The landscape of data resources reveals a complementary 
relationship between large-scale computational databases and 
smaller, targeted experimental datasets. Computational 
databases like MP, AFLOW, OQMD, and JARVIS provide the 
necessary breadth for initial high-throughput screening, 

enabling the filtering of millions of hypothetical compounds 
based on fundamental properties like thermodynamic stability 
(formation energy, energy above hull), electronic insulation 
(band gap), and potentially relevant structural or mechanical 
characteristics. However, accurately predicting ionic 
conductivity, the key performance metric for an SSE, directly 
from first principles is computationally demanding, often 
requiring expensive MD simulations. This is where curated 
experimental datasets like LiIon and OBELiX become critical. 
Although smaller in size, they contain the direct experimental 
measurements needed to train and validate ML models 
specifically designed to predict ionic conductivity. This often 
leads to a multi-stage ML workflow: initial screening using 
models trained on large computational datasets to identify 
stable and electronically suitable candidates, followed by 
conductivity prediction for the down-selected candidates using 
models trained on experimental data. Table S2 provides a 
summary of prominent datasets commonly used in machine 
learning studies for solid-state electrolyte research, including 
their primary data sources, key material properties covered, 
accessibility, and relevant references. The development of 
accurate and efficient machine learning interatomic potentials 
(MLIPs, discussed in Section 3.4) represents a significant effort
to bridge this gap, aiming to enable faster calculation of 
dynamic properties like ionic conductivity for the vast number 
of candidates identified through computational screening.
3.2. Classical Machine Learning Algorithms and Descriptors

Before the widespread adoption of deep learning, classical 
machine learning algorithms formed the backbone of data-
driven materials discovery efforts, including the search for novel 
SSEs. These methods remain valuable tools for establishing 
baseline models, interpreting feature importance, and tackling 
problems with limited data. They typically operate on a set of 
pre-defined features, known as descriptors, which numerically 
encode relevant material characteristics.

3.2.1. Descriptors (Features): The Language of Materials for 
ML

Descriptors translate the chemical and physical nature of a 
material into a numerical format that ML algorithms can 
process. The selection, generation, and quality of these 
descriptors are paramount, directly influencing model accuracy, 
interpretability, and generalizability. A significant challenge in 
the field is the development of descriptors that are both 
universally applicable across different material classes and 
accurately capture the underlying physics governing the target 
property. Descriptors used in SSE research can be grouped into 
several categories:

• Compositional Descriptors: These features are 
derived solely from the material's chemical formula 
(stoichiometry) and the intrinsic properties of its 
constituent elements. Examples include average 
atomic mass, mean electronegativity, variance of 
atomic radii, elemental fractions, and specific 
stoichiometric ratios. They are computationally 
inexpensive to generate but ignore the crucial 
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influence of atomic arrangement and bonding. For 
instance, one study utilized a set of 145 "Chemical 
Descriptor" features based on stoichiometry and 
elemental properties93. While simple, compositional 
descriptors alone can sometimes yield reasonable 
predictive performance, particularly for classification 
tasks or when combined with more sophisticated 
algorithms.

• Structural Descriptors: These capture information 
about the geometric arrangement of atoms in the 
crystal lattice. They can range from simple parameters 
like lattice constants, cell volume, space group 
number, and packing fraction to more complex 
representations like radial distribution functions 
(RDFs), coordination numbers, bond angles, 
polyhedral volumes, local atomic environment motifs 
(e.g., using Voronoi analysis), and topological indices. 
Structural descriptors are vital as many key SSE 
properties, including ionic conductivity pathways and 
mechanical stability, are intimately linked to the 
crystal structure. Generating these features typically 
requires crystallographic information (e.g., from CIF 
files obtained via ICSD or MP) and specialized analysis 
tools. Examples include employing Voronoi 
tessellation features to improve graph neural 
networks,94 or using Smooth Overlap of Atomic 
Positions (SOAP) descriptors to represent local atomic 
environments.95

• Electronic Descriptors: These features quantify 
aspects of the material's electronic structure, which 
governs electrical conductivity, electrochemical 
stability, and chemical bonding. Common examples 
include the electronic band gap (Eg), position of 
valence and conduction band edges, density of states 
near the Fermi level, work function, electron affinity, 
ionization potential, and measures of bond ionicity or 
covalency. Electronic descriptors are crucial for 
screening potential SSEs, as ideal candidates must be 
good ionic conductors but poor electronic conductors 
(i.e., possess a wide band gap) and exhibit stability 
within the battery's operating voltage window. These 
descriptors are often derived from computationally 
intensive DFT calculations.

• Physicochemical/Thermodynamic Descriptors: This 
broad category includes various calculated or 
tabulated physical and chemical properties. Examples 
relevant to SSEs include formation energy, energy 
above the convex hull (Ehull) for thermodynamic 
stability assessment, density, ionic radii, melting point, 
and mechanical properties like bulk modulus (K) and 
shear modulus (G). These descriptors relate to a 
material's stability, processability, and mechanical 
robustness against issues like dendrite penetration. 
Formation energy and Ehull are standard outputs from 
DFT databases (MP, OQMD) used for initial stability 
screening, while mechanical moduli, predicted using 

ML or DFT, are critical for assessing dendrite 
suppression capabilities.

• Kinetic/Dynamic Descriptors: These features aim to 
capture aspects related to ion transport dynamics. 
Examples include activation energy barriers for ion 
migration (Eb or Ea), diffusion coefficients (D), attempt 
frequencies, and properties derived from phonon 
calculations (e.g., vibrational density of states, phonon 
band structure features). These descriptors are most 
directly related to ionic conductivity (σ), often 
following an Arrhenius-type relationship σ ∝ 𝑒xp 𝐸𝑎

𝑘𝑏𝑇
. However, they are typically challenging and 
computationally expensive to obtain, requiring 
methods like NEB calculations for migration barriers or 
extensive MD simulations for diffusion coefficients. 
Recent work has shown phonon-related features 
derived from DFT phonon calculations can be 
important predictors for ionic conductivity in ML 
models.96

The different categories of descriptors, along with their 
generation methods and significance, are summarized in Table 
1.
Libraries and Tools for Featurization 
The automated generation of descriptors, or "featurization," is 
facilitated by an ecosystem of open-source Python libraries. 
Pymatgen76 provides the core data structures and tools for 
materials analysis. Built upon this, Matminer77 offers a high-
level interface for computing a comprehensive suite of 
compositional, structural, and electronic descriptors from 
standard material representations. For more advanced models, 
libraries such as DeepChem97 are valuable for generating the 
graph-based representations required by architectures like 
Graph Neural Networks. These toolkits are instrumental for 
automating the creation of robust and reproducible feature sets 
for machine learning.

Table 1: Common Descriptors Used in Machine Learning for Solid-State Electrolytes

Descriptor 
Category

Specific 
Descriptor 
Example

Informati
on 
Encoded

Generation 
Method

Pros/Cons

Compositio
nal

Average 
Electroneg
ativity

Elemental 
chemical 
bonding 
tendency

Formula-
based

Simple; 
Ignores 
structure

Elemental 
Fractions

Stoichiom
etry

Formula-
based

Simple; Basic 
composition 
info

Structural Volume 
per Atom

Packing 
density, 
free 
volume

Structure 
Analysis 
(CIF)

Relates to ion 
mobility/stiff
ness; 
Requires 
structure
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Space 
Group 
Number

Crystal 
symmetry

Structure 
Analysis 
(CIF)

Captures 
overall 
symmetry; 
Coarse 
descriptor

Radial 
Distributio
n Function 
(RDF)

Average 
local 
atomic 
density 
around a 
central 
atom

Structure 
Analysis 
(CIF)

Detailed local 
structure; 
Computation
ally more 
intensive

Coordinati
on 
Number

Number 
of nearest 
neighbour
s

Structure 
Analysis 
(CIF)

Local bonding 
environment: 
Definition can 
vary

Electronic 
structure

Band Gap 
(Eg)

Energy 
required 
to excite 
an 
electron

DFT Key for 
electronic 
conductivity; 
Computation
ally expensive

Formation 
Energy

Thermody
namic 
stability 
relative to 
elemental 
phases

DFT Fundamental 
stability 
metric; 
Requires 
calculation

Energy 
Above Hull 
(Ehull)

Thermody
namic 
stability 
relative to 
competing 
phases

DFT Better 
stability 
indicator than 
formation 
energy; 
Requires 
phase 
diagram data

Physicoche
mical

Ionic Radii Effective 
size of 
ions

Tabulated/F
ormula

Relates to 
packing and 
channel size; 
Simple 
approximatio
n

Shear/Bulk 
Modulus 
(G,K)

Resistance 
to 
shear/vol
ume 
deformati
on

DFT / ML 
Prediction

Key for 
mechanical 
stability 
(dendrites); 
Requires 
calculation/pr
ediction

Kinetic/Dy
namic

Migration 
Barrier (Ea
, Eb)

Energy 
barrier for 
ion 
hopping

DFT (NEB) / 
MD

Directly 
relates to 
conductivity; 
Computation
ally very 
expensive

Phonon 
Properties

Lattice 
vibrationa
l 
characteri
stics

DFT 
(Phonon 
Calc.)

Relates to ion 
dynamics/sta
bility; 
Computation
ally expensive

Note: CIF = Crystallographic Information File; DFT = Density Functional 
Theory; MD = Molecular Dynamics; NEB = Nudged Elastic Band; ML = 
Machine Learning.

3.2.2. Classical ML Algorithms in SSE Research

Various classical ML algorithms have been applied to SSE 
research for tasks including property prediction, classification, 
and unsupervised exploration of materials space.

• Regression: Used to predict continuous target 
variables.

o Algorithms: Simple Linear Regression, Polynomial 
Regression, Kernel Ridge Regression (KRR), Support 
Vector Regression (SVR), Gaussian Process 
Regression (GPR).

o Applications: Predicting ionic conductivity (logσ), 
activation energies, elastic moduli (K,G) for 
mechanical stability assessment, and formation 
energies. For example, Ahmad et al. used Gradient 
Boosting Regressor (GBR) and KRR, trained on 
structural features, to predict shear and bulk moduli 
for over 12,000 inorganic solids in a screening study 
for dendrite suppression98. Zhao et al. used GPR-
based Bayesian optimization to guide the 
experimental synthesis of LATP electrolytes towards 
optimal ionic conductivity99.

• Classification: Used to assign materials to discrete 
categories.

o Algorithms: Logistic Regression (LR), Naive Bayes 
(NB), Support Vector Machines (SVM), Decision 
Trees (DT).

o Applications: Xu et al. (2020) used Logistic 
Regression to classify SICON compounds as poor or 
good superionic conductors based on elemental 
descriptors.47 Chen et al. (2021) employed Support 
Vector Machines to analyze relationships between 
manufacturing conditions and solid-state 
electrolyte film performance for evaluation and 
optimization.100 Adhyatma et al. (2022) applied a 
tree-based LightGBM model to classify doped LLZO 
compounds by their ionic conductivity levels (high or 
low).101

• Ensemble Methods: These techniques combine 
predictions from multiple individual models (base 
learners) to improve overall performance, robustness, 
and reduce overfitting. They often achieve state-of-
the-art results on tabular data.

o Algorithms: Random Forest (RF), Gradient Boosting 
Machines (GBM, including variants like XGBoost and 
LightGBM).

o Applications: RF and GB variants are frequently 
employed for both regression (predicting 
conductivity, formation energy) and classification 
(high/low conductivity, stability) in SSE research. For 
instance, Pereznieto et al. (2023) utilized a Random 
Forest algorithm to analyze experimental data and 
discover new potential Na-ion solid electrolytes 
exhibiting high ionic conductivity.102 Kim et al. 
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(2023) implemented an ensemble model of gradient 
boosting algorithms to classify over 3,500 NASICON 
structures, successfully identifying promising Na 
superionic conductor candidates with high 
accuracy.103 Tang et al. (2024) applied an XGBoost 
algorithm to predict key properties such as band 
structure and stability, which enabled the screening 
and identification of 194 ideal solid-state electrolyte 
candidates from over 6,000 structures.104 Zhang et 
al. (2024) developed Random Forest models 
alongside neural networks to predict ionic 
conductivity in NASICON materials and to identify 
influential factors, highlighting the role of Na 
stoichiometric count.105

• Clustering: Unsupervised learning algorithms group 
similar data points together without relying on 
predefined labels.

o Algorithms: k-Means, Agglomerative clustering, 
Hierarchical Density-Based Spatial Clustering of 
Applications with Noise (HDBSCAN)

o Applications: Park et al. (2024) used HDBSCAN to 
cluster over 12,000 Na-containing materials based 
on structural properties, identifying 12 groups and 
revealing shared characteristics in high-conductivity 
clusters.106 Laskowski et al. (2023) applied 
agglomerative clustering to ~26,000 Li-containing 
structures to identify promising superionic 
conductor candidates for further screening.95 Gallo-
Bueno et al. (2022) used unsupervised outlier 
detection models to automatically classify 
computed Li-argyrodite crystal structures based on 
their structural distortion.107 

The successful application of classical ML algorithms is heavily 
dependent on the process of "feature engineering" – the careful 
selection, transformation, and combination of descriptors to 
best represent the underlying material physics relevant to the 
target property. The frequent high performance reported for 
ensemble methods like Random Forest and Gradient Boosting 
variants (XGBoost, LightGBM)108–111 underscores the difficulty in 
capturing the complex, often non-linear, structure-property 
relationships in SSEs using single, simpler models acting on 
these hand-crafted features. Ensemble methods offer 
robustness by averaging out errors from individual base 
learners (like decision trees) and implicitly handling feature 
interactions, making them well-suited to the high-dimensional 
and potentially noisy descriptor spaces common in materials 
informatics. However, their complexity can sometimes make 
direct physical interpretation of the learned relationships 
challenging compared to simpler models like linear regression. 
Despite these interpretability challenges, classical ensemble 
methods remain preferable in scenarios with limited training 
data where deep learning models would overfit, or when 
transparent decision-making is critical for materials design 
insights. For instance, Decision tree models can readily identify 
feature importance rankings,106 while XGBoost provides built-in 
interpretability tools that can reveal which structural 
descriptors most strongly influence ionic conductivity 

predictions.112–114 These advantages make classical approaches 
particularly valuable in early-stage SSE discovery when datasets 
are small or when researchers need to understand and 
communicate the physical basis underlying model predictions 
to experimental collaborators. Unsupervised clustering 
techniques, such as HDBSCAN, provide a valuable alternative or 
complementary approach.106 By grouping materials based on 
similarities in their descriptor vectors (often structural features 
derived from large computational databases), clustering can 
reveal inherent patterns and identify promising material 
families even when labeled target data (like experimental 
conductivity) is sparse. This capability allows researchers to 
leverage the vastness of computational datasets to guide 
exploration before focusing on more data-intensive supervised 
prediction tasks. This reliance on feature engineering and the 
success of complex ensembles sets the stage for deep learning 
approaches (Section 3.3), which aim to automate the feature 
learning process itself.

3.3. Neural Network Architectures and Deep Learning 
Models

While classical ML methods have proven valuable, their reliance 
on hand-crafted descriptors limits their ability to capture 
complex, non-linear interactions and spatial correlations within 
crystal structures that govern SSE properties. Deep learning 
(DL), characterized by artificial neural networks with multiple 
layers, enables hierarchical feature learning directly from raw 
data, reducing the need for manual feature engineering.
The simplest deep learning architecture, Feedforward Neural 
Networks (FNNs) or Multi-Layer Perceptrons (MLPs), consists of 
an input layer, one or more hidden layers, and an output layer, 
processing information in one direction. They operate on pre-
defined descriptors similar to classical algorithms (Figure 2a) 
and have been used as components within ensemble models, 
baseline comparisons, or for property prediction based on 
manually selected features in SSE research.88,105,115

Graph Neural Networks (GNNs) represent a more sophisticated 
approach, naturally operating on graph representations of 
materials where atoms are nodes and bonds or interatomic 
proximity define edges. This allows GNNs to learn 
representations that explicitly incorporate atomic connectivity 
and local chemical environments, automatically identifying 
features relevant to predicting material properties. Capturing 
crystal structure nuances, such as periodicity and 3D geometry 
(SE(3) invariance/equivariance), is crucial for effective GNN 
design. Crystal Graph Convolutional Neural Network (CGCNN) 
represents crystals as graphs and uses convolutional layers to 
aggregate information from neighboring atoms and bonds to 
learn atom-level features, which are then pooled to predict 
material properties (Figure 2b). It has been applied to predict 
thermodynamic stability and mechanical properties of 
SSEs.116,117 Improved versions like iCGCNN incorporate Voronoi 
tessellation information and explicit many-body interactions to 
enhance performance.118 Materials Graph Network (MEGNet) 
extends the graph network concept by including global state 
variables (like temperature or pressure) alongside atomic 
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(node), bond (edge), and global features, allowing for more 
versatile property predictions (Figure 2b). MEGNet and related 
architectures like M3GNet119 have been trained on large 
datasets (e.g., Materials Project) for broad applicability in 
materials property prediction and can be applied to predict SSE 
stability or mechanical properties.120 SchNet employs 
continuous-filter convolutional layers to model quantum 
interactions in atomistic systems without using explicit graph 
representations, and has been used to predict formation 
energies of bulk crystals and potential energy surfaces.121 The 
field continues evolving rapidly, with newer architectures like 
ALIGNN (Atomistic Line Graph Neural Network),122 k-NAGCN (k-
Nearest Atom Graph Neural Network),123 and transformer-
based models like CrystalFramer (which introduces dynamic, 
attention-based coordinate frames)124 continuously advancing 
accuracy and representational power for crystal structures.
Distinct from structure-based approaches, some deep learning 
models prioritize elemental composition, offering advantages 
when structural information is unavailable, computationally 
expensive to obtain, or for rapid initial screening across vast 
chemical spaces. ElemNet learns material properties directly 
from elemental compositions represented as fractional counts, 
bypassing structural information for rapid composition-based 
screening.125 CrabNet, a transformer-based model using 
attention mechanisms, operates primarily on compositional 
data but implicitly learns interactions between elements126 
(Figure 2c). It demonstrated success when trained on the LiIon 
dataset for classifying compositions by their likelihood of 
exhibiting high lithium-ion conductivity.87 More broadly, 
transformer architectures—inspired by their success in natural 
language processing and relying heavily on self-attention 
mechanisms—can capture long-range interactions within 
crystal graphs or learn complex relationships between 
constituent elements, as seen in CrabNet126 and 
CrystalFramer.124 Transformer architectures are also being used 
to develop powerful interatomic potentials like GPTFF.127

While most ML models predict properties of given materials 
(forward problem), generative models solve the inverse 
problem: generating novel material structures likely to possess 
desired properties. Techniques like Generative Adversarial 
Networks (GANs), Variational Autoencoders (VAEs), and 
diffusion models are being explored for materials 
discovery.55,128 These models learn the underlying distribution 
of known stable materials and can sample this distribution or be 
conditioned to generate new candidates meeting specific 
criteria (e.g., high stability, target band gap, specific crystal 
structure). MatterGen, a diffusion model operating on 3D 
crystal geometry, has demonstrated the ability to generate 
novel, stable materials with target properties by learning from 
large databases like MP and Alexandria.56  Such approaches 
hold significant promise for generating entirely new SSE 
candidates beyond modifications of known structures. Other 
generative approaches like SHAFT utilize hierarchical 
generation based on symmetry constraints.129

Figure 1: Overview of a machine learning pipeline for the design and discovery 
of SSEs. (a) The pipeline begins with data resources such as the Materials Project, 
ICSD, and JARVIS, which provide structural and property data for a wide range of 
inorganic materials. (b) These data are transformed into meaningful descriptors: 
composition-based, structural, and electronic, using tools such as Matminer and 
pymatgen. (c) Machine learning models, organized by learning paradigm 
(supervised, unsupervised, deep learning), are then trained on these descriptors. 
Classical models (e.g., random forests, SVMs) and deep learning architectures 
(e.g., CGCNN, MEGNet, CrabNet) are (d) employed to predict key properties such 
as ionic conductivity, electrochemical stability, and mechanical robustness. These 
models also enable applications including ML-based interatomic potentials and 
high-throughput virtual screening for novel multivalent SSEs. 

Figure 2: Schematic overview of representative deep learning architectures for 
SSE property prediction. (a)  FFN or MLP, which maps a fixed-length vector of 
engineered features to a target property. (b) GNN architectures that operate on 
graph representations of crystal structures. (i) The CGCNN updates atom features 
(𝑣𝑖) by aggregating information from its local atomic neighborhood. (ii) The 
MEGNet framework, which iteratively updates atom (𝑣𝑖), bond (𝑒𝑘), and global 
state (u) attributes to learn a comprehensive representation of the material. (c) 
The CrabNet architecture, a transformer-based model that uses a self-attention 
mechanism on elemental composition to predict properties and quantify aleatoric 
uncertainty.

3.4. Machine Learning Interatomic Potentials (MLIPs) for 
Dynamics (MLMD)

A major breakthrough enabled by deep learning is the 
development of highly accurate Machine Learning Interatomic 
Potentials (MLIPs), also known as ML force fields. These models 
learn the complex relationship between atomic configurations 
and the potential energy surface (PES) – including energies, 
forces on atoms, and stresses on the simulation cell – directly 
from large datasets generated by high-fidelity quantum 
mechanical calculations (typically DFT). Once trained, MLIPs can 
perform MD simulations, termed MLMD, with an accuracy 
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approaching that of DFT but at a computational cost orders of 
magnitude lower (closer to classical force fields).

This capability is particularly transformative for SSE 
research. Simulating ion transport dynamics – the diffusion 
pathways, diffusion coefficients (D), activation energies (Ea), 
and ultimately ionic conductivity (σ) – requires tracking atomic 
motion over long timescales (nanoseconds or more) and large 
system sizes (thousands of atoms) to capture statistically 
relevant events and collective motion. Ion transport in SSEs 
involves rare events such as defect formation, migration, and 
collective rearrangements that occur over vastly different 
timescales: while individual atomic hops happen on picosecond 
timescales, macroscopic diffusion processes and phase 
transformations relevant to battery operation occur over 
seconds to minutes. Such simulations are often computationally 
prohibitive using traditional AIMD. MLIPs overcome this 
limitation, enabling routine MLMD simulations that provide 
direct insights into the mechanisms governing ionic conductivity 
in complex SSE materials.
Several MLIP frameworks have been applied to study SSEs:

• Gaussian Process Regression and Sparse GPR (SGPR) 
approaches: Traditional GPR methods provide a 
Bayesian framework for learning interatomic 
potentials with built-in uncertainty quantification, but 
their O(n³) computational scaling with dataset size 
becomes prohibitive for large training sets. SGPR 
addresses this limitation through low-rank 
approximations using reduced "inducing sets" of 
representative local environments, achieving 
computational scaling comparable to linear methods 
while retaining the probabilistic advantages of GPR.130 
SGPR has been successfully applied to survey Li 
diffusivity across hundreds of ternary crystals and 
create transferable universal potentials for complex 
electrolytes like Li₁₀GeP₂S₁₂.131,132

• Gaussian Approximation Potential (GAP): Based on 
Gaussian process regression. A near-universal GAP 
was developed for the Li-P-S (LPS) material class, 
enabling studies of conductivity in both crystalline 
(e.g., Li3PS4, Li7P3S11) and glassy phases and revealing 
the importance of anion dynamics.133 

• Deep Potential Molecular Dynamics (DeePMD / 
DeePMD-kit): A deep neural network-based potential 
that has seen wide application.134 It has been used to 
model Li diffusion in amorphous Li3PO4,135 superionic 
conductors like Li10GeP2S12 (LGPS) and Nb-doped 
garnets, and importantly, to perform microsecond-
long simulations revealing the lack of a significant 
"paddle-wheel" effect from polyanion rotations on Li 
diffusion in crystalline Li7P3S11 and Li2B12H12 at room 
temperature.136

• Crystal Hamiltonian Graph Network (CHGNet): A 
GNN-based universal MLIP pre-trained on the 
extensive Materials Project trajectory dataset, 
uniquely incorporating electronic charge and magnetic 
moment information.106 It has been demonstrated for 

charge-informed MD simulations of Li intercalation 
(LixMnO2) and Li diffusion in garnet SSEs.137

• M3GNet (Materials 3-Body Graph Network): Another 
GNN-based universal potential trained on the 
Materials Project database, designed for broad 
applicability in structural relaxation and dynamics 
simulations.119

• GPTFF (Graph-based Pre-trained Transformer Force 
Field): A recent transformer-based force field trained 
on a massive dataset (billions of force components), 
aiming for high accuracy and generalizability across 
diverse inorganic systems.127

MLMD simulations driven by these potentials have provided 
crucial insights, such as identifying non-Arrhenius diffusion 
behavior in LGPS,135 elucidating specific diffusion pathways,137 
and quantifying the impact of structural features like defects or 
anion dynamics on conductivity.133 The significant speed-up 
factors highlight the potential of MLIPs to dramatically 
accelerate the computational assessment of ionic transport.138

The progression from classical ML to deep learning marks a 
significant evolution in the computational toolkit for SSE 
discovery. GNNs, in particular, represent a paradigm shift away 
from manual feature engineering towards automated learning 
of structure-property relationships directly from the atomic 
graph representation. This allows models to potentially uncover 
more complex and subtle correlations than might be captured 
by human-designed descriptors. However, these advances 
come with important practical considerations. GNN 
architectures like CGCNN and MEGNet require high-quality 
crystal structure files (CIFs) with precise atomic positions as 
inputs, as they construct graph representations directly from 
atomic arrangements and bonding information117,120. The 
incorporation of both atomic and bond-level descriptors 
introduces numerous hyperparameters, necessitating larger 
training datasets (typically >10³ samples) and substantial 
computational resources compared to classical ML approaches 
that rely on pre-computed scalar descriptors139. In contrast, 
SGPR-based approaches can achieve comparable accuracy with 
smaller training datasets due to their efficient use of training 
data and adaptive sampling strategies, making them particularly 
suitable for data-scarce regimes where generating extensive 
DFT training sets is computationally expensive.130,140

 Perhaps even more impactful is the development and 
application of MLIPs. While classical ML and standard GNNs 
often focus on predicting static properties (stability, band gap, 
moduli) or rely on computationally expensive methods (AIMD, 
NEB) to infer dynamics, MLIPs provide a computationally 
tractable route to directly simulate the crucial dynamic 
processes governing ionic conductivity. This enables the field to 
move beyond predicting prerequisites for good conductivity 
towards simulating and understanding the transport 
phenomenon itself over timescales reaching microseconds—a 
significant computational achievement.141 However, MLIPs 
require careful validation to ensure transferability across 
different thermodynamic conditions and structural motifs, as 
their accuracy is fundamentally limited by the quality and 
coverage of the underlying DFT training set. Additionally, the 
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computational overhead of generating sufficient training data 
for MLIPs can be substantial, particularly for complex multi-
component systems. Despite these advances, current MLMD 
simulations still remain far from capturing the experimentally 
relevant timescales (seconds to minutes) over which 
macroscopic ionic transport and device-relevant processes 
occur, and bridging to true experimental scales may require 
hybrid approaches combining MLMD with adaptive KMC 
methods.

 Models trained predominantly on computational data face 
inherent challenges when predicting experimentally observed 
ionic conductivities due to systematic discrepancies between 
DFT calculations and experimental measurements. Effective 
validation strategies require testing against independent 
experimental datasets rather than computational holdouts, 
implementing cross-validation with available experimental 
data, and developing calibration methods that account for 
temperature-dependent Arrhenius behavior and experimental 
measurement uncertainties.142 For SGPR-based approaches, 
the inherent uncertainty quantification provides additional 
validation capabilities by identifying regions where model 
predictions may be unreliable, enabling more robust 
assessment of model confidence and guiding iterative 
improvement through active learning protocols.140 
Furthermore, hybrid training approaches that incorporate both 
computational and experimental data during model 
development can significantly improve predictive accuracy for 
experimental properties. As computational materials discovery 
matures, adopting rigorous experimental validation protocols 
will be critical for establishing ML models as reliable tools for 
guiding experimental synthesis efforts. Generative models 
represent a further step, shifting the focus from predicting 
properties of existing or hypothetical materials to designing 
entirely new structures optimized for target performance.

Furthermore, the emergence of large-scale, pre-trained 
models signifies a trend towards developing more universal and 
transferable tools in materials informatics. Models like 
MEGNet, M3GNet, CHGNet, and GPTFF, trained on vast and 
diverse datasets such as the Materials Project calculation 
database, encapsulate a broad understanding of chemical 
bonding and structural stability across the periodic table. This 
pre-training allows these foundational models to be potentially 
fine-tuned for specific downstream tasks, such as predicting 
properties within a particular class of SSEs, using smaller, task-
specific datasets. This strategy leverages the massive amounts 
of existing computational data to build general knowledge, 
which can then accelerate research on specific material systems 
by reducing the burden of generating extensive training data for 
every new problem. Nevertheless, practitioners should be 
aware that even pre-trained universal models may require 
domain-specific fine-tuning and validation, particularly when 
applied to novel chemistries or extreme conditions not well-
represented in the original training data. The success of these 
approaches ultimately depends on careful consideration of data 
quality, model selection criteria, and rigorous benchmarking 
against experimental observations. This approach promises to 

significantly enhance the efficiency of ML-driven materials 
discovery pipelines. 

4. ML-Guided Applications in SSE Discovery 
and Design

4.1. Prediction of Key Material Properties

A primary application of ML in SSE research is the rapid and 
accurate prediction of crucial material properties. By learning 
from existing data, ML models can establish correlations 
between easily obtainable features (e.g., composition, crystal 
structure) and target properties that are typically expensive or 
slow to determine. Ideal SSEs should possess a suite of desirable 
characteristics, including high ionic conductivity (often targeting 
>1 mS cm−1 at room temperature), a wide electrochemical 
window to ensure stability against high-voltage cathodes and 
low-voltage anodes (like Li metal), and sufficient mechanical 
strength to suppress lithium dendrite penetration.

4.1.1. Ionic Conductivity

Ionic conductivity is arguably the most critical performance 
metric for an SSE. ML models have been developed to predict 
this property, often by correlating structural and chemical 
descriptors with experimentally measured or computationally 
derived conductivity values. These models can significantly 
expedite the identification of promising high-conductivity 
candidates from large databases.

The foundational work by Sendek et al. (2017) established 
the viability of ML-driven conductivity screening through a 
logistic regression classifier trained on 40 lithium-containing 
compounds.143 Despite the limited training set, their model 
effectively distinguished fast from slow Li-ion conductors using 
atomistic descriptors including Li-Li coordination numbers, 
sublattice bond ionicity, and anion coordination environments. 
The practical validation of this approach emerged when high-
throughput screening of 12,000 Materials Project compounds 
identified 21 fast-conductor candidates, with subsequent DFT-
MD simulations confirming superionic behavior in several 
materials, notably Li3InCl6, which achieved experimental 
verification.143,144 This early success demonstrated that even 
simple ML models, when coupled with physically meaningful 
features, could effectively navigate vast chemical spaces.

Building on these classification successes, recent efforts 
have focused on regression-based conductivity prediction with 
enhanced accuracy. The comparative analysis by Mishra et al. 
(2023) systematically evaluated eight predictor models 
including Random Forest Regressor, Support Vector Machine, 
and shallow neural networks using activation energy, operating 
temperature, and lattice parameters as features.110 Their 
findings highlighted the superior robustness of ensemble 
methods like Random Forest, while demonstrating that model 
stacking prevents overfitting, a critical insight for conductivity 
prediction where data scarcity remains a persistent challenge.

The transition toward more sophisticated approaches is 
exemplified by studies targeting specific electrolyte chemistries 
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with optimized algorithms and novel descriptors. Jaafreh et al. 
(2024) developed a targeted framework for Mg-ion electrolytes 
by leveraging phonon density of states (PhDOS) data to 
calculate "total phonon band center" as a conductivity proxy.145 
Their systematic comparison of Extra Random Trees, Gradient 
Boosting, and Extreme Gradient Boosting algorithms revealed 
that Extra Random Trees achieved superior performance (R² = 
0.964), enabling predictions across ~9,000 Mg compounds. The 
chemical insights derived from this model, particularly the 
identification of Mg-Se systems as exhibiting the lowest median 
band centers (27.5 meV) compared to Mg-S (40.5 meV) and Mg-
O (55.5 meV), demonstrate how ML can simultaneously 
accelerate screening and provide mechanistic understanding.145

Addressing the critical data gap for multivalent systems, 
Dong et al. developed a generalizable ML framework specifically 
designed for screening Na, Mg, and Al garnet electrolytes.146 
Utilizing carefully designed chemical descriptors, their XGBoost 
models achieved 94% accuracy for thermal stability and 89% for 
band gap prediction across 43,732 compounds. The framework 
identified 1,764 compounds meeting both thermal stability and 
electronic criteria, which were further filtered to yield 44 
economically viable candidates with high performance 
potential. Interpretability analysis revealed that mean 
electronegativity is the most critical factor for thermal stability, 
while atomic radius range governs band gap properties, 
providing actionable design principles for multivalent conductor 
development.

Kharbouch et al. (2024) achieved exceptional accuracy for 
ionic conductivity prediction (R² = 0.85) for LLZO-type garnets 
through meticulous data curation and hyperparameter 
optimization using CatBoostRegressor with Optuna framework 
tuning.147 Their emphasis on rigorous preprocessing, including 
stoichiometric verification and KNN imputation, underscores 
the critical importance of data quality in achieving reliable 
conductivity predictions.

Recent developments have integrated pre-trained graph 
neural network potentials to generate physics-informed 
descriptors. Maevskiy et al. (2025) employed M3GNet to 
analyze potential energy surfaces under frozen framework 
approximation, deriving heuristic descriptors correlated with 
lithium mobility.148 This approach achieved efficiency gains of 
approximately 50× faster than MLIP-driven MD and >3,000× 
faster than AIMD, with eight out of ten highest-ranked materials 
confirmed as superionic conductors through first-principles 
calculations.148 The significance of this work lies in its 
demonstration of how powerful, pre-trained "foundation" 
models can be adapted to generate specialized, physically 
meaningful features for predicting properties like ionic 
conductivity, enabling rapid and reliable large-scale screening.

Models trained predominantly on computational data face 
inherent challenges when predicting experimentally observed 
ionic conductivities due to systematic discrepancies between 
DFT calculations and experimental measurements. Effective 
validation strategies require testing against independent 
experimental datasets rather than computational holdouts, 
implementing cross-validation with available experimental 
data, and developing calibration methods that account for 

temperature-dependent Arrhenius behavior and experimental 
measurement uncertainties.142 Furthermore, hybrid training 
approaches that incorporate both computational and 
experimental data during model development can significantly 
improve predictive accuracy for experimental properties.149 As 
computational materials discovery matures, adopting rigorous 
experimental validation protocols will be critical for establishing 
ML models as reliable tools for guiding experimental synthesis 
efforts.

4.1.2. Electrochemical Stability

Electrochemical stability is vital for the practical application of 
SSEs, ensuring they do not decompose when in contact with 
highly reactive electrodes (e.g., Li metal anode) or at the 
operating voltages of the battery. ML models contribute by 
predicting properties indicative of stability, such as formation 
energy (a proxy for thermodynamic stability against 
decomposition into competing phases) and band gap (often 
correlated with the electrochemical window).

The critical importance of accurate structural sampling for 
stability predictions is demonstrated by Ataya et al., who 
revealed that conventional Coulomb methods fail to identify the 
most stable, low-energy LLTO configurations after DFT 
geometry relaxation.150 This structural misrepresentation led to 
overestimated electrochemical stability windows (3.1 V versus 
the correct 2.5 V), with prediction errors reaching 0.67 eV. To 
address this sampling challenge, the authors developed a SOAP-
KRR machine learning model trained on only 40 DFT-relaxed 
structures that accurately predicts energy rankings, providing a 
computationally efficient alternative for sampling disordered 
materials.150

Complementing these structural considerations, 
comprehensive screening approaches have emerged that 
integrate stability assessments within broader materials 
discovery pipelines. Chen et al. (2025) developed a hierarchical 
screening strategy starting with 20,717 Li-containing 
compounds from the Materials Project database.51 Their multi-
stage process applied thermodynamic stability and electronic 
band gap pre-screening, followed by ML classification and 
regression models trained on 468 samples to identify high-
conductivity candidates. After electrochemical stability window 
assessment and AIMD validation, this approach identified three 
promising candidates (Li3BiS3, Li5BiS4, and Li10ZnP4S16) with high 
room-temperature ionic conductivities, low activation energies, 
and favorable interfacial compatibility with common 
cathodes.51

The relationship between composition, structure, and 
electrochemical performance has been further elucidated 
through targeted studies of specific electrolyte families. Kireeva 
et al. investigated garnet-structured solid electrolytes by 
combining experimental data analysis with machine learning, 
identifying an optimal lattice constant range of 12.950-12.965 Å 
for maximum ionic conductivity in LLZO-type garnets.151 Their 
quantitative regression models using SVM, LSTM, GP, and 
XGBoost algorithms revealed that Li and La content, atomic 
scattering factors at the C site, and Shannon ionic radii of 
dopants were the most influential parameters affecting ionic 
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conductivity, providing quantitative guidance for compositional 
optimization.151

4.1.3. Mechanical Stability

The mechanical properties of SSEs are critical, particularly for 
their ability to suppress the growth of lithium dendrites, which 
can cause short circuits and battery failure, especially when 
using Li metal anodes. ML models have been developed to 
predict mechanical properties such as bulk modulus (K) and 
shear modulus (G), which are key inputs for theories of dendrite 
suppression.

Early applications of graph neural networks for mechanical 
property prediction established the feasibility of high-
throughput screening approaches. Ahmad et al. employed a 
CGCNN trained on 2041 crystal structures with DFT-calculated 
elastic moduli to predict mechanical properties for over 12,000 
inorganic solids.98 These ML-predicted moduli were then 
integrated with the Monroe-Newman stability parameter (χ) 
framework to assess dendrite initiation propensity at Li 
metal/SSE interfaces, identifying over 20 mechanically 
anisotropic interfaces involving six solid electrolytes predicted 
to suppress dendrite growth.98 

The challenge of limited training data has been 
systematically addressed through active learning strategies that 
optimize data acquisition. Choi et al. trained a LightGBM model 
on 14,238 elasticity structures, initially achieving modest 
performance (R² = 0.633 for shear modulus prediction).152 
However, their active learning approach, which iteratively 
added materials with high prediction uncertainty to the training 
set, improved the R² score to 0.802 with only 1,600 strategic 
additions compared to 2,800 required for random selection.152 
This efficiency gain highlights the critical importance of 
intelligent data acquisition strategies, particularly given the 
computational expense of DFT elasticity calculations.

Building on these methodological advances, comprehensive 
screening workflows have emerged that integrate mechanical 
property prediction with other critical SSE characteristics. Sun 
et al. developed a two-stage ML workflow starting with LGBM-
based mechanical property screening of 5,329 LLZO-derived 
candidates, followed by superionic conductor classification and 
AIMD validation.50 This hierarchical approach successfully 
identified 10 new tetragonal-phase materials combining 
superior mechanical properties with high ionic conductivity50. 
The interpretability of mechanical property predictions has 
been enhanced through feature analysis techniques that 
provide physical insight into structure-property relationships. 
Wang et al. developed an optimized LGBM model achieving R² 
≈ 0.86-0.87 for both shear and bulk modulus prediction using 
8,920 Materials Project samples.153 Their integration of SHAP 
analysis revealed that volume per atom and valence band 
maximum are critical predictors, while extrapolation 
experiments to datasets containing elements (Mg, Al, K, Ni) 
absent from training demonstrated that model transferability 
to new chemical spaces can be significantly improved with 
strategic addition of diverse samples.153

4.2. High-Throughput Virtual Screening (HTVS)

HTVS leverages computational power to rapidly evaluate vast 
numbers of candidate materials for desired properties, 
significantly accelerating the materials discovery cycle. ML plays 
a crucial role in making HTVS more efficient and intelligent by 
acting as fast and inexpensive filters, prioritizing the most 
promising materials for further, more accurate investigation 
rather than relying solely on brute-force first-principles 
calculations. The integration of ML transforms HTVS from a 
potentially exhaustive search into a more guided exploration, 
employing classifiers to identify materials belonging to desired 
classes (e.g., "superionic conductor"), regression models to 
predict continuous property values, and active learning 
approaches that iteratively suggest the most informative 
candidates to evaluate next. Figure 3 shows a schematic of a 
typical ML-driven HVTS workflow.

The scale and sophistication of modern HTVS campaigns are 
exemplified by ultra-large screening efforts that combine 
multiple ML models in hierarchical filtering approaches. Chen et 
al. (2024) demonstrated this approach by screening over 32 
million candidates for solid-state electrolytes.154 Structure 
candidates generated via iso-valent substitutions were reduced 
to ~589,000 stable materials using ML potentials (M3GNet) for 
thermodynamic phase stability assessment. Subsequent funnel-
based screening applied ML models for band gap (> 3 eV) and 
electrochemical stability filters, followed by higher-accuracy 
DFT calculations, yielding 18 final candidates with new 
compositions. The top candidates, the NaxLi3−xYCl6 series, were 
synthesized and experimentally validated, confirming both 
structure and conductivity predictions.154

Complementing these massive screening approaches, 
targeted studies of specific material families have employed 
sophisticated multi-property optimization strategies. Lee et al. 
(2025) computationally screened 4,375 hypothetical Na-based 
argyrodites using DFT calculations to evaluate energy above 
hull, formation energy, band gap, and electrochemical stability 
window155. Their 4-dimensional Pareto sorting technique 
narrowed the field to 15 top candidates, with AIMD simulations 
ultimately identifying five promising virtual compositions, 
including Na₆SiS₄Cl₂ and Na₇.₇₅SiS₅.₇₅Cl₀.₂₅.155 This approach 
demonstrates how multi-objective optimization can efficiently 
navigate complex property trade-offs in materials design. 
Similarly employing multi-dimensional optimization, Lee et al. 
(2024) combined genetic algorithms with Bayesian optimization 
using GPR surrogate models to screen 18,133 hypothetical 
antiperovskite electrolytes. Their active learning framework 
reduced the computational burden to just 144 strategically 
selected DFT calculations while constructing a 4-dimensional 
Pareto frontier for thermodynamic stability, band gap, 
electrochemical window, and ionic conductivity, ultimately 
identifying 22 promising candidates with seven exhibiting 
superior room-temperature conductivity (>4 mS cm⁻¹).156

The integration of experimental insights with computational 
screening has enabled more targeted materials design 
strategies. Sewak et al. trained a logistic regression model on 
170 experimental NASICON materials, using PCA to identify 9 
key features governing ionic conductivity.157 The model 
revealed that low dopant electronegativity and increased Li 
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occupancy at M2 sites are critical for high conductivity, insights 
that guided dopant selection for the LiGe₂(PO₄)₃ system. Bond 
valence sum energy calculations further screened dopants by 
migration barrier estimation, leading to the design of 
Li₂Mg₀.₅Ge₁.₅(PO₄)₃ with a DFT-validated migration barrier of 
0.261 eV.157

Advanced ML architectures have been developed 
specifically for ionic conductivity screening, leveraging physics-
informed descriptors to enhance prediction accuracy. Xie et al. 
performed high-throughput screening of nearly 50,000 Li-
containing compounds using bond-valence kinetic Monte Carlo 
simulations, identifying 329 materials meeting stability and 
conductivity thresholds.158 Their graph convolutional network, 
trained to predict conductivity directly from bond valence 
energy landscapes, outperformed models learning from atomic 
structure alone and accelerated screening of 979 additional 
candidates generated via isovalent substitution, identifying 239 
potential superionic conductors.158

Specialized neural network architectures have also emerged 
for targeted chemical space exploration. Wan et al. (2024) 
developed DopNetFC, which outperformed conventional ML 
approaches including Random Forest and GBDT for screening 
atom substitution schemes.159 Applied to over 2,208 potential 
substitutions in Li₁₀GeP₂S₁₂, the most promising ML-identified 
candidates were validated through multi-step DFT calculations 
assessing thermodynamic, electronic, and mechanical 
stability.159 This approach demonstrates the effectiveness of 
task-specific neural architectures for exploring well-defined 
chemical modification spaces.

Multivalent conductor screening has been advanced 
through comprehensive ML platforms addressing critical data 
gaps beyond Li-ion systems. Wang et al. developed AI-IMAE 
based on CGCNN, a platform providing real-time activation 
energy predictions across nine ionic species (Li⁺, Na⁺, Mg²⁺, Zn²⁺, 
Al³⁺, Ag⁺, Cu²⁺, F⁻, O²⁻) with ~10⁵x speedup over traditional 
methods.160 Screening 144,595 compounds identified 316 SSE 
candidates and 129 cathode materials across the different ionic 
species. Similarly, Cai et al. used XGBoost algorithms to screen 
spinel structures for Mg/Zn cathodes, achieving 91.2% 
prediction accuracy and identifying six candidates (MgNi₂O₄, 
MgMo₂S₄, MgCu₂S₄, ZnCa₂S₄, ZnCu₂O₄, ZnNi₂O₄) with ionic 
diffusion coefficients >1×10⁻⁹ cm²s⁻¹ and volume expansions 
<22%.161 These targeted approaches demonstrate ML's 
potential for accelerating discovery in underexplored 
multivalent systems.
4.3. Elucidating Ion Dynamics via ML Interatomic Potentials 

(MLIPs)

Understanding the atomistic mechanisms of ion diffusion is 
fundamental to designing SSEs with high ionic conductivity. 
Traditional methods like AIMD provide high accuracy but are 
computationally expensive, limiting simulations to small system 
sizes (hundreds of atoms) and short timescales (picoseconds to 
nanoseconds). Classical empirical potentials are much faster but 
often lack the accuracy and transferability needed for complex 
SSE chemistries or reactive environments. MLIPs have emerged 
as a transformative technology, bridging this accuracy-cost gap. 

Trained on extensive datasets of energies and forces generated 
by DFT calculations, MLIPs can reproduce the potential energy 
surface with near-DFT accuracy but at a computational cost 
order of magnitude lower, enabling large-scale (thousands to 

Figure 3: Schematic illustration of a HTVS workflow for the discovery and 
evaluation of SSEs. (a) The chemical space is generated via systematic elemental 
substitutions and defect engineering within known crystal structure prototypes. 
(b) ML models trained on precomputed datasets are employed to rapidly predict 
key properties such as ionic conductivity, formation energy, and shear modulus. 
(c) Candidate materials are filtered through a sequential funnel based on physical 
criteria including thermodynamic, electronic, electrochemical, and mechanical 
stability, followed by ionic conductivity thresholds. The most promising 
candidates undergo final validation using first-principles calculations (DFT and/or 
AIMD).

millions of atoms) and long-timescale (nanoseconds to 
microseconds) MD simulations.

This capability has profound implications. MLIPs allow for 
the simulation of complex SSE systems, such as amorphous 
phases, grain boundaries, and interfaces, which are often 
intractable with AIMD due to their size and disorder. 
Furthermore, the extended simulation times accessible with 
MLIPs are crucial for capturing rare diffusion events, accurately 
calculating diffusion coefficients, and observing collective ionic 
motion, leading to unprecedented insights into ion transport 
pathways and the role of structural dynamics. Beyond these 
mechanistic studies, MLIPs also enable the high-throughput 
computational screening of vast design spaces to accelerate the 
discovery of entirely new SSE materials (Figure 4).

The theoretical foundation for this field was established by 
Behler and Parrinello (2007), who introduced high-dimensional 
neural network potentials using symmetry functions to describe 
local chemical environments in a rotationally and translationally 
invariant manner.162 This pioneering approach laid the 
groundwork for modern MLIPs that enable DFT-accuracy 
simulations at significantly reduced computational cost.

Applications of MLIPs in SSE research have progressed from 
validating known properties to discovering new transport 
phenomena and challenging established mechanisms. Gigli et 
al. (2024) exemplified this evolution by investigating charge 
transport in all known phases (α, β, and γ) of Li₃PS₄ using three 
separate potentials trained on different DFT reference levels 
(PBEsol, r²SCAN, and PBE0).163 Their large-scale (768-atom) and 
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long-timescale (up to 6 ns) simulations revealed that superionic 
behavior results from a structural transition from γ to mixed α-
β phases, driven by thermal activation of correlated PS₄ flips 
that reduce Li-ion diffusion activation energy by up to 6-fold.163 
Crucially, they refuted the "paddle-wheel" mechanism by 
demonstrating that PS₄ flip timescales (nanoseconds) and Li-ion 
hopping (picoseconds) are separated by orders of magnitude, 
while also showing that the commonly used Nernst-Einstein 
approximation underestimates conductivity by more than a 
factor of two.163

The power of MLIPs in elucidating complex transport 
behaviors extends to understanding non-Arrhenius 
temperature dependence in garnet systems. Dai et al. (2022) 
studied LiₓLa₃Zrₓ₋₅Ta₇₋ₓO₁₂ garnets using MLIPs trained on DFT-
MD trajectories, achieving superior accuracy compared to other 
computational models.164 Their simulations revealed that ionic 
conductivity follows Vogel-Tammann-Fulcher rather than 
Arrhenius behavior, with maximum conductivity occurring at Li 
content between 6.6 and 6.8.164 This work demonstrates how 
MLIPs can capture subtle temperature-dependent transport 
phenomena that require extensive sampling.

MLIPs have proven particularly valuable for studying 
amorphous systems and interfaces, where structural disorder 
demands large simulation cells and long equilibration times. 
Seth et al. (2025) investigated Li⁺ transport in amorphous LiPON 
and at Li||LiPON interfaces using a neural equivariant 
interatomic potential (NequIP) trained on over 13,000 DFT 
structures.165 Their simulations accurately reproduced 
experimental room-temperature conductivity in bulk LiPON 
while revealing that interfacial transport is one order of 
magnitude slower than bulk transport.165 Similarly, Yang et al. 
(2025) combined AIMD with DeePMD MLIPs to study 
amorphous LiₓAlOᵧCl₃₊ₓ₋₂y electrolytes, revealing that Li⁺ 
transport is facilitated by Cl atom rotation within tetrahedral 
frameworks and that oxygen doping enhances glass-forming 
ability while reducing mobile Cl atoms, requiring optimization 
of the O/Cl ratio for maximum conductivity.166

The integration of MLIPs with materials discovery workflows 
has enabled the exploration of composition-structure-property 
relationships across extended chemical spaces. Guo et al. (2022) 
demonstrated this approach by mapping the phase diagram of 
glass-ceramic lithium thiophosphate electrolytes using neural 
network potentials coupled with genetic algorithms to explore 
amorphous structures along the (Li₂S)ₓ(P₂S₅)₁₋ₓ composition 
line.167 Through unsupervised structure-similarity analysis, they 
identified that local Li environments resembling superionic β-
Li₃PS₄ are energetically favorable around x ≈ 0.725, leading to 
the design of a new candidate composition with predicted ionic 
conductivity exceeding 10⁻² S cm⁻¹.167

Beyond solid-state electrolytes, MLIPs have also provided 
valuable insights into ionic transport mechanisms in battery 
electrode materials. Ha et al. (2022) demonstrated the 
application of SGPR-accelerated molecular dynamics to 
investigate the effect of aluminium doping on Li-ion transport 
in Li-excess layered oxide cathodes.168 Their nanosecond-
timescale simulations of Li₁.₂₂Ru₀.₆₁Ni₀.₁₁Al₀.₀₆O₂ revealed that 
Al-doping reduces the Li-ion diffusion activation energy from 

0.48 eV to 0.40 eV, demonstrating enhanced ionic transport 
alongside improved structural stability. This reduction in 
activation energy resulted in approximately twice the Li-ion 
diffusion coefficient at elevated temperatures. The study 
showed how strategic dopant selection can simultaneously 
optimize both transport properties and electrochemical 
stability, with strengthened Al-O bonding suppressing oxygen 
oxidation while facilitating Li-ion mobility.

Despite their transformative potential, MLIP-based MD 
simulations require careful validation to ensure reliable 
predictions, particularly given inherent uncertainties in force 
predictions and energy errors.169 Best-practice validation 
strategies extend beyond simple energy and force comparisons 
to include systematic benchmarking against AIMD for key 
properties such as diffusion coefficients, phase stability, and 
thermal transport.170 Uncertainty quantification through 
ensemble methods, gradient-based approaches, or committee 
models provides essential error estimates during simulations, 
enabling active learning protocols that iteratively improve MLIP 
reliability.171,172 Furthermore, domain-specific validation tests, 
including rare event prediction and long-timescale dynamical 
properties, are crucial for establishing confidence in MLIP 
extrapolation beyond training domains.173 As the field matures, 
standardized validation protocols and uncertainty reporting will 
be essential for establishing MLIP credibility in high-stakes 
materials discovery applications.

Table 2 summarizes these seminal contributions, illustrating 
how MLIPs have advanced our understanding of ion dynamics 
in SSEs.

Figure 4: A schematic of the machine learning interatomic potential (MLIP) 
driven workflow for accelerated discovery of solid-state electrolytes (SSEs). (a) 
The process begins with generating a dataset of energies and forces from ab-initio 
calculations (e.g., DFT). (b) This data is used to train a machine learning model, 
such as a neural network, to create an MLIP. (c) The trained MLIP rapidly predicts 
the potential energy surface (PES), enabling large-scale and long-timescale 
molecular dynamics simulations. These simulations allow for (d) the systematic 
exploration of the vast SSE design space, which is constructed by varying 
elemental compositions, introducing dopants, and considering diverse crystalline 
and amorphous structures. (e) From these simulations, promising candidates are 
identified through a screening funnel. (f) The most promising materials are then 
validated with targeted, high-fidelity DFT calculations or experimental synthesis. 
This framework can operate as a closed loop, where new data from the validation 
step is used to further refine the MLIP.
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5. Navigating the Frontiers of Solid-State 
Electrolyte Discovery: Addressing Key 
Challenges

Despite the considerable enthusiasm and initial successes, the 
application of ML in SSE research is confronted by several 
deeply ingrained challenges that currently limit its full potential. 
These research gaps, which form the central motivation for this 
review, include pervasive data scarcity, particularly for 
emerging material systems; the complex demands of multi-
objective optimization for practical applications; the often-
opaque nature of ML models, which hinders scientific 
understanding and trust; issues with the transferability and 
generalization of models to new chemical domains; and the 
need to move beyond simple screening towards generative 
design frameworks capable of proposing entirely novel 
materials. These challenges are not merely isolated obstacles 
but are often interconnected, where, for instance, a lack of 
sufficient high-quality data directly impedes the development 
of generalizable models capable of robust multi-objective 
optimization. Addressing these interconnected hurdles is 
paramount for ML to truly catalyze a paradigm shift in materials 
discovery, transitioning from serendipitous discovery to a more 
predictive, efficient, and accelerated design cycle for SSEs and, 
by extension, other advanced functional materials. Figure 5 
provides a schematic overview of the key machine learning 
methodologies that have emerged to address these core 
challenges.
5.1. Challenge 1: Navigating Data Deficiencies in ML-Driven 

SSE Discovery

The fundamental challenge limiting ML-driven SSE discovery is 
the pervasive scarcity of high-quality training data, particularly 
for multivalent ion conductors. This data deficit manifests in 
three critical dimensions: insufficient quantity, poor quality 
heterogeneity, and severe chemical imbalance across ion types.

The Non-Lithium Data Crisis

While Li⁺ systems benefit from decades of intensive research 
generating relatively substantial datasets, non-lithium ion 
conductors including Na+ and multivalent systems (Mg²⁺, Ca²⁺, 
Zn²⁺, Al³⁺) remain critically underrepresented.174–176 This 
disparity is not merely quantitative. Non-lithium ions exhibit 
fundamentally different transport mechanisms characterized 
by varying ionic radii, coordination preferences, and in the case 
of multivalent systems, stronger Coulombic lattice interactions 
and sluggish diffusion kinetics.177 Consequently, ML models 
trained on Li⁺ data cannot reliably extrapolate to these 
alternate systems, as evidenced by uMLIPs failing to generalize 
beyond their chemical training space.178 The fundamental 
differences in transport mechanisms, optimization priorities, 
and critical descriptors across Li, Na, Mg, and Al systems 
(summarized in Table S3) necessitate system-specific ML 
framework design.

The data quality problem compounds this scarcity. SSE 
datasets aggregate information from disparate experimental 
protocols, computational methods with varying theoretical 

rigor, and literature reports lacking standardized metrics.179 
This heterogeneity introduces systematic noise, missing values, 
and conflicting measurements that undermine model reliability. 
The absence of centralized, standardized databases for 
multivalent SSE properties forces fragmented, redundant 
curation efforts across research groups,87 impeding 
collaborative progress.

Solution 1: Leveraging Existing Scarce Data Through 
Advanced Learning Paradigms

Unsupervised Learning for Pattern Discovery

When labeled data is scarce, unsupervised learning methods 
like clustering, dimensionality reduction, and representation 
learning can extract meaningful structural patterns from 
abundant unlabeled datasets. This approach is particularly 
useful for hypothesizing which features might transfer from 
data-rich systems (e.g., Li⁺, Na⁺) to data-scarce ones (e.g., 
multivalents). For example, Park et al. successfully applied 
clustering to over 12,000 Na-containing materials, revealing 
that high-conductivity candidates consistently shared specific 
structural characteristics, such as the abundance of certain 
polyhedral motifs (XO₄ tetrahedra) and the presence of 
spacious ion channels.106 This finding suggests a path for 
methodological transfer to beyond-lithium systems. While the 
optimal structural features for a Mg²⁺ conductor will differ from 
those for Na⁺, the types of descriptors identified as critical such 
as coordination environments, polyhedral packing, and 
framework connectivity, are likely to be fundamentally 
important across different ion systems. An effective strategy, 
therefore, involves using unsupervised learning on large Li⁺ or 
Na⁺ datasets to identify these critical feature classes, which can 
then guide the engineering of more targeted descriptors for the 
subsequent supervised modeling of multivalent systems.

Transfer Learning for Cross-Domain Knowledge
Transfer learning offers a strategic pathway to leverage 
knowledge from data-rich domains (e.g., Li⁺ systems, general 
materials databases) for data-scarce targets (multivalent 
conductors). A compelling demonstration showed successful 
cross-domain ionic conductivity classification, where models 
trained exclusively on Na⁺-based NASICON compounds 
accurately predicted Li⁺-based materials.47 However, the 
chemical similarity between Na⁺ and Li⁺ likely enabled this 
success. Extending transfer learning to multivalent systems with 
fundamentally different coordination preferences and 
transport mechanisms may require sophisticated domain 
adaptation techniques or physics-informed constraints to 
bridge the mechanistic gap.

Semi-Supervised Learning for Hybrid Data Exploitation
Semi-supervised learning provides a middle ground between 
fully supervised and unsupervised approaches by leveraging 
both labeled and unlabeled data simultaneously. This paradigm 
is particularly valuable for SSE discovery where experimental 
conductivity measurements are sparse but structural databases 
are abundant. The methodology typically involves clustering a 
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large, unlabeled dataset based on descriptor similarity and then 
labeling the resulting clusters with the few available 
experimental data points to identify promising regions of the 
materials space. This strategy was exemplified by Laskowski et 
al., who applied unsupervised agglomerative clustering to 
approximately 26,000 lithium-containing compounds and 
subsequently annotated the resulting clusters using a limited 
set of experimental conductivity measurements.95 

Table 2: Seminal Contributions of ML Interatomic Potentials to Understanding Ion 
Dynamics in SSEs

This methodology successfully identified a cluster exhibiting 
high probability for superionic conduction, which led to the 
experimental confirmation of Li₃BS₃ as a novel ionic conductor. 
The success of this approach provides a template for a targeted 
discovery pipeline in underexplored chemical spaces, such as 
those for multivalent conductors. Such a workflow would 
involve first clustering the vast space of hypothetical 
multivalent host structures using reliable structural descriptors. 
Following this, a small and diverse set of compounds from 
different clusters could be strategically synthesized to serve as 

initial "seed" labels. Subsequent experimental efforts could 
then be prioritized on the unlabeled materials within or 
adjacent to clusters containing the most promising initial 
results, thereby maximizing the value of each experiment and 
accelerating the identification of novel beyond-lithium SSEs.

Solution 2: Targeted Data Generation Through Computational 
High-Throughput Screening

High-throughput density functional theory (HTP-DFT) 
calculations provide a systematic approach to generate large, 
internally consistent datasets for intrinsic material 

properties.180 This computational pipeline can systematically 
evaluate thousands of candidate materials, creating valuable 
training data while maintaining theoretical consistency. 
Furthermore, ML models can be trained to predict expensive 
DFT results, enabling large-scale screening by circumventing 
first-principles calculations for every candidate.98

Successful liquid electrolyte platforms like the Electrolyte 
Genome181 demonstrate the value of systematic property 
correlation mapping and automated screening workflows 
beyond simple high-throughput calculation. These liquid-phase 

Study/MLIP 
Development 
(Primary 
Citation)

MLIP Type/Focus SSE System(s) Investigated Key Insights into Ion 
Dynamics/Mechanisms

Significance/Impact

Behler and 
Parrinello 
(2007)162

HDNNPs using 
atom-centered 
symmetry 
functions

Bulk Silicon (as proof-of-
concept for general 
condensed matter 
systems).

Decomposes total energy into local atomic 
contributions, enabling simulations of 
arbitrarily sized systems with DFT accuracy 
by learning the potential energy surface 
(PES)

Foundational theoretical and 
methodological work that established the 
modern framework for atomistic MLIPs, 
making large-scale, long-timescale 
simulations of SSEs feasible

Guo et al. 
(2022)167

ANN potential 
combined with a 
Genetic 
Algorithm (GA) 
for AI-aided 
sampling

Glass-ceramic Lithium 
Thiophosphate (LPS) 
systems: (Li₂S)ₓ(P₂S₅)₁₋ₓ

Discovered that local Li environments 
similar to the superionic β-Li₃PS₄ phase are 
energetically favored around composition x 
≈ 0.725. Mapped the amorphous phase 
diagram and identified miscibility gaps

Demonstrated a powerful workflow 
combining MLIP-accelerated sampling 
and structural analysis to design novel, 
high-conductivity amorphous SSE 
compositions

Gigli et al. 
(2024)163

GAPs trained on 
multiple DFT 
levels (PBEsol, 
r²SCAN, and 
PBE0)

All known polymorphs (α, 
β, γ) of Lithium 
Thiophosphate (Li₃PS₄)

Showed superionic behavior is driven by a 
structural transition activated by correlated 
PS₄ flips, not a "paddle-wheel" effect. The 
Nernst-Einstein approximation 
underestimates conductivity by over a 
factor of 2 due to strong ionic correlations

Resolved a long-standing controversy 
over the transport mechanism in Li₃PS₄ 
and highlighted the necessity of using 
higher-accuracy functionals (PBE0) and 
correlation-aware analysis for predictive 
simulations.

Dai et al. 
(2022)164

Artificial Neural 
Network 
(SIMPLE-NN) 
using atom-
centered 
symmetry 
functions.

Lithium garnet oxides: 
LiₓLa₃Zrₓ₋₅Ta₇₋ₓO₁₂

Revealed that ionic conduction in garnets 
follows a non-Arrhenius temperature 
dependence, better described by the VTF 
equation. Calculated Haven ratio of 0.1–0.4 
indicates strong concerted motion of Li-ions

Provided a highly accurate potential for 
the garnet family, resolving ambiguity 
around the optimal composition for 
conductivity (x = 6.6 to 6.8) by combining 
simulations with experimental data

Seth et al. 
(2024)165

NequIP, an E(3)-
equivariant GNN

Amorphous Lithium 
Phosphorus Oxynitride 
(LiPON) and Li

LiPON interface Accurately modelled the amorphous 
LiPON structure and bulk Li⁺ conductivity. 
Found that Li⁺ transport across the Li

Yang et al. 
(2025)166

 DeePMD Amorphous oxychloride 
electrolytes: LiₓAlOᵧCl₃₊ₓ₋₂y

Uncovered that Li⁺ transport is facilitated by 
the rotation of Cl atoms within a structural 
skeleton of Al-chains. Found that O-doping 
enhances amorphization (enabling Cl 
rotation) but reduces mobile Cl atoms, 
creating an optimal O/Cl ratio for 
conductivity

Elucidated a novel transport mechanism 
in an emerging class of amorphous 
oxychloride SSEs and provided a clear 
design principle based on balancing glass-
forming ability with mobile anion 
concentration

Ha et al. 
(2022)168

SGPR with on-
the-fly training

Al-doped Li-excess layered 
oxide cathodes: 
Li₁.₂₂Ru₀.₆₁Ni₀.₁₁Al₀.₀₆O₂

Demonstrated that Al-doping reduces Li-ion 
diffusion activation energy from 0.48 eV to 
0.40 eV, enhancing ionic transport while 
strengthened Al-O bonding suppresses 
oxygen oxidation and improves structural 
stability

Demonstrated how dopant-induced 
electronic structure modifications can 
simultaneously enhance ionic transport 
and suppress degradation mechanisms, 
providing design principles for stable 
high-energy-density electrode materials 
with improved Li-ion mobility
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systems also offer opportunities for cross-domain learning: ion 
transport patterns in liquid and polymer electrolytes including 
solvation dynamics, coordination environment effects, and 
structure-transport correlations can inform descriptor 
engineering and mechanistic understanding for solid 
electrolytes, particularly for data-scarce multivalent systems 
where liquid-phase computational studies are more prevalent.  
Adapting these methodologies to solid-state systems could 
establish not only standardized data specifications but also 
automated multi-property optimization pipelines that integrate 
atomic-scale MLIP predictions with mesoscale grain boundary 
and interface modelling.
The synergy between HTP-DFT and ML creates a self-reinforcing 
cycle: computational data trains ML models, which 
subsequently accelerate screening by reducing computational 
bottlenecks.

Solution 3: Active Learning for Intelligent Data Acquisition

Active learning addresses the resource constraints of both 
experimental synthesis and computational simulations by 
strategically selecting the most informative data points for 
generation.182 In this iterative framework, ML models identify 
candidates where they exhibit maximum uncertainty or where 
new data would optimally improve performance. These 
selections are then prioritized for experimental characterization 
or DFT calculation.

This approach has demonstrated practical success in 
optimizing doping strategies for LLZO electrolytes.57 By 
combining ML models with uncertainty quantification, the 
active learning framework efficiently navigated the vast 
compositional space, identifying promising dopant 
combinations while minimizing required simulations and 
experiments.57 

However, the effectiveness of these data-centric approaches 
depends critically on establishing clear prioritization criteria for 
data collection efforts. Future experimental and computational 
campaigns should prioritize: (1) multivalent systems with 
intermediate ionic radii (Mg²⁺, Zn²⁺) that bridge the gap 
between monovalent and highly charged species, (2) materials 
exhibiting mixed ionic-electronic conductivity where transport 
mechanisms remain poorly understood, and (3) interfacial 
properties and degradation pathways that are systematically 
underrepresented in current databases. Computationally, 
emphasis should be placed on generating temperature-
dependent transport data and correlated ionic motion 
descriptors, as these are essential for capturing the non-
Arrhenius behavior observed in many superionic conductors yet 
remain scarce in existing datasets. The choice among these 
strategies or, more likely, a combination thereof will depend 
critically on the specific SSE system under investigation, the 
target property, and the nature of the available data. For 
instance, while transfer learning might be effective for 
predicting properties of Na-ion conductors based on Li-ion data 
due to their chemical similarities, discovering novel multivalent 
conductors might necessitate more extensive de novo data 
generation via HTP-DFT, guided by active learning, to capture 

their unique physics. A universal solution to data scarcity is 
improbable; instead, a versatile toolkit of these data-centric 
approaches is essential for continued progress. Table 3 
summarizes the key data challenges encountered in the 
application of ML to SSE discovery and outlines potential 
mitigation strategies.

Table 3: Summary of Data Challenges in ML for SSEs and Mitigation 
Strategies.

5.2. Challenge 2: Multi-Objective Optimization: Balancing 
Performance Metrics in SSE Design

Commercially viable SSEs require concurrent optimization of 
multiple, often conflicting properties rather than maximizing a 
single parameter. Practical SSEs must satisfy stringent 
requirements including:

• High Ionic Conductivity (σ): Typically targeted to be ≥
10―4 S cm−1 at room temperature, approaching or 
exceeding that of liquid electrolytes, to enable high 
power densities.

• Wide Electrochemical Stability Window (ESW): The 
electrolyte must remain stable against both highly 
reducing (anode) and highly oxidizing (cathode) 
potentials, ideally > 5.5 V vs. Li/Li+ for high-voltage 
applications.

Data Challenge Impact on ML Model 
Development

Key Mitigation 
Strategies & 
Supporting Evidence

Overall Scarcity 
for SSEs

Poor generalization, 
difficulty modelling 
complex phenomena, 
bias towards well-
studied systems.

HTP-DFT Data 
Generation180, 
Development of 
Curated Databases87, 
Active Learning57, 
Semi-supervised 
learning95 

Specific Scarcity 
for Multivalent 
Ion Conductors

Inability to model 
distinct physics (e.g., 
stronger Coulombic 
interactions, sluggish 
diffusion) accurately, 
poor extrapolation 
from Li-ion systems.

Targeted HTP-DFT for 
Multivalents, Transfer 
Learning47, Physics-
Informed ML183,184, 
Unsupervised Learning 
for feature 
discovery106,185 

Data 
Heterogeneity/Q
uality (Multi-
source, noise, 
missing values)

Reduced model 
reliability, inconsistent 
predictions, difficulty 
in training robust 
models.

Rigorous Data Curation 
& Preprocessing179, 
Standardized Data 
Reporting Protocols, 
Robust ML algorithms 
tolerant to noise.

Small Sample 
Sizes for Truly 
Novel Chemistries

High risk of 
overfitting, poor 
predictive power for 
unexplored chemical 
spaces.

Generative Models for 
candidate proposal186, 
Transfer Learning from 
broader chemical 
domains187, LOGO-CV 
for realistic 
performance 
assessment188 
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• Good Electrode Compatibility: Minimal chemical and 
electrochemical reactivity with both anode (especially 
Li metal) and cathode materials to prevent detrimental 
interfacial layer growth and impedance rise.

• Sufficient Mechanical Strength and Appropriate 
Moduli: The SSE should possess adequate mechanical 
robustness to suppress lithium dendrite penetration 
and withstand the stresses induced by electrode 
volume changes during cycling, while also maintaining 
good interfacial contact.

• High Li⁺ Transference Number (tLi+): Ideally close to 
unity, indicating that Li⁺ ions are the primary charge 
carriers, which minimizes concentration polarization 
and improves rate capability.

• Other Considerations: Factors such as ease of 
processing, scalability, low cost, and environmental 
impact also play crucial roles in practical viability.

These requirements, however, must be contextualized within 
the distinct challenges posed by different battery chemistries. 
Li-ion systems prioritize dendrite suppression and require 
stable solid electrolyte interphases (SEI) compatible with 
graphite anodes, necessitating optimization for both 
mechanical strength and interfacial stability.189 Na-ion systems 
face fundamentally different constraints, requiring 
compatibility with hard carbon anodes due to graphite's 
incompatibility with Na⁺ ions, which shifts the optimization 
focus toward different voltage windows and interfacial 
chemistries.190 Mg-ion systems naturally avoid dendrite 
formation due to the divalent nature of Mg²⁺, but face critical 
challenges from sluggish ion transport kinetics caused by strong 
solvation effects and higher activation energies, requiring 
optimization strategies that prioritize conductivity 
enhancement over mechanical dendrite suppression.191 Al-ion 
systems present additional complexity, demanding electrolytes 
compatible with limited cathode options while managing the 
high charge density effects of trivalent Al³⁺ ions.192 Silicon-based 
Li systems introduce further complications through large 
volume changes (>300%) that destabilize conventional SEIs, 
requiring electrolytes optimized for mechanical flexibility and 
stable interfacial reformation rather than static interfacial 
stability.193

The interplay between these properties is complex; 
materials with very high ionic conductivity might exhibit poor 
mechanical properties or a narrow electrochemical stability 
window. Traditional single-objective ML approaches, 
predominantly focused on maximizing ionic 
conductivity,101,109,194 fail to capture these trade-offs and 
produce materials unsuitable for practical applications. A 
critical limitation lies in the lack of frameworks that account for 
the distinct physics governing different ionic species and their 
corresponding electrode compatibility requirements. 
Additionally, the computational expense of evaluating multiple 
properties for every candidate material during multi-objective 
optimization searches can be substantial, even when using ML-
based surrogate models for property prediction.

Solution 1: Bayesian Optimization for Multi-Objective 
Materials Discovery

Bayesian Optimization (BO) frameworks efficiently navigate 
high-dimensional design spaces by constructing probabilistic 
surrogate models (typically Gaussian Processes) for each 
objective property. Specialized acquisition functions can 
incorporate system-specific constraints and property 
weightings that reflect the distinct requirements of different 
battery systems. Harada et al. demonstrated this approach by 
optimizing NASICON-type LiZr₂(PO₄)₃ composition co-doped 
with Ca and Y, simultaneously enhancing Li-ion conductivity, 
phase stability, and densification.195 Similarly, BO has been 
applied to maximize lithium diffusivity while incorporating 
computational checks for electronic bandgap and stability at 
lithium metal interfaces, effectively handling multiple criteria 
through sequential, guided evaluation.58 Future 
implementations should incorporate tailored objective 
weightings—prioritizing mechanical properties for Li systems 
prone to dendrite formation while emphasizing transport 
kinetics for Mg systems where sluggish diffusion dominates 
performance.

Solution 2: Evolutionary Algorithms for Pareto-Optimal 
Solutions

Evolutionary Algorithms (EAs), including Genetic Algorithms 
(GAs), inherently support multi-objective optimization through 
population-based approaches. These algorithms can be 
enhanced with tailored fitness functions that reflect the distinct 
physical constraints and performance priorities of different 
ionic systems. These algorithms apply bio-inspired operators 
(selection, crossover, mutation) to iteratively improve 
candidate populations against multiple fitness criteria, 
generating Pareto-optimal solution sets representing optimal 
trade-offs where no objective can be improved without 
degrading others. While direct applications to comprehensive 
inorganic SSE discovery remain limited, frameworks like 
evolutionary variational autoencoders (EVAPD) developed for 
perovskite discovery196 demonstrate adaptability to SSE 
applications through suitable multi-objective fitness function 
definitions.

Solution 3: Collaborative Framework Development and 
Physics-Informed Search Strategies

Effective multi-objective optimization requires enhanced 
collaboration between ML specialists and battery application 
experts to define meaningful optimization targets with 
application-specific weighting schemes and constraint 
hierarchies. Electric vehicle batteries might prioritize safety-
related mechanical strength and electrochemical stability 
alongside cycle life, accepting reduced peak ionic conductivity, 
while high-power portable devices might emphasize maximizing 
ionic conductivity above other metrics. For Na-ion systems, 
optimization frameworks should prioritize compatibility with 
hard carbon anodes and appropriate voltage windows, while 
Mg-ion systems require frameworks emphasizing transport 
enhancement strategies such as optimized coordination 
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environments. Advanced strategies can leverage physical 
understanding to focus searches on design space regions where 
multiple desirable properties are more likely to be co-
optimized, reducing computational requirements while 
maintaining search effectiveness by incorporating fundamental 
materials science principles into the optimization process. This 
approach addresses both the challenge of defining quantitative 
targets and minimizing expensive multi-property evaluations 
through intelligent, system-specific search space reduction. 

5.3. Challenge 3: Illuminating the "Black Box": Enhancing 
Interpretability in ML for SSEs

Complex ML models, particularly deep neural networks, achieve 
remarkable predictive accuracy but function as "black boxes" 
that obscure the reasoning behind their predictions. For 
materials scientists, this lack of transparency presents a 
significant barrier to trust and adoption, limiting the potential 
for extracting new scientific understanding. Simply predicting 
high-performing SSE candidates is insufficient; scientists require 
insights into why particular materials exhibit desirable 
properties and what underlying structural features or chemical 
principles drive performance. Black-box predictions, devoid of 
such explanations, offer limited utility for advancing 
fundamental knowledge or formulating new design hypotheses. 
This interpretability challenge is particularly acute for 
multivalent systems, where the distinct physics governing Mg²⁺, 
Zn²⁺, and Al³⁺ transport requires understanding of system-
specific structure-property relationships that may differ 
fundamentally from well-studied Li-ion systems.

Solution 1: Model-Agnostic Explainability Methods

Model-agnostic explainability techniques provide insights into 
ML model behavior without requiring modifications to the 
underlying algorithms. SHAP (SHapley Additive exPlanations) 
values, based on game theory, quantify each feature's 
contribution to specific predictions, while LIME (Local 
Interpretable Model-agnostic Explanations) explains individual 
predictions by learning simpler, interpretable models locally 
around the prediction.197 The XpertAI framework exemplifies 
advanced implementation by integrating XAI methods with 
Large Language Models (LLMs) to automatically generate 
human-understandable natural language explanations of 
structure-property relationships.198 This framework identifies 
crucial features using XAI and draws upon scientific literature to 
articulate connections, providing a methodology highly 
pertinent to understanding ML models for SSEs. A key 
application is the direct comparison of feature importance, for 
example, using SHAP values to contrast the governing principles 
in lithium-based SSEs with those in multivalent systems, 
identifying which structural motifs (e.g., tetrahedral 
coordination environments, face-centered lattice 
arrangements, radial distribution patterns between mobile ions 
and framework anions) and compositional parameters (e.g., 
cation electronegativity differences, framework atom ionization 
energies, anion polarizability) are universal versus cation-
specific descriptors.

Solution 2: Interpretable Algorithm Design and Physics-
Informed Architectures

Interpretable tree-based ensemble learning methods and graph 
neural network approaches specifically designed for SSE 
applications focus on learning and explaining relationships 
between crystal structures and their corresponding 
thermodynamic and kinetic properties.199,200 For multivalent 
systems, this approach is particularly powerful for extracting 
explicit design rules from classification models; for instance, a 
decision tree trained to identify stable hosts could yield a 
human-readable rule like, ‘IF the cation coordination number is 
> 6 AND the anion framework has a specific void volume, THEN 
the material is likely to be stable,’ directly guiding experimental 
efforts. Chemistry-informed ML models enhance 
interpretability by incorporating known physical relationships 
directly into model architecture. For example, a model for solid 
polymer electrolytes explicitly encoded the Arrhenius equation 
in its readout layer, enabling prediction of physically meaningful 
parameters like activation energy (Ea) and pre-exponential 
factor (A), making temperature-dependent conductivity 
predictions directly interpretable in terms of fundamental 
parameters.201

Solution 3: Extraction of Scientific Insights and Design 
Principles

XAI applications in SSE research have successfully extracted 
human-understandable insights that translate into actionable 
design principles. Studies examining factors affecting dendrite 
suppression revealed that material stiffness increases with 
mass density and the ratio of Li to sublattice bond ionicity while 
decreasing with increasing volume per atom and sublattice 
electronegativity.202 Universal machine learning interatomic 
potentials have uncovered how crystal structure, anion disorder 
levels, and mobile ion arrangement influence ionic transport. 
Simulations demonstrated that appropriate S/Cl disorder in 
Li₆PS₅Cl enhances diffusion pathway connectivity, improving 
ionic conductivity.178 Extending this approach, XAI can help 
answer related questions in multivalent systems by revealing 
how system-specific descriptors, such as the migrating cation's 
ionic radius and charge density, supplant or interact with the 
framework properties that are dominant in lithium conductors. 
Heuristic structure descriptors derived from universal 
interatomic potential analysis rank materials by expected ionic 
mobility, reflecting potential energy surface properties that 
correlate with ion hopping.203

Solution 4: Iterative Model Refinement Through 
Explainability

XAI insights create a virtuous cycle by informing future feature 
engineering efforts and model development. When XAI 
consistently highlights specific structural motifs (coordination 
environments for Li⁺ ions, framework topologies) or chemical 
attributes as critical for high performance across diverse SSE 
candidates, this leads to formulation of new, generalizable 
scientific knowledge and design principles. For example, if XAI 
consistently identifies cation coordination environments as 

Page 22 of 31Materials Horizons

M
at

er
ia

ls
H

or
iz

on
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
5/

11
/1

6 
 0

4:
10

:0
2.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5MH01525A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mh01525a


Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 21

Please do not adjust margins

Please do not adjust margins

critical for multivalent ion mobility, this insight can be used to 
engineer more sophisticated features for the next generation of 
models, thereby accelerating the discovery cycle for novel 
battery chemistries. Complex derived features identified as 
highly predictive (combinations of bond angles and lengths 
defining specific local environments) can be explicitly calculated 
and incorporated into subsequent, potentially simpler and 
more robust ML models. 

Emerging approaches promise to advance beyond feature 
importance quantification toward mechanistic discovery. 
Causal machine learning methods can distinguish genuine 
causal relationships from spurious correlations in structure-
property data, revealing which structural modifications directly 
influence ionic conductivity versus those that merely 
correlate.204 Symbolic regression techniques, which search for 
explicit mathematical equations governing material properties, 
offer an alternative path to interpretability by automatically 
discovering closed-form expressions that relate compositional 
and structural descriptors to transport properties or rediscover 
interatomic potentials.205 These physics-discovering 
approaches could uncover governing equations analogous to 
how the Arrhenius relation describes temperature-dependent 
conductivity, potentially revealing universal scaling laws across 
different ionic systems.

This iterative refinement, guided by explainability, produces 
models that are both accurate and grounded in scientifically 
meaningful parameters, representing a shift from ML merely 
predicting outcomes to actively contributing to fundamental 
understanding of solid-state ionics.

Despite these promising developments, successful 
implementation of XAI in SSE research requires awareness of 
key methodological limitations. SHAP values exhibit instability 
in highly correlated feature spaces typical of materials datasets, 
where structural descriptors often show strong 
interdependencies.206 LIME's local approximations may 
inadequately represent global model behavior, particularly 
problematic for complex structure-property relationships.207 
Both approaches assume feature independence, which conflicts 
with the intrinsically coupled nature of atomic positions, 
coordination environments, and bonding in crystalline 
materials. Best practices include validating XAI outputs through 
multiple complementary methods, examining feature 
correlation matrices before interpretation, and systematically 
cross-checking computational insights against experimental 
observations and established physical principles.
 

5.4. Challenge 4: Bridging Chemical Spaces: Enhancing 
Model Transferability and Generalization

A significant hurdle for the practical application of ML in SSE 
discovery is the ability of models to generalize from known 
materials to novel chemical compositions and crystal 
structures. Models trained on specific datasets, often limited to 
well-explored Li-based compounds, frequently exhibit poor 
performance when tasked with extrapolating to uncharted 

territories, such as Na⁺-based systems or, more drastically, 
multivalent ion conductors.

Figure 5: Key Machine Learning Strategies to Accelerate Solid-State Electrolyte 
(SSE) Discovery. This figure illustrates five classes of ML methods used to address 
critical challenges in SSE research, from data scarcity to de novo design. (a) Data 
scarcity: To combat data scarcity, (i) active learning based iterative loops are used 
to intelligently guide expensive data acquisition, (ii) transfer learning mitigates the 
need for a large dataset in a target domain by leveraging knowledge gained from 
a related, data-rich source domain and (iii) unsupervised learning to identify 
patterns and promising candidates in unlabeled data. (b) Multi-Objective 
Optimization (MOO): To reconcile competing material properties, techniques like 
(i) Evolutionary Algorithms and (ii) Bayesian Optimization navigate design trade-
offs (e.g., ionic conductivity vs. stability) to identify Pareto-optimal materials. (c) 
Explainable AI (XAI): To overcome the "black-box" nature of ML models, methods 
like (i) SHAP (Shapley values) and (ii) LIME are applied to quantify feature 
importance, providing human-understandable insights into structure-property 
relationships. (d) Transfer Learning: To improve model generalization across 
different chemical families, knowledge from a data-rich source (e.g., Li-ion 
systems) is transferred to a data-scarce target (e.g., multivalent conductors) using 
methods like (i) domain adaptation or (ii) Physics informed neural networks. (e) 
Generative & Hybrid Frameworks: For de novo material design, generative 
models like (i) VAEs, (ii) GANs, and (iii) Diffusion Models propose novel 
compositions and crystal structures, which are then validated in a (iv) closed-loop 
with DFT/AIMD simulations to enable rapid, autonomous discovery.

A significant hurdle for practical ML application in SSE discovery 
is the ability of models to generalize from known materials to 
novel chemical compositions and crystal structures. Models 
trained on specific datasets, often limited to well-explored Li-
based compounds, frequently exhibit poor performance when 
extrapolating to uncharted territories such as Na⁺-based 
systems or multivalent ion conductors. The core issue is that ML 
models excel at interpolation within their training data domain 
but struggle with extrapolation to chemically distinct regions. 
Conventional cross-validation techniques, which randomly split 
data into training and test sets, often overestimate a model's 
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true extrapolative power because test sets usually contain 
materials chemically similar to training data. More rigorous 
"leave-one-group-out cross-validation" (LOGO-CV), where 
entire chemical families are held out for testing, has 
demonstrated that conventional ML methods can fail when 
predicting properties of completely novel compound classes.188 
This presents a critical concern for SSE discovery, where the goal 
is often to identify entirely new material families with 
breakthrough properties. While universal interatomic 
potentials like M3GNet are trained on vast databases (e.g., the 
Materials Project) and aim for broad applicability across diverse 
chemical spaces,208 achieving reliable extrapolation remains a 
frontier challenge.

Solution 1: Domain Adaptation Techniques

Domain adaptation encompasses ML techniques designed to 
leverage knowledge from a "source" domain, where data may 
be abundant, to improve model performance on a "target" 
domain that might be data-scarce or have different underlying 
data distributions. In SSE contexts, this involves adapting 
models trained on Li-ion conductors to predict properties for 
Na-ion or K-ion conductors, or transferring knowledge from 
computational data to guide experimental outcome 
predictions. A multi-stage ML approach for electrocatalyst 
discovery successfully integrated domain adaptation to 
enhance theoretical simulations and align them with 
experimental findings,209 demonstrating a concept directly 
transferable to SSE research. However, the effectiveness of 
domain adaptation is intrinsically linked to the relevance of 
incorporated knowledge; if source and target domains are too 
disparate in their underlying physics or chemistry, transferred 
knowledge may be of limited value or even detrimental.

Solution 2: Physics-Informed Machine Learning (PIML)

PIML improves model generalization and physical consistency, 
especially in data-limited scenarios, by embedding known 
physical laws, constraints, or symmetries directly into ML model 
architecture, loss functions, or feature representations. By 
constraining models to adhere to fundamental physics, PIML 
can lead to more robust and interpretable predictions that 
extrapolate better to unseen data. Universal ML potentials for 
liquid electrolytes, trained via iterative DFT calculations, 
accurately predict physical properties like density, viscosity, and 
ionic conductivity, implying that models have learned 
underlying physical consistencies.210 The DiffMix model, a 
differentiable geometric deep learning approach for chemical 
mixtures, explicitly extends thermodynamic and transport laws 
(e.g., Vogel-Fulcher-Tammann for ionic conductivity) with GDL-
learnable physical coefficients, demonstrating improved 
accuracy and robustness for predicting liquid electrolyte 
properties.211 Nevertheless, PIML success hinges on the 
accuracy and completeness of embedded physical laws; overly 
simplified or incomplete physical constraints can restrict a 
model's ability to learn complex phenomena and generalize 
correctly.

Solution 3: Advanced Universal Representation Learning

Achieving truly "universal" ML models that can reliably 
extrapolate across vastly different chemical spaces and discover 
entirely new material classes remains a formidable scientific 
challenge. This likely necessitates a paradigm shift towards
models that can learn or infer fundamental physical laws more 
directly from data, rather than relying solely on statistical 
correlations or pre-defined explicit constraints. Promising 
approaches include more sophisticated PIML frameworks, 
integration of ML with symbolic regression techniques to 
discover governing equations, or development of AI systems 
capable of formulating and testing new physical hypotheses. 
Such advanced approaches could potentially overcome the 
limitations of current transferability strategies by learning more 
fundamental representations of chemical and physical 
relationships that generalize across diverse material systems.

5.5. Challenge 5: Beyond Screening: Generative and Hybrid 
Frameworks for Novel SSE Design

Traditional computational materials discovery, even when 
augmented by ML, relies on screening predefined candidate 
lists derived from existing databases or combinatorial variations 
of known crystal structures. While efficient for exploring local 
chemical space, these methods are less effective at proposing 
radically new compositions or structural archetypes that lie 
outside the initial search parameters. They are fundamentally 
tools for evaluation rather than de novo creation, inherently 
limiting the scope of discovery to variations of known materials 
rather than truly novel SSEs with unprecedented properties.

Solution 1: Deep Generative Models for Novel Material 
Design

Deep generative models offer a paradigm shift by learning 
underlying patterns and design rules from existing materials 
data and using this knowledge to propose entirely new 
candidate compositions or crystal structures from scratch, often 
guided by desired performance criteria.

• VAEs learn a compressed, continuous latent 
representation of materials, from which new 
candidates can be generated by sampling points in this 
latent space and decoding them back into material 
structures or compositions. Noh et al. applied a VAE-
based framework to the inverse design of solid-state 
materials, efficiently exploring chemical compositional 
spaces to generate novel candidates with desired 
properties.55

• GANs employ a two-network architecture: a generator 
that creates new material candidates and a 
discriminator that tries to distinguish these synthetic 
candidates from real materials in a training dataset. 
Through this adversarial training, the generator learns 
to produce increasingly realistic and potentially novel 
materials.

• Diffusion Models are an emerging class of powerful 
generative models that operate by learning to reverse 
a gradual noise-adding process. They have shown 
significant promise for generating high-quality 
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samples in various domains, like crystal structure 

generation.212 The MatterGen model, for example, can 
generate stable, diverse inorganic materials and can 
be fine-tuned to steer generation towards specific 
property constraints, including chemistry, symmetry, 
and various physical properties, with one generated 
structure successfully synthesized and validated.213

Solution 2: Evolutionary Algorithms and Hybrid Generative 
Approaches

Evolutionary Algorithms serve as powerful generative tools, 
particularly for crystal structure prediction and compositional 
optimization. EAs maintain a population of candidate solutions 
(materials) and iteratively apply evolutionary operators like 
mutation (small changes to composition or structure) and 
crossover (combining features of good candidates) to generate 
new candidates. A fitness function incorporating predicted 
stability, ionic conductivity, and other desired properties guides 
the selection of candidates for subsequent generations. XtalOpt 

exemplifies an open-source EA for crystal structure 

prediction.214 Unsupervised ML has also guided the 

Table 4: Comparison of Generative Model Approaches for Novel SSE Discovery.

prioritization of elemental phase fields for synthetic 
exploration, leading to the discovery of a novel quaternary 
lithium solid electrolyte in a collaborative workflow resembling 
evolutionary search.215

A hybrid approach combining a VAE with a genetic 
algorithm, termed the Evolutionary Variational Autoencoder for 
Perovskite Discovery (EVAPD), has been developed to discover 
new perovskite materials.196 This framework leverages the 
VAE's ability to generate diverse candidates from a learned 
latent space and the GA's strength in optimizing these 
candidates based on a defined fitness function (e.g., predicted 
stability). Such hybrid generative approaches hold considerable 
potential for SSE discovery if adapted with relevant property 
targets.

Generative 
Model Type

Core Working Principle Strengths for SSE Design Limitations/Challenges in SSE 
Context

Key 
Examples/Potential

Variational 
Autoencoders 
(VAEs)

Learns a continuous latent 
representation of data; new 
samples generated by 
decoding points from this 
latent space.

Smooth latent space allows 
for interpolation and 
generation of similar but 
novel 
structures/compositions; can 
be conditioned on 
properties.

Quality of 
reconstructed/generated 
materials can be an issue; 
ensuring chemical validity and 
stability of generated crystal 
structures.

Inverse material 
design55. 

Generative 
Adversarial 
Networks 
(GANs)

A generator network creates 
candidates, and a 
discriminator network tries to 
distinguish them from real 
data; adversarial training 
improves generator.

Capable of generating highly 
novel and diverse 
candidates; can learn 
complex data distributions.

Training can be unstable 
(mode collapse); ensuring 
generated crystal structures 
are physically realistic and 
stable is challenging.

Crystal structure 
prediction128; Inverse 
design of materials 
(MatGAN)54

Evolutionary 
Algorithms 
(EAs) / Genetic 
Algorithms 
(GAs)

Population-based search; 
applies operators (mutation, 
crossover, selection) guided 
by a fitness function (target 
properties).

Robust global search 
capabilities; can explicitly 
handle multiple objectives 
and complex constraints 
(e.g., stability, 
synthesizability).

Can be computationally 
expensive if fitness evaluation 
(e.g., DFT calculation) is slow 
for each candidate; defining 
effective representations and 
evolutionary operators for 
crystal structures.

Crystal structure 
prediction (XtalOpt)214; 
Guiding phase field 
exploration for Li-ion 
conductors215; 

Diffusion 
Models

Learns to reverse a noise-
adding process; new samples 
generated by iterative 
denoising from a random 
starting point.

Can generate very high-
quality, realistic samples; 
emerging as state-of-the-art 
in many generative tasks.

Can be computationally 
intensive for sampling; 
developing effective 
conditioning mechanisms for 
specific material properties 
and crystal symmetries.

General crystal 
structure 
generation212; 
MatterGen (fine-
tuneable generative 
model)213.

Hybrid Models 
(e.g., VAE-GA)

Combines strengths of 
different generative 
approaches, e.g., VAE for 
generation and GA for 
optimization.

Potential to overcome 
limitations of individual 
methods; e.g., VAE explores 
broadly, GA refines 
promising candidates.

Increased model complexity; 
requires careful integration of 
components.

EVAPD for 
perovskites196.

Integrated 
Closed-Loop 
Frameworks

ML proposes candidates → 
computational validation 
(DFT) → experimental 
synthesis/characterization → 
feedback to refine ML models 
in iterative cycles.

Combines theoretical 
prediction with experimental 
validation; continuous model 
improvement; reduces 
experimental waste through 
guided exploration.

Requires substantial 
infrastructure investment; 
standardized synthesis 
protocols needed; complex 
integration of computational 
and experimental platforms; 
slower iteration cycles.

CAMEO system;216

Electrolytomics;217

NaxLi3-xYCl₆ 
discovery;218

DiffMix for electrolyte 
optimization211
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The success of these generative models is critically 
dependent on the quality and relevance of the design rules or 
property targets they are given. If these targets are ill-defined, 
incomplete (focusing only on ionic conductivity without 
considering stability or synthesizability), or do not capture all 
essential practical constraints, the generated candidates may 
be theoretically interesting but practically irrelevant or 
impossible to realize. The ability of models like MatterGen to be 
fine-tuned for a broad range of property constraints, and its 
subsequent experimental validation, underscores the 
importance of multi-faceted and accurate guidance for 
generative design.213

Solution 3: Integrated Closed-Loop Experimental-
Computational Frameworks

The true acceleration in SSE discovery is anticipated from hybrid 
design frameworks that tightly integrate ML predictions with 
DFT calculations for validation and, crucially, with experimental 
synthesis and characterization in a closed-loop or active 
learning fashion. These "predictive synthesis" pipelines allow 
ML models to propose candidate materials, which are then 
computationally validated (e.g., by DFT for stability and 
preliminary property estimates) and/or experimentally 
synthesized and tested. The results feed back into the ML 
model, refining its predictions and guiding the next iteration of 
discovery.
Several pioneering efforts exemplify this approach:

• The CAMEO system is a real-time, closed-loop 
autonomous materials exploration platform that uses 
Bayesian active learning integrated with synchrotron 
beamline experiments for on-the-fly phase mapping 
and property optimization.216

• The "Electrolytomics" initiative describes an AI-guided 
approach that combines data science, robotic 
experimentation for validation, and computation, 
leading to the discovery and experimental 
confirmation of novel high-performance liquid 
electrolytes.217

• A computational-experimental pipeline successfully 
combined AI models, physics-based simulations on 
cloud HPC for large-scale screening, and subsequent 
experimental synthesis and characterization to 
discover promising new SSE compositions like NaxLi3-

xYCl₆.218

• The DiffMix model, a differentiable GDL model, has 
been used to guide robotic experimentation for 
optimizing fast-charging liquid battery electrolytes, 
achieving significant conductivity improvements in 
few experimental steps.211

• An integrated high-throughput robotic platform 
combined with active learning has been developed to 
accelerate the discovery of optimal liquid electrolyte 
formulations. This approach efficiently identifies high-
solubility redox-active molecules by evaluating a small 
fraction of candidates, demonstrating the 
effectiveness of closed-loop frameworks in materials 
discovery.219

• Iterative training of universal MLPs, where DFT 
calculations are performed on structures where the 
MLP shows high uncertainty, also represents a form of 
closed-loop learning to refine the potential across a 
wide chemical space.210

Fully autonomous closed-loop systems, often termed "self-
driving laboratories," represent the apex of accelerated 
materials discovery. However, their widespread adoption for 
SSE research faces significant hurdles. Beyond the continued 
advancement of ML algorithms and robotic platforms, a major 
challenge lies in the development of standardized, 
automatable, and rapid synthesis and characterization 
protocols suitable for the diverse range of solid-state 
chemistries. The synthesis of inorganic solids often involves high 
temperatures, controlled atmospheres, and multi-step 
processes that are not as easily automated as liquid-phase 
formulations. Furthermore, critical to the success of these 
frameworks is the implementation of robust validation 
workflows that prevent costly experimental efforts on 
unfeasible materials. Effective validation protocols should 
include thermodynamic stability screening via DFT hull distance 
calculations, with chemistry-dependent thresholds based on 
the metastability scales established for different material 
classes,220 kinetic accessibility assessment through 
thermodynamic upper bounds such as the amorphous limit for 
polymorph synthesizability,221 and rapid experimental 
validation using automated characterization techniques222 such 
as XRD phase identification and impedance spectroscopy.223,224 
These multi-tier filters ensure that generative models guide 
experimental efforts toward genuinely promising candidates 
rather than thermodynamically unstable or synthetically 
inaccessible compositions.

The cost and complexity of establishing and maintaining 
such highly integrated experimental and computational 
platforms, combined with the need for standardized validation 
protocols, require substantial investment and interdisciplinary 
expertise.

Table 4 provides a comparative overview of different 
generative model approaches and their potential in the context 
of novel SSE discovery.

6. Conclusion: Charting the Path Forward for 
AI-Accelerated SSE Innovation

The journey towards high-performance, safe, and commercially 
viable solid-state electrolytes is complex, yet the integration of 
machine learning offers unprecedented opportunities to 
accelerate progress. This review has highlighted several critical 
research gaps and challenges that currently temper the full 
impact of ML in this domain: the persistent scarcity of diverse, 
high-quality data, especially for multivalent ion systems and 
interfacial phenomena; the necessity for multi-objective 
optimization to balance competing performance metrics; the 
demand for interpretable ML models that provide scientific 
insights rather than just black-box predictions; the crucial need 
for models that can generalize and transfer knowledge across 
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diverse chemical spaces and novel material classes; and the 
imperative to move beyond screening predefined candidates 
towards generative design of entirely new materials within 
hybrid, closed-loop discovery frameworks.

The data scarcity challenge is particularly acute for 
multivalent systems (Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺), where solid-state 
battery research remains in its early stages both experimentally 
and computationally. Beyond the stark quantitative disparity 
with Li-ion SSE databases containing thousands of compounds 
while Mg²⁺, Ca²⁺, Zn²⁺, and Al³⁺ conductors each number in the 
tens to low hundreds225, these systems exhibit fundamentally 
different physics that cannot be addressed through simple data 
augmentation. Multivalent ions face stronger Coulombic 
interactions with the host lattice due to their higher charge 
densities, leading to sluggish diffusion kinetics and significantly 
higher activation energies compared to monovalent systems.177 
The migration mechanisms differ qualitatively: while Li⁺ 
transport often proceeds via direct hopping between 
tetrahedral sites, Mg²⁺ migration typically requires concerted 
structural relaxation or even temporary coordination changes 
to overcome the strong cation-anion binding. Additionally, 
defect chemistry and strain accommodation mechanisms vary 
substantially—multivalent dopants introduce different charge 
compensation schemes and elastic distortions that alter 
migration pathways in ways not captured by Li-based training 
data. These mechanistic distinctions mean that ML models 
trained predominantly on Li-ion data lack the physical 
descriptors and feature representations necessary to capture 
the governing principles in multivalent systems, creating a 
critical bottleneck for advancing beyond lithium-ion 
technologies that cannot be resolved by transfer learning alone 
without substantial new data generation and physics-informed 
constraints.

Encouragingly, the research landscape is actively addressing 
these challenges. Strategies such as transfer learning, 
unsupervised learning, and advanced data augmentation 
techniques are being developed to combat data limitations. 
Physics-informed machine learning and the pursuit of universal 
descriptors and interatomic potentials aim to enhance model 
transferability and generalization. Explainable AI methods are 
beginning to shed light on the complex structure-property 
relationships learned by ML models, fostering trust and guiding 
scientific intuition. Furthermore, generative models, including 
VAEs, GANs, EAs, and diffusion models, are showing increasing 
promise in proposing novel SSE candidates from scratch, while 
sophisticated multi-objective optimization algorithms are 
helping to navigate the intricate trade-offs inherent in materials 
design. The most transformative advances, however, are 
emerging from hybrid frameworks that tightly integrate ML 
predictions with high-fidelity computations (like DFT) and, 
crucially, experimental validation, often within automated, 
closed-loop "predictive synthesis" pipelines.

This review provides several distinctive contributions that 
advance the field beyond existing literature. We present the 
first systematic mapping of five interconnected challenges with 
corresponding emerging solutions, providing a strategic 
roadmap for practitioners. Unlike previous reviews that 

predominantly focus on Li-ion systems, we emphasize the 
critical data gap for multivalent systems and provide specific 
strategies for addressing this limitation through transfer 
learning and physics-informed approaches. We uniquely bridge 
conventional computational methods with cutting-edge ML 
techniques, demonstrating how hybrid workflows can 
overcome individual limitations while leveraging 
complementary strengths. Rather than merely surveying 
techniques, we provide actionable recommendations for data 
collection priorities, validation strategies, and best practices for 
applying explainable AI methods to materials discovery.

To further propel AI-accelerated SSE innovation, future 
research should prioritize several key directions. The 
development of next-generation multi-objective optimization 
algorithms that can simultaneously optimize ionic conductivity, 
electrochemical stability, mechanical properties, and 
synthesizability while incorporating real-world constraints 
represents a critical need. Physics-informed universal models 
that embed fundamental physical laws governing ionic 
transport and electrochemical stability directly into model 
architecture require immediate attention. These must learn 
temperature-dependent behavior, incorporate many-body 
interactions, and predict interfacial stability through first-
principles constraints.

Robust uncertainty quantification methods for ML 
predictions, particularly when extrapolating to novel chemical 
spaces, represent another urgent priority. Cross-domain 
transfer learning protocols must be established to enable 
knowledge transfer between different ion types and between 
computational and experimental domains. Several fundamental 
research questions require immediate investigation: How can 
we systematically quantify and improve model transferability 
across different crystal structure families and ionic species? 
What are optimal strategies for incorporating experimental 
uncertainty into ML training datasets? How can we develop 
models that predict long-term degradation and interfacial 
evolution beyond static property prediction?

The practical implementation of these advances requires 
immediate action across multiple fronts. A concerted 
community-wide effort is essential to build FAIR226 databases 
that encompass multivalent systems and include 
comprehensive interfacial property data with standardized 
metadata. The integration of automated synthesis platforms 
specifically designed for SSE discovery represents a 
transformative opportunity, requiring real-time 
characterization capabilities and automated feedback loops. 
Comprehensive validation workflows for generative models 
must include thermodynamic stability screening, kinetic 
accessibility assessment, and rapid experimental validation 
using automated characterization techniques.

Future experimental and computational campaigns should 
prioritize multivalent systems with intermediate ionic radii, 
materials exhibiting mixed ionic-electronic conductivity, and 
interfacial properties that remain underrepresented in current 
databases. The establishment of industry-academic 
partnerships will be crucial for scaling promising discoveries to 
commercial applications, while advanced generative models 

Page 27 of 31 Materials Horizons

M
at

er
ia

ls
H

or
iz

on
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
5/

11
/1

6 
 0

4:
10

:0
2.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5MH01525A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mh01525a


ARTICLE Materials Horizons

26 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

must be refined to ensure chemical validity, thermodynamic 
stability, and practical synthesizability of proposed candidates.
The path forward for revolutionizing SSE development lies in a 
deeply synergistic approach where machine learning realizes its 
transformative potential through intimate integration with 
fundamental domain knowledge from physics and chemistry, 
rigorous computational modeling, and iterative experimental 
validation. As these integrated intelligence frameworks mature, 
particularly those enabling autonomous closed-loop discovery, 
the pace of innovation in solid-state electrolytes is poised for 
significant acceleration, bringing the promise of safer, more 
energy-dense, and longer-lasting battery technologies closer to 
reality. 
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