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Precise and rapid identification of knee osteoarthritis (OA) is essential for efficient management and
therapy planning. Conventional diagnostic techniques frequently depend on subjective interpretation,
which have shortcomings, particularly during the first phases of the illness. In this study, magnetic reso-
nance imaging (MRI) was used to create knee datasets as novel techniques for evaluating knee OA. This
methodology utilizes artificial intelligence (Al) algorithms to identify and evaluate important indications of
knee osteoarthritis, including osteophytes, eburnation, bone marrow lesions (BMLs), and cartilage thick-
ness. We conducted training and evaluation on multiple deep learning models, including ResNet50,
DenseNet121, VGG16 and ResNet101 utilizing annotated MRI data. By conducting thorough statistical ana-
lysis and validation, we have proven the efficacy of our models in precisely diagnosing and grading knee
OA. This research presents a new grading method, verified by experienced radiologists, that uses eburna-
tion as a significant indicator of the severity of knee OA. This study provides a new method for an Al-
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powered automated system designed to diagnose knee OA. This system will simplify the diagnostic
process, minimize mistakes made by humans, and enhance the effectiveness of clinical treatment.
Through the integration of Al-ML (machine learning) technologies, our goal is to improve patient out-
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1. Introduction

Knee osteoarthritis (OA) is a complex musculoskeletal and
inflammatory disease marked by cartilage degradation, osteo-
phyte formation, and synovial inflammation." The clinical
burden is significant, with many affected by symptomatic knee
OA.> Symptoms include pain, joint stiffness, and reduced
ability to perform daily activities.>> Knee OA also leads to
structural changes in bone, synovium, and muscles, which
worsen its impact. Earlier research has established a strong
association between OA and aging, affecting a significant
number of individuals aged 55 and older.®” The degenerative
nature of knee OA is mainly due to mechanical erosion of
articular cartilage, which has limited regenerative capacity,
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comes, optimize the utilization of healthcare resources, and enable personalized knee OA therapy.

presenting challenges in sustained healing.®'° Early diagnosis
is challenging due to the lack of visible early-stage knee OA
signs, often detected only after significant joint changes,
leading to chronic pain and functional restrictions."™'* While
physical exams and radiography provide pathophysiological
insights, they typically do not measure early cartilage degener-
ation effectively.">**

The method of manually grading knee OA has been widely
acknowledged as a challenging task, which is susceptible to
errors. It is affected by difficulties like prejudice, low agree-
ment between different users, and limited ability to reproduce
results. Although pathologists possess high levels of knowl-
edge, the subjective aspect of manual grading sometimes inhi-
bits the detection of early or moderate stages of knee OA.'® To
address these problems, our study aims to utilize artificial
intelligence to transform the process of diagnosing and classi-
fying knee OA. In this study, Al refers to the overarching field
that involves creating intelligent systems capable of perform-
ing tasks that would typically require human intervention.
Specifically, ML, a subset of Al, is used in our research to
develop models that can learn from the MRI scan data to
predict knee OA severity. We utilized deep learning, a further
subset of ML, to build and train CNNs that can automatically
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extract relevant features from MRI images and classify knee OA
parameters. In our present work, we went through an in-depth
review of the many approaches used in the identification of
knee OA, providing insight into their individual advantages,
drawbacks, and difficulties. The scope of our research includes
an array of traditional and innovative methods used for diag-
nosing knee OA, with the goal of gaining a comprehensive
knowledge of their effectiveness in real-world medical set-
tings.'® Although radiography is largely recognized as the most
reliable method for diagnosing knee OA, its ability to detect
early-stage knee OA and assess the development of the disease
is limited."” While MRI and computerized tomography scans
are dependable techniques for detecting advanced knee OA,
challenges in identifying the condition at an early stage are
still encountered because of their limited capacity to detect
soft tissues.'® MRI, although superior in visualizing soft
tissues compared to CT, can be hindered by the resolution
limitations and the need for highly specialized interpretation.
A recent review by Kijowski et al. highlighted the growing use
of deep learning in OA imaging, showcasing its potential for
automated cartilage lesion detection, segmentation, and
grading using MRI and X-ray data (e.g:, cartilage segmentation
or single-feature analysis).'® Additionally, both techniques can
struggle with differentiating between early knee OA changes
and normal variations in knee anatomy, leading to potential
misdiagnosis or underestimation of disease severity.”
Furthermore, these imaging modalities are resource-intensive,
requiring significant time and cost, and their accessibility may
be limited in certain regions or healthcare settings."”® MRI has
benefits in detecting knee OA at the initial stage, but earlier
approaches such as the Whole-Organ Magnetic Resonance
Imaging Score (WORMS) do not provide the necessary accuracy
for precise grading. So, our research aims to overcome these
limitations by utilizing advanced ML algorithms to create an
automated model based on the MOAKS criteria.”* The MOAKS
criteria evaluate the severity of knee OA using MRI scans, from
which various factors are assessed such as cartilage condition,
osteophytes formation, bone lesions, cysts, meniscal abnorm-
alities, and ligamentous abnormalities.>" The grading of each
characteristic ranges from 0 to 3 or 4, depending on the sever-
ity of documented disease.”> MOAKS provides a comprehen-
sive and detailed semi-quantitative scoring system designed to
assess these pathological features with precision. Bone marrow
lesions (BMLs) are graded based on their size and presence of
cysts, ranging from no lesion (grade 0) to lesions occupying
more than 66% of the subregional volume (grade 3). Articular
cartilage damage is scored according to the area and depth of
the lesion, from normal thickness (grade 0) to full-thickness
defects covering more than 50% of the area (grade 4).
Osteophytes are evaluated by size in specific anatomical
locations, from none (grade 0) to large (grade 3). This detailed
and structured evaluation system provided by MOAKS ensures
a fine-grained understanding of knee OA and its impact on
knee joint structures, facilitating accurate monitoring of
disease progression and treatment efficacy. By integrating
these comprehensive assessments into an automated model,
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our research aims to enhance diagnostic accuracy and treat-
ment planning for knee OA.

In this study, we also used the DICOM (Digital Imaging and
Communications in Medicine) format for storing and proces-
sing the MRI scans. DICOM is the standard format for hand-
ling, storing, and transmitting medical imaging data. It
ensures that images, along with metadata such as patient
information and imaging parameters, are properly stored and
can be used in conjunction with different medical imaging
software. DICOM files are commonly used in clinical practice
and research to ensure compatibility and ease of analysis
across various platforms. We used DICOM MRI scans to obtain
high-resolution images of the knee joint, which were then pre-
processed and fed into our machine learning models for knee
OA detection and grading.

The objective of our approach is to precisely detect and clas-
sify knee OA, evaluate its intensity, and predict grading levels
with improved accuracy. The study is motivated by the need
for knee OA detection at an initial stage and the dataset used
includes MRI scans from patients across all severity levels
(grades 1 to 3). To demonstrate the model’s diagnostic per-
formance and clinical applicability, we have included a model-
versus-clinical analysis for a grade 3 knee osteoarthritis con-
dition in the Results section. Our strategy combines modern
imaging techniques and Al-driven analysis to address the
limitations of manual grading. This approach aims to achieve
fairness, dependability, and enhanced diagnostic accuracy
while also expanding our knowledge of the physiology of knee
OA. The uniqueness of our research lies in the development of
an innovative scoring system centred on eburnation, a key indi-
cator of bone degeneration found in conditions like knee OA
and non-union fractures. Traditionally, osteophytes have been
regarded as the earliest radiographic indicator of osteoar-
thritis. However, through collaborative clinical validation with
senior orthopaedic experts at Indraprastha Apollo Hospital,
New Delhi, our study is the first to recognize eburnation as an
even earlier and more definitive marker of knee OA onset. We
observed that eburnation caused by direct bone-on-bone
contact due to initial cartilage loss often precedes osteophyte
formation, making it a crucial feature for early diagnosis. Its
inclusion in our grading system allows for a more precise and
progression-sensitive classification of knee OA. Eburnation
reflects subchondral bone changes due to cartilage degra-
dation. As cartilage wears away, the underlying bone under-
goes sclerosis, forming a polished, ivory-like surface. This
process, visible in MRI scans, serves as an early sign of knee
OA before osteophytes appear. Eburnation is particularly
useful in grading knee OA severity, as it directly correlates with
bone adaptation to cartilage loss at an early stage. Previous
studies have established its role in differentiating knee OA
from other joint conditions supporting its inclusion in our
grading system.”” Unlike existing approaches, our scoring
system not only identifies the presence of eburnation but also
quantifies its severity with high precision. This allows for
detection of bone health issues at an initial stage and enables
clinicians to predict patient outcomes more accurately.

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1039/d5bm00470e

Published on 19 2025. Downloaded on 2025/10/21 02:55:29.

Biomaterials Science

Validated rigorously against established clinical standards, our
system enhances diagnostic reliability and facilitates timely
interventions, potentially improving treatment efficacy and
patient quality of life.>® This novel strategy uses the distinct
clinical attributes associated with the advancement of knee
OA, providing a targeted and accurate approach for early evalu-
ation. Our focus is to use advanced imaging techniques and
DL algorithms to address the few shortcomings of manual
grading. This will result in faster and more accurate assess-
ments, less bias in scoring, and improved dependability and
repeatability. Furthermore, the final phase of our initiative was
the development of DL-assisted automated grading models
specifically built to assess human-knee MRI samples by
measuring the extent and severity of disease progression. By
substituting human grading systems, these models can elimin-
ate differences between users, set a benchmark for knee OA
rating, and provide more precise and efficient diagnosis. This
research signifies an important advancement in the field of
knee OA diagnosis, providing marked improvements in accu-
racy, efficacy, and unbiased judgment.

2. Methodology

We analysed MRI knee-scan data from a sample of 14 patients
in collaboration with the Indraprastha Apollo Hospital, Delhi,
India (ethical approval number-IAH-BMR-018/10-19). To estab-
lish a precise model for classifying knee OA (Table 1), each
scan was meticulously examined. The assortment was carefully
organised, highlighting significant indicators of the severity of
knee OA. Specifically, a comprehensive analysis of the bone
curvature in the MRI scans was required to detect eburnation,
which was a significant indicator of knee OA. The total of 14
patient samples in this study was divided into training, vali-
dation, and test datasets using an 80%-20% split, with 11
patients used for training and 3 patients reserved for testing.
To support effective model training and ensure a balanced rep-
resentation of disease severity, the dataset was randomly
divided in a manner that guaranteed each set—training, vali-
dation, and testing—included cases from all three OA grades

Table 1 Overall quantity of acquired dataset sample images

Samples Gender Age (years) Knee OA condition
Sample 1 Male 58 Mild
Sample 2 Female 47 Mild
Sample 3 Male 59 Mild
Sample 4 Female 69 Mild
Sample 5 Female 50 Mild
Sample 6 Female 45 Moderate
Sample 7 Female 46 Moderate
Sample 8 Male 54 Moderate
Sample 9 Female 54 Moderate
Sample 10 Female 56 Severe
Sample 11 Female 70 Severe
Sample 12 Female 47 Severe
Sample 13 Male 58 Severe
Sample 14 Male 46 Severe
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(mild, moderate, and severe). Within the training set, we
applied k-fold cross-validation (with k = 5) to ensure strong vali-
dation of the model. This means that the training set was split
into 5 smaller subsets, and the model was trained and validated
5 times, each time using a different fold for validation and the
remaining 4 folds for training. This process was repeated for
each subset, ensuring that all data points were used for both
training and validation. The final test set of 3 patients remained
untouched throughout the training and validation phases and
was only used for final model evaluation (Table 2).>*

After receiving the MRI scans, the dataset was organized
and labelled based on the presence and the severity of knee
OA. Each scan was examined to determine if knee OA was
present and, if so, how severe it was. This classification and
annotation process allowed for accurate labelling of the data,
which was essential for training and evaluating the machine
learning model.

The grading of the MRI scans using the MOAKS system was
performed by an experienced and certified radiologist. The
radiologist holds the required certifications in radiological
interpretation and is regularly involved in clinical grading for
knee OA at the hospital. The scoring process was supervised to
ensure accuracy and consistency across all samples, and the
grading system was validated by comparing the results with
those of other experienced radiologists. The task involved cate-
gorising each image according to specific features indicative of
knee OA, such as the presence of osteophytes, the formation of
BMLs, eburnation, and cartilage thickening.*® The radiologists
provided detailed scales for evaluating each parameter of the
MRI scans. These scales were used to assess the presence and
severity of knee OA in a standardized manner. By using these
carefully defined evaluation criteria, the radiologists ensured
that the labelling process was both accurate and uniform
across all scans. This consistency was crucial for the sub-
sequent training and evaluation of the machine learning
model. Eburnation, a characteristic feature of knee OA,
involves significant changes in the subchondral bone, where
increased osteoblastic activity leads to the deposition of sclero-
tic, ivory-like bone tissue.*® As the cartilage thins and even-
tually exposes the subchondral bone, the bone undergoes
adaptive changes such as increased mineralization and the for-
mation of microfractures, resulting in a polished, hardened
surface that not only increases joint friction but also contrib-
utes to chronic pain, inflammation, and reduced joint function
through the formation of osteophytes and subchondral cysts.

Areas with the potential for eburnation were identified by
detecting deviations from the expected linear pattern. The pre-

Table 2 Total number dataset sample image collected

Total images Male Female
Grade 1 511 329 182
Grade 2 1155 651 504
Grade 3 1099 630 469
Total 2765 1610 1155

Biomater. Sci, 2025,13, 5475-5494 | 5477


https://doi.org/10.1039/d5bm00470e

Published on 19 2025. Downloaded on 2025/10/21 02:55:29.

Paper

liminary phase of our procedure involved improving the
quality of the MRI scans in our dataset using essential prepro-
cessing techniques.”” These techniques included normalising
the pixel values to establish a standard algorithm, resizing and
cropping to ensure consistency, reducing noise to enhance
clarity of the dataset, and adjusting the contrast to highlight
important features according to requirements of the para-
meters. These procedures were designed to improve the clarity
and consistency of bone structures, making it easier to analyse
them with greater accuracy. Following that, we utilised edge
detection methods to accurately outline the boundaries of
bones in the dataset. By doing this crucial procedure, we were
able to accurately identify and examine the contours of the
bones with appropriate accuracy. This served as the foundation
for finding the osteophytes and precisely determining the
specific areas of eburnation, which are termed as a deviation
from the bone’s typical curvature. Following that, curvature
analysis tools were used to determine the precise locations of
eburnation in the scans. These tools helped identify and
analyse deviations in bone curvature accurately.

The MRI scans were then examined to assess the presence
of BML development by examining the colour grading and
intensity of pixel colour blocks, which are indicative of differ-
ences in bone marrow intensity.”® The regions corresponding
to bone marrow were extracted using image segmentation
methods.”® The analysis involved quantifying the colour
grading and intensity fluctuations using histogram analysis
and intensity thresholding techniques. Regions indicating the
development of BML were identified based on higher intensi-
ties.>® The extent of cartilage thickness, which indicates knee
osteoarthritic alterations, was assessed by comparing the
thickness of the damaged and healthy sections. The MRI data
were processed using image analysis techniques such as
region segmentation and edge detection to isolate the cartilage
layer.>*? Following that, algorithms were developed to calcu-
late cartilage thickness at various locations around the knee
joint. This computational method involved measuring differ-
ences in thickness between healthy and impacted regions. To
enhance model performance, regularisation and hyperpara-
meter tuning were utilized during the optimization of cartilage
thickness estimation.®® To improve the model’s accuracy,
additional MRI knee scans were used. These scans were
obtained from the same dataset of 14 patients, featuring
different MRI sequences and views (such as axial, sagittal, and
coronal) of the knee joints. These varied sequences enhanced
the diversity and variability of the dataset, allowing the model
to better segment and recognize key features such as osteo-
phytes, BML formation and eburnations. The use of these
additional scans improved the model’s ability to generalize
across different anatomical differences and disease manifes-
tations, which ultimately contributed to more accurate predic-
tions of knee OA severity.>* Several ML techniques were used
to create the knee OA classification model. The labelled
dataset was utilised to train supervised learning algorithms
such as Support Vector Machines (SVM), Random Forest, and
Convolutional Neural Networks (CNN).>**?® In order to
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enhance the performance of the models, regularisation and
hyperparameter tuning were utilised during the optimisation
process.*” The performance of each model was evaluated using
criteria such as F1-score, accuracy, and precision®®?°

Deep Convolutional Neural Networks refer to neural net-
works with many layers (hence the term ‘deep’) that are
capable of learning complex hierarchical features from input
images. In our study, deep CNNs, such as ResNet50,
ResNet101, DenseNet121 and VGG16, were used to automati-
cally extract features from MRI images and classify knee osteo-
arthritis parameters. The Inception model is a type of CNN
architecture that uses multiple convolutional filter sizes at
each layer, allowing it to capture more varied features from the
input images.’® This approach helps the model learn from
different scales of the data simultaneously, improving its per-
formance in tasks like image classification. Custom-designed
CNNs refer to specific architectures that were tailored to our
dataset to enhance the model’s ability to capture relevant fea-
tures in the MRI scans. Unlike standard pre-trained CNN,
these custom models were adjusted and optimized based on
our particular problem and dataset characteristics. Another
technique, non-maximum suppression, is used during object
detection to eliminate redundant bounding boxes and retain
only the most accurate ones. This technique is crucial for
detecting specific regions of interest, such as osteophytes, and
ensures that the model does not produce overlapping or dupli-
cate predictions.

2.1 Grading methodology

Our study utilized the MOAK system to evaluate the extent of
knee OA by analysing the following factors: BMLs, osteophytes,
eburnation, and cartilage thickness.>> Each parameter was
assigned a score ranging from 1 to 3 (Table 3).>! Table 3 pre-
sents a hybrid grading system that integrates MOAKS criteria
(for osteophytes, BMLs, and cartilage thickness) with a new
scoring framework for eburnation, which we developed based
on clinical observations and prior literature. In our knee OA
grading system, eburnation is emphasized as a key feature due
to its pathological relevance in early-to-advanced disease pro-
gression. Its detection reflects cartilage degeneration that even-
tually contributes to subchondral remodelling and osteophyte
formation, making it a reliable and underutilized marker of
OA severity. Eburnation was quantified by analysing deviations
in bone curvature and smooth surface formation, following
methodologies similar to those described in previous imaging-
based studies.*’ The proposed scoring system for eburnation
allows for a more standardized and objective assessment of
subchondral bone changes, enhancing the accuracy of knee
OA severity classification beyond traditional MOAKS-based
evaluations.

Validation and reliability of our grading approach for ebur-
nation in the scoring system were ensured through obtaining
approval from a trained radiologist at Apollo Hospital. The
scoring system was specifically developed to measure the
gradual advancement of knee OA, where higher scores indi-
cated a greater degree of disease development. This system

This journal is © The Royal Society of Chemistry 2025
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Table 3 Scoring categories based on different parameters for assessing the severity of knee OA

Parameters Grade 1 Grade 2 Grade 3
Eburnations 2 blocks per 10 cm 2-7 blocks per 10 cm >7 blocks per 10 cm
BML formation 10% 10-75% >75%
Cartilage thickness loss 30% 33-65% >65%
Binary classification

Yes No

Osteophytes Presence of osteophytes

was designed to provide a detailed assessment of disease pro-
gression. A grade 1 score reflected the initial stages of knee
osteoarthritic alterations in the examined parameter, indicat-
ing minor changes. In contrast, a grade 3 score suggested a sig-
nificant level of disease, characterized by more evident altera-
tions and more severe symptoms.

2.2  Model architecture

We utilized an advanced deep learning architecture specifically
designed for image processing tasks to detect the targeted
parameters present in MRI knee scans. The architecture com-
prised multiple components, each specifically designed to
tackle distinct issues in the reliable and effective detection of
osteophytes, eburnations, BML formations, cartilage thick-
ness, and overall condition grading. We, then implemented an
RPN within a Faster R-CNN framework to detect possible
locations in MRI scans that contain osteophytes at the periph-
ery of the knee regions and follow the algorithm to identify the
required targeted parameters. The Reverse Polish Notation
(RPN), which is smoothly integrated with the model backbone,
effectively produces region ideas for subsequent analysis.**

The approach consisted of a series of consecutive steps.
First, data were collected from Apollo Hospital, and then sub-
jected to thorough data preprocessing operations, which
included data cleaning, labelling, and normalisation. Afterwards,
the dataset was divided into separate test and validation sets.
Subsequently, the model was trained using the training data,
and its performance was thoroughly evaluated using the vali-
dation set. Modifications and fine-tuning of the model were con-
ducted as needed, using the evaluation as a basis.** Finally, to
make a definitive evaluation, the completed model was subjected
to thorough examination using the separate test set of MRI scans
for the 3 patients that was set aside and not used during the
training phase. These scans were exclusively reserved for testing
and provided an independent evaluation to assess the generaliz-
ability and accuracy of the machine learning models. The separ-
ate test set allowed for validation of the models on unseen data,
ensuring that the models were not overfitting with respect to the
training data and could reliably predict the classification of knee
OA on new samples, ensuring the strength and applicability of
the suggested methodology (Fig. 1).

The primary component of our model consisted of pre-
trained CNN designs, such as VGG16, ResNet50 and

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Project life cycle.

DenseNet121 (Fig. 2), which were incorporated into Region
Proposal Networks.** This model detects and grades knee OA
parameters from MRI scans. CNNs, including ResNet50,
DenseNet121, and VGG16, were used for feature extraction and
classification of knee OA indicators such as osteophytes, bone
marrow lesions, eburnation, and cartilage thickness. These
pre-trained CNNs, which were fine-tuned for our dataset, pro-
vided the backbone for the model’s image analysis.
Additionally, Region Proposal Networks (RPNs) were integrated
with the CNNs to improve the detection of specific regions of
interest, particularly osteophytes.*’ To further enhance classifi-
cation performance, we also used traditional machine learning
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Binary Classification

OA = Positive
OA = Negative

Grading Classification

Model Training

GRADE -1
GRADE -2
GRADE -3

ResNet101

Fig. 2 Overview of the Al framework for knee OA detection. The model pipeline begins with CNN-based feature extraction using ResNet50,
ResNet101, DenseNet121, and VGG16. These extracted features are further processed by Random Forest and SVM classifiers for precise knee OA
grading. An RPN component is integrated to enhance the localization of knee OA-specific features in MRl images.

techniques, including Support Vector Machines (SVM) and
Random Forest, for comparison and to verify the robustness of
the results. These models worked together, with CNNs provid-
ing deep feature learning and SVM/Random Forest offering
additional validation for the classification outcomes. This
combination greatly improved our model’s capacity to precisely
detect and pinpoint the areas of interest in the dataset. Pre-
trained models, which had been previously trained on large
datasets like ImageNet, provided a strong foundation by
extracting important features from scans. The extensive train-
ing of these models (Fig. 2) was used to recognize and under-
stand various image patterns, making them highly effective for
new tasks. By using these pre-trained models, we could apply
their acquired information to our specific needs, reducing the
amount of new data required and speeding up the training
process. This approach ensured our models performed well
and accurately on image-based tasks.*®

After localising the regions of interest, a deep CNN was
used to perform comprehensive analysis and classification of
the identified regions. We utilised architectures such as
ResNet50, Inception, and custom-designed CNNs to detect our
parameters, ensuring a balance between accuracy and proces-
sing efficiency.”' The utilization of the custom-designed CNNs,
originally trained on large datasets, were leveraged for their
powerful feature extraction capabilities. By fine-tuning these
pre-trained models with our MRI knee dataset, our goal was to
enhance the model’s ability to identify specific signals critical
for detecting and grading parameters such as BML formation,
osteophytes, loss of articular cartilage lining, and eburnation
(Fig. 3). This approach allows us to adapt the network to better
recognize the unique features present in our MRI data related
to knee conditions. To enhance the identification of the tar-
geted parameters and guarantee precision, several post-
processing procedures were employed.First, Non-Maximum
Suppression (NMS) was used to eliminate redundant bounding
boxes predicted by the model in the periphery knee region,
ensuring that each osteophyte and instance of eburnation was
recognised only once at the targeted sites.’” In addition, NMS
facilitated accurate determination of BML presence and carti-
lage thickness based on the MOAKS scoring criteria.*’Second,
the use of Thresholding, whichinvolved setting a confidence
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threshold to exclude low-confidence detections, to improve the
accuracy of osteophyte detection.*®

The model’s performance was assessed using conventional
metrics, including Precision, Recall, F1-score, and Intersection
over Union (IoU), calculated specifically for bounding box pre-
dictions. An evaluation was performed on a distinct test set to
appropriately assess the real-world performance of the model.

2.3 Patient selection criteria

The selection of patients for this study was based on well-
defined inclusion and exclusion criteria to ensure the
reliability and consistency of the dataset.

Inclusion criteria. Patients eligible for participation were
those diagnosed with knee OA, confirmed through both clini-
cal evaluation and radiographic imaging. This ensured that all
selected cases met standardized diagnostic criteria, minimiz-
ing variability in disease severity assessment. To maintain
high imaging quality and ensure accurate model training, only
MRI scans with sufficient resolution and clarity were included,
with a minimum requirement of 3T MRI scans. Additionally,
patients had to be between 45 and 75 years of age, as this age
range captures the most commonly affected population for
knee OA while excluding younger individuals with post-trau-
matic knee OA and elderly patients with significant comorbid-
ities that could interfere with imaging analysis.

Exclusion criteria. Patients with a history of knee surgery,
trauma, or joint replacement were excluded to prevent struc-
tural alterations unrelated to knee OA from confounding the
analysis. Additionally, individuals diagnosed with inflamma-
tory arthritis, such as rheumatoid arthritis or other rheumato-
logic diseases, were not included, as these conditions could
introduce pathological changes distinct from knee OA.
Patients with other musculoskeletal disorders or significant
joint deformities unrelated to knee OA were also excluded to
maintain a homogeneous sample. Poor MRI image quality due
to motion artifacts or technical limitations was another exclu-
sion factor, as it could compromise image processing and
model performance. Lastly, patients with incomplete clinical
data were excluded to ensure a comprehensive dataset with
complete demographic, clinical, and imaging records for accu-
rate analysis and validation of the model.

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Parameters for detecting the knee OA condition. (A) BML formation, (B) indicating osteophytes, (C) eburnation formation, and (D) loss of

articular cartilage lining the medial tibial and femoral condyles.

2.4 Model training

The model training involved incorporating additional MRI knee
scans to improve accuracy in detecting parameters by enhancing
image segmentation and the pattern recognition method
(Fig. 3). By initiating the different parameters of the dataset with
a greater number of different knee MRI scans, the model was
exposed to a wider variety of anatomical differences and patho-
logical signs. This improved its capacity to accurately differen-
tiate between normal and dysfunctional knee structures.
Advanced image segmentation techniques along with pattern
recognition algorithms were used to accurately outline specific
areas of interest, such as osteophytes, within the periphery side
of the knee in the MRI scans.”® Utilizing the technique to build
the algorithm to analyse the signals indicated the presence of
osteophyte formations with increased sensitivity, as well as indi-
cating the presence of BML and variations in cartilage thickness.
The model-training process was conducted step by step, utilizing
a larger dataset and advanced algorithms for segmenting and
recognizing patterns.>® This resulted in a more reliable and accu-
rate tool for detecting osteophytes in MRI knee scans, with the
potential to greatly improve the accuracy of diagnosing knee OA.
The eburnation detection block model played a crucial role
in the ML architecture by identifying and analysing eburnation
in MRI knee scans (Fig. 3C). This model utilized a combi-
nation of geometric analysis and computational techniques to
track and assess the curvature of bone structures in the scan
datasets. Specifically, it applied differential geometry-based
curvature estimation, which enabled precise detection of irre-
gularities along the bone boundary—such as bulges or inden-
tations—that signified eburnation. To enhance accuracy, the
model incorporated multi-scale feature extraction through a CNN,

This journal is © The Royal Society of Chemistry 2025

which systematically analysed variations in bone morphology at
different levels of detail. The curvature assessment was further
refined using Gaussian curvature and shape descriptor algor-
ithms, allowing the detection of subtle deviations from normal
bone structure. This method ensured that the model could accu-
rately delineate affected regions and quantify the extent of bone
damage, providing valuable insights into knee OA progression. A
standardized MRI-based grading method was tailored for knee
OA detection at the initial stage. This system leveraged texture-
based analysis and DL classification to assess cartilage degra-
dation and subchondral bone changes with higher sensitivity
than conventional scoring methods.>® The purpose of this system
was to offer a more detailed evaluation of the severity of knee OA.
Our methodology entailed tracking the curvature of the bone in
the MRI scans to detect eburnations, which are a distinctive and
the early-stage characteristic of knee OA.>* To measure the degree
of eburnation, we utilized a technique based on blocks. Every
recognized eburnation was delineated as a distinct unit, and the
total count of these units within a 10 cm interval was recorded.
This count was used to determine the severity of knee OA. A
count of 2 blocks per 10 cm corresponded to grade 1, 2 to 7
blocks indicated grade 2, while more than 7 blocks indicated
grade 3, as mentioned in Table 3. By utilizing this methodical
approach, the diagnosis of knee OA was improved in terms of
both accuracy and precision, which in turn allowed for more
effective treatment planning and patient care.

2.5. Statistical analysis

The statistical analysis was conducted using R, a comprehen-
sive statistical computing environment. The dataset consisted
of MRI knee-scan records from a sample of 14 patients, which
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were systematically divided into multiple sets to evaluate the
performance of the deep learning models (n = 3).

This separation of data ensured that model performance
could be assessed on unseen data, allowing for a reliable evalu-
ation of generalizability. The study employed 5-fold cross-vali-
dation on the training dataset to optimize model learning and
minimize overfitting. For statistical validation, n = 3 refers to
the number of independent test samples used for the final
evaluation of the trained models.>® These three test cases were
completely excluded from the training process to ensure an
unbiased assessment. This approach helped in measuring the
model’s robustness, reliability, and ability to classify the sever-
ity of knee osteoarthritis accurately.”*

To quantify model accuracy, the following statistical metrics
were applied:

+ Accuracy = (true positives + true negatives)/total predictions

« Precision = true positives/(true positives + false positives)

« Recall (sensitivity) = true positives/(true positives + false
negatives)

+ F1-score = 2 x (precision x recall)/( precision + recall)

+ ROC-AUC (Receiver Operating Characteristic-Area Under
Curve) to measure model discrimination ability.

To evaluate the accuracy of the classification models, par-
ticularly for categorising knee OA grades into four classes,
various statistical markers were employed. These metrics
included the calculation of average accuracy scores and F1
scores.>® The accuracy scores provided a thorough assessment
of the accuracy of the models in predicting knee OA grades
(Table 4). However, the accuracy and recall metrics assessed
the ability of the models to correctly classify positive cases and
prevent false positives, respectively.

3. Results

3.1. Deep learning model comparison

During our comparative research of DL models, specifically
VGG16, ResNet50, and DenseNet121, we thoroughly examined
their ability to reliably identify knee OA parameters. By utilis-
ing these refined and enhanced CNN structures, we trained
and assessed these models using a broad collection of MRI
scans of knees that exhibited different levels of knee OA sever-
ity. Heat maps (Fig. 5) visually display the accuracy of each
model in recognising specific knee OA metrics, such as osteo-
phytes, eburnation, BML development, and cartilage thick-
ness.”® After conducting a thorough analysis using multiple
models, it became clear that ResNet50 surpassed VGG16 and

Table 4 Metrics of various models used for grading

View Article Online

Biomaterials Science

DenseNet121 in terms of accuracy across all evaluated para-
meters. ResNet50 consistently achieved the highest accuracy
rates (Fig. 5B). This is due to its effective use of residual con-
nections, which addressed the vanishing gradient problem
and allowed for deeper network training. To better understand
the internal functioning of our deep learning system, Fig. 4
illustrates the detailed architecture of the ResNet50 model
used in this study. Fig. 4 illustrates the complete workflow of
our Al-based knee OA classification system, starting from data
pre-processing to the final model output. On the left, the Data
Pre-Processing stage shows how MRI slices are manually anno-
tated using bounding boxes to isolate critical regions such as
joint spaces, cartilage interfaces, and subchondral bone area
regions typically affected in knee OA. This step is semi-manual
and benefits from expert radiological input to ensure anatom-
ical precision before feeding the images into the model. The
image for the Model Integration section depicts how the
cropped regions are processed by the ResNet50 architecture.
Core CNN layers including convolution, activation, and
pooling extract feature relevant to knee OA pathology, such as
bone contour irregularity, cartilage thinning, and osteophyte
formation. Supporting visuals highlight how the model detects
and encodes structural patterns across layers. The final Output
section displays the model’s prediction performance. A prob-
ability curve illustrates class-wise prediction confidence, while
a scatter plot presents the spatial separation of key knee OA
features—osteophytes, eburnation, bone marrow lesions
(BMLs), and cartilage thickness—as recognized by the trained
model. DenseNet121 followed closely, benefiting from its
dense connectivity that improved feature reuse and gradient
flow, leading to high accuracy but still slightly behind
ResNet50. VGG16, on the other hand, lagged behind both
ResNet50 and DenseNet121. Its simpler architecture, while
easier to implement, struggled with very deep networks, result-
ing in lower accuracy. As a result, ResNet50 proved to be the
most reliable model for our dataset, with DenseNet121 per-
forming well but not as effectively, and VGG16 showing
respectable yet comparatively lower accuracy.

The accuracy of each model was calculated based on the
proportion of correct predictions, defined as true positive/total
predictions. In the corresponding figure, the X-axis represents
different combinations of model parameters used during train-
ing, such as learning rate and batch size, while the Y-axis dis-
plays the true knee OA severity values. The values within the
matrix indicate the accuracy of each model in predicting the
actual severity of the disease across various knee OA features.
The confusion matrices (Fig. 5B, C, and D) for ResNet50,

Model Grade 1 (%) Grade 2 (%) Grade 3 (%) Average accuracy % Precision Recall F1 score
ResNet50 89.775 80.828 89.453 86.685 0.74 0.72 0.7316
DenseNet121 83.987 79.987 86.345 83.440 0.72 0.71 0.7124
VGG16 78.876 71.546 78.451 76.291 0.69 0.67 0.6786
ResNet101 88.120 78.990 87.560 84.890 0.73 0.715 0.7267
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distribution of joint degradation and clustering of knee osteoarthritis biomarkers. A detailed description of the ResNet50 architecture used for knee

osteoarthritis detection and grading is provided in the text.

DenseNet121, and VGG16 provide a detailed performance com-
parison. These matrices showcase the ability of the models to
predict key knee OA features, including BML formation, carti-
lage thickness, eburnation, and osteophytes. The diagonal
cells represent correct classifications, whereas the off-diagonal
cells indicate misclassifications. This visualization offers valu-
able insights into the classification performance of each
model and its ability to accurately assess knee OA severity.

Aside from the heat map analysis, accuracy, epoch, and loss
graphs offer further insights into the performance of each
model during the training phase. Examining the accuracy
graphs provides insight into how the categorization accuracy
of each model changes across consecutive epochs. ResNet50
demonstrates a consistent improvement in accuracy, ultimately
achieving the best accuracy rates compared to the other two
models. Meanwhile, DenseNet121 exhibits a considerable
increase in accuracy, but it is slightly lower than that of
ResNet50. VGG16 exhibits inferior accuracy compared to both
ResNet50 and DenseNet121 throughout the training epochs,
albeit demonstrating some progress.

Furthermore, the epoch and loss graphs visually demon-
strate the convergence and optimisation of each model
throughout the training process.”® The epoch graph of
ResNet50 demonstrates a gradual and consistent convergence,
suggesting effective learning and continuous improvement of
the model over time (Fig. 6A). On the other hand, the epoch
curve of DenseNet121 shows a slower rate of convergence, indi-
cating that more time is needed for training to achieve optimi-
sation (Fig. 6B). Meanwhile, VGG16, known for its consistently

This journal is © The Royal Society of Chemistry 2025

slow progress over epochs, demonstrates poor learning when
compared to ResNet50 and DenseNet121 (Fig. 6C). ResNet50
consistently shows a decrease in loss values, which suggests
that the optimisation and convergence of the model are
effective. DenseNet121 demonstrates a comparable pattern,
but despite this, does so with marginally elevated loss values,
indicating its slower rate of convergence. On the other hand,
VGG16 exhibits varying loss levels, suggesting less consistent
training dynamics and probable difficulties in achieving
convergence.

The Accuracy and Loss graphs, as shown in Fig. 6, are pre-
sented for the three models used in this study: (A) ResNet50,
(B) DenseNet121, and (C) VGG16. Each model’s performance
is shown over 50 epochs, with Accuracy on the left and Loss on
the right. In Fig. 6A (ResNet50), the accuracy improves steadily,
while the loss decreases rapidly after a few epochs. Fig. 6B
(DenseNet121) shows a similar trend, though the accuracy
increases with slight fluctuations, and the loss curve declines
gradually. Fig. 6C (VGG16) demonstrates a similar pattern,
with the accuracy reaching a peak before slightly stabilizing,
and the loss decreases sharply. These graphs provide insights
into how each model learns over time and the convergence of
their training processes, with a noticeable decrease in loss for
each model as the epochs progress.

3.2 Automated analysis of parameters using a deep learning
model

Confusion matrices were generated to visually depict the
classification results of the models. The matrices present the
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Fig. 5 (A) Matrix indicating that the model's accuracy fluctuated when different parameters were analysed, including factors like learning rate or
batch size. (B) Graphical representation showing ResNet50 model accuracy across various parameter configurations, using colours to denote
different accuracy levels. (C) Similar to (B), this heat map displays DenseNet121 model accuracy across parameter settings, aiding in identifying per-
formance patterns. (D) A visual representation depicting VGG16 model accuracy under different parameter configurations, facilitating performance

analysis.

number of true positives, true negatives, false positives, and
false negatives for each class. ROC curves were created to
evaluate the balance between the rate of correctly identified
positive cases and the rate of incorrectly identified positive
cases, and between the accuracy of positive predictions and
the completeness of positive predictions, respectively. The
areas under these curves (AUC) provided a quantitative
measure of the each model’s discriminatory abilities.

The statistical experiments were performed using the R
environment, exploiting its powerful and available libraries
and functions for ML and statistical modelling. The results of
this research offer vital insights into the efficacy of the estab-
lished models in accurately detecting and classifying knee OA.
This information can be utilised in clinical settings to opti-
mise disease diagnosis and improve patient treatment. Thus,
scatter plots subsequently depict the prediction precision of
the machine learning models, namely VGG16, DenseNet121,
and ResNet50, within a technical framework. Each plot visually
represents the performance of the model by showcasing the
link between the true and expected responses. The metrics of
osteophytes, eburnation, cartilage thickness, and BML for-

5484 | Biomater. Sci,, 2025, 13, 5475-5494

mation are essential indicators used in the diagnosis of mus-
culoskeletal diseases (Fig. 7). Insights into the precision and
consistency of the models can be obtained by analysing the
alignment of data points along the regression line and the dis-
persion around it. Increased concentrations of points closely
packed around the regression line indicate improved predictive
accuracy, whereas larger dispersion indicates places where the
model could be refined. Moreover, the differences in the per-
centage values allocated to each parameter indicate subtle vari-
ations in the performance of the model, which contribute to a
thorough assessment of their usefulness in analysing medical
scans. The best fit model with an accuracy of 86.68% was the
ResNet50 model followed by DenseNet1i21 and VGG16
(Fig. 7D).

3.3 ROC curves

The Receiver Operating Characteristic (ROC) curves offer a
comprehensive assessment of the models in detecting our tar-
geted parameters (Fig. 8). These curves depict the relationship
between the true positive rate and the false positive rate, pro-
viding a full assessment of the model’s capacity to differentiate

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 (A) Accuracy and loss graphs for ResNet50, (B) accuracy and loss graphs for DenseNet121, and (C) accuracy and loss graphs for VGG16.

between various groups, which is crucial for accurate diag-
noses. A model’s capability to properly identify osteophytes
improves as the area under the receiver operating characteristic
curve (AUC-ROC) increases.”” The sensitivity and specificity
metrics highlight the effectiveness of these models by showing
a well-balanced compromise, significantly reducing both incor-
rect positive and incorrect negative results. ROC curve evalu-
ations are highly crucial to selecting the most efficient models
for improving and maintaining a appropriate diagnosis accu-
racy. The accuracy metrics offer more quantitative understand-
ing of the performance of each model in the task of detecting
BML formations, cartilage thickness, eburnation and for
detecting the number of osteophytes.

3.4 Does model architecture influence MRI-based knee OA
grading? A comparison of ResNet101 and ResNet50

After testing with three standard models, we further compared
the performance of ResNet101 with ResNet50 to assess
whether increasing model depth could enhance the accuracy
of knee OA grading, particularly in detecting critical pathologi-
cal features. As illustrated in Fig. 9, this comparison includes
classification heat maps (confusion matrices), scatter plots of

This journal is © The Royal Society of Chemistry 2025

predicted versus actual feature values, and a bar graph compar-
ing overall classification accuracy. While both models per-
formed reasonably well across OA grades, ResNet50 demon-
strated more prominent diagonal clustering in its confusion
matrix (Fig. 9B), indicating more accurate and consistent
classification than ResNet101 (Fig. 9A). The overall accuracy
comparison shown in Fig. 9C reveals that ResNet50 achieved
86.68%, slightly outperforming ResNet101, which achieved
84.89%, indicating a performance improvement of +1.79%.
Scatter plots (Fig. 9D and E) show predicted versus true values
for four key OA-associated parameters: osteophyte formation,
eburnation, cartilage thickness, and bone marrow lesion
(BML) formation. While both models demonstrated strong cor-
relation, ResNet50 predictions aligned more closely with the
diagonal line, indicating higher precision. Notably, BML detec-
tion and cartilage thickness loss, which are often difficult to
identify due to their subtle MRI features, showed the greatest
performance gap between the models. ResNet101 achieved
76% accuracy for BML detection and 74% for cartilage thick-
ness loss, whereas ResNet50 significantly outperformed it with
81% and 79% accuracy, respectively, highlighting its superior
ability to detect these key OA features. In addition to compar-
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versus true response for all four parameters using the VGG16 model. (D) Bar graph comparing the accuracy obtained by each model, with ResNet50
achieving 86.68%, DenseNet121 achieving 83.44%, and VGG16 achieving 76.29%.

ing ResNet architectures, Fig. 9F presents the overall classifi-
cation accuracy of all four deep learning models—
DenseNet121, ResNet101, ResNet50, and VGG16. This broader
comparison confirms that ResNet50 achieved the highest accu-
racy (86.68%), highlighting its robustness and reliability for
automated knee OA grading.

3.5 Trial assessment results of deep learning model
ResNet50 for MRI knee scans of two sample patients

In our study, we conducted an analysis of MRI knee scans of
two patients using our machine learning model, ResNet50, to
interpret MRI data with enhanced accuracy. The objective was
to evaluate four key knee osteoarthritic parameters: eburna-
tion, osteophyte presence, cartilage thickness, and bone
marrow lesion (BML) formation. The methodology involved
processing the patient MRI scans through our trained model,
which subsequently performed a detailed assessment of the

5486 | Biomater. Sci, 2025, 13, 5475-5494

aforementioned parameters. The findings for patient 1 are
shown as visual outputs in Fig. 10(A, B and C), while the
results for patient 2 are illustrated in Fig. 10(D, E and F). For
patient 1, the identification of osteophytes resulted in a binary
classification outcome confirming their presence, with a stan-
dard error of 0.5345. BML formation was categorized as grade
3, with a coefficient presence of 81.178% and a standard error
of 0.5123. The thickening of cartilage, classified as grade 3,
with a coefficient presence of 82.87%, showed a standard error
of 0.5123. Eburnation was detected as grade 2, with a standard
error of 0.5871. The overall diagnosis of knee OA was deter-
mined as grade 3, with a standard error of 0.5849. These find-
ings are depicted in Fig. 10C. Similarly, for patient 2, the pres-
ence of osteophytes was identified with a binary classification
outcome, yielding a standard error of 0.5879. BML formation
was categorized as grade 3, with a coefficient presence of
77.178% and a standard error of 0.5098. The thickening of

This journal is © The Royal Society of Chemistry 2025
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Fig. 8 (A) Accuracy curve: the accuracy of the ResNet50 model steadily increases with epoch values, reaching a peak accuracy of 99.15% at the end
of training. Loss curve: the loss decreases consistently as the number of epochs increases, demonstrating the model’s learning progress. (B)
Accuracy curve: the DenseNet121 model shows a similar trend, with accuracy increasing over epochs, achieving a maximum accuracy of 97.16%.
Loss curve: the loss decreases gradually as epochs progress, indicating effective learning by the model. (C) Accuracy curve: VGG16's accuracy also
exhibits a positive correlation with epoch values, peaking at 81.78% after a certain number of epochs. Loss curve: the loss decreases steadily with
increasing epochs, reflecting the model'’s ability to minimize errors during training.

cartilage, classified as grade 2, with a coefficient presence of
65.879%, exhibited a standard error of 0.5123. Eburnation was
detected as grade 2, with a standard error of 0.5871. The diag-
nosis of knee OA for patient 2 was classified as grade 2, with a
standard error of 0.6129. The model’s output (Fig. 10F), aligns
with these findings. These results confirm the model’s ability
to accurately interpret MRI scans and provide a strong frame-
work for automated knee OA diagnosis.

3.6 Real-time comparison between the ResNet50 model and
patient clinical data

We conducted a detailed analysis of MRI knee scans from a
specific patient. The clinician performed an extensive manual
analysis of the patient’s scans, as shown in Fig. 11E, F, G and
H. As mentioned in Table 7, the clinical analysis reveals that
the patellofemoral joint has grade 3 knee osteoarthritis with
significant BML formation, while the medial tibiofemoral joint
has grade 2. The lateral tibiofemoral joint has grade 1 BML. In

This journal is © The Royal Society of Chemistry 2025

the patellofemoral joint, cartilage thickness indicates a loss of
approximately 60%, while it is 40% in the medial tibiofemoral
joint, and 10% in the lateral tibiofemoral joint. It is observed
that eburnation is 7 out of 10 cm. The results of our advanced
AI model were precisely compared to the manual interpret-
ation. This approach allowed us to evaluate the precision and
reliability of our AI model against expert human assessment.
The scans were carefully analysed by our model, which
extracted important characteristics such as the presence or
absence of osteophytes, BML, cartilage thickness, and eburna-
tion. This analysis provided critical information on the
patient’s health. After assessment, our model accurately
detected the existence and number of osteophytes, BML per-
centage, cartilage thickness percentage, and amount of ebur-
nation with results of 4, 79.143%, 82.879%, and 8, respectively,
as mentioned in Table 5 (Fig. 11A, B, C and D). The results of
our study led to an overall grade of 3 for the patient (Fig. 11I),
which is a severe condition, demonstrating the effectiveness of
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» CALL 4: Eburnation Coefficients: 7 Grade 2 pt) PRESENCE YES, Standard Error 0.5871

Fig. 10 Model-based analysis of knee osteoarthritis parameters for patient 1 (A, B and C) and patient 2 (D, E and F). (A and D) Probability density dis-
tribution of knee osteoarthritic parameters. (B and E) Model summary indicating knee OA classification grade and standard errors for osteophytes,
BML formation, cartilage thickening, and eburnation. (C and F) Scatter plot of true labels vs. predicted probabilities, illustrating model classification

accuracy.

our model in identifying important pathological character-
istics with an accuracy rate of 84.326%. Furthermore, the
manual evaluation conducted by the clinician produced identi-
cal grading results that closely matched the findings generated

5488 | Biomater. Sci, 2025, 13, 5475-5494

by the ResNet50 model analysis, thus providing further evi-
dence supporting the reliability and accuracy of our technique.
To visually represent these findings, we utilized advanced soft-
ware to develop the 3D knee of the DICOM MRI scans
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»Summary (model)

» fit model Osteoarthritis Grade 3, Std. Error 0.5849
| »CALL 1 Osteophyte Presence Coefficients: YES (Intercept) 4 PRESENCE YES Std. Error 0.5345

»CALL 2 Bone Marrow Lesion (BML) Formation Coefficients: 79.143% Grade 3 (Intercept) PRESENCE YES Std. Error 0.498

»CALL 3 Cartilage Thickening Coefficients: 82.879 Grade 3 (Intercept) PRESENCE YES Std. Error 0.5671

»CALL 4 Eburnation Coefficients: 8 Grade 2 (Intercept) PRESENCE YES Std. Error 8.5218

Fig. 11 Model analysis vs. clinical analysis of the parameters for detecting knee OA for a grade 3 (severe condition) patient. Model analysis of the
parameters for detecting knee OA and reconstruction of 3D images from 2D MRI scans for a better understanding. (A) Osteophytes, (B) BML for-
mation, (C) cartilage thickness and (D) eburnation. Clinical analysis of the parameters for detecting knee OA for a grade 3 (severe condition) patient.
(E) Osteophytes (different shape and colours representing the presence of osteophytes), (F) BML formation (green box), (G) cartilage thickness
(yellow box) and (H) eburnation (green box). (I) Overall model output results of the assessment.

Table 5 Clinical analysis: grade 1 knee OA

Parameters Osteophytes BML formation Cartilage thickness loss Eburnation
Results Present (6) M Grade 1 in patellofemoral joint; grade 1 in M Cartilage thickness loss in patellafemoral 0-2 blocks in 10 cm
medial tibiofemoral joint joint is about 20-30% diameter

B Grade 0 in lateral tibiofemoral joint

M Grade 3 = approx. 20-30% of the entire
bone area
B Grade 2 = approx. 10-20% of the entire
bone area
M Grade 1 < 10% of the entire bone area

M Cartilage thickness loss in medial
tibiofemoral joint is about 10-20%
Cartilage thickness loss in lateral
tibiofemoral joint is nil

Knee OA Grade Grade 1

ResNet50 model assessment

Parameters Osteophytes BML Cartilage thickness loss Eburnation

Results Presence (4) 8.06% 27.733% 2 blocks in 10 cm diameter
Knee OA grade Grade 1

This journal is © The Royal Society of Chemistry 2025
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(Fig. 11A, B, C and D), effectively demonstrating the discovered
analysis results. This visual depiction was obtained by using
3D Slicer software that is effective for clarifying the observed
changes, providing more evidence supporting the reliable and
accurate performance of our model. In addition to the grade 3
case, a comparative analysis was performed between clinical
findings and the ResNet50 model for grade 1 and grade 2 knee
OA (Table 5 and Table 6). For grade 2, the clinical assessment
recorded osteophytes (6), bone marrow lesions (BML) involving
58.28% of the area with grade 2 changes in the patellofemoral
and medial tibiofemoral joints and grade 1 changes in the
lateral tibiofemoral joint. Cartilage thickness loss was approxi-
mately 30-60% in the patellofemoral joint, 30-40% in the
medial tibiofemoral joint, and minimal in the lateral tibiofe-
moral joint, with an overall loss of 65.51%. Eburnation was
observed in 3 blocks per 10 cm (average ~4 blocks per 10 cm).
The ResNet50 model produced nearly identical findings,
detecting osteophytes (5), BML of 58.28%, cartilage loss of
65.51%, and eburnation in 4 blocks per 10 cm, and classified
the condition as grade 2. For grade 1, the clinical evaluation

Table 6 Clinical analysis: grade 2 knee OA

View Article Online
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showed osteophytes (6), BML of 8.06% with grade 1 changes in
the patellofemoral and medial tibiofemoral joints and no
involvement in the lateral tibiofemoral joint. Cartilage thick-
ness loss was about 20-30% in the patellofemoral joint,
10-20% in the medial tibiofemoral joint, and no loss in the
lateral tibiofemoral joint, totalling 27.73%, with eburnation
limited to 0-2 blocks per 10 cm (average ~2 blocks per 10 cm).
The ResNet50 model closely matched these results, detecting
osteophytes (4), BML of 8.06%, cartilage loss of 27.73%, and
eburnation of 2 blocks per 10 cm, and classified the case as
grade 1, confirming the strong reliability between clinical and
Al-based model assessments.

4. Discussion

Our research has presented an innovative method for automat-
ing the evaluation of human knee OA cartilage MRI scans uti-
lising advanced DL techniques. This research aims to assess
the viability of utilising DL for grading based on MRI scans,

Parameters Osteophytes BML formation Cartilage thickness loss Eburnation
Results Present (6) M Grade 2 in patellofemoral joint; grade 2 in M Cartilage thickness loss in patellofemoral 3 blocks in 10 cm
medial tibiofemoral joint joint is about 30-60% diameter
M Grade 1 in lateral tibiofemoral joint M Cartilage thickness loss in medial
tibiofemoral joint is about 30-40%
M Grade 3 = approx. 20-30% of the entire M Cartilage thickness loss in lateral
bone area tibiofemoral joint is minimal
M Grade 2 = approx. 10-20% of the entire
bone area
M Grade 1 < 10% of the entire bone area
Knee OA grade Grade 2
ResNet50 model assessment
Parameters Osteophytes BML Cartilage thickness loss Eburnation
Results Presence (5) 58.28% 65.513% 4 blocks in 10 cm diameter
Knee OA grade Grade 2

Table 7 Clinical analysis: grade 3 knee OA

Parameters Osteophytes BML formation Cartilage thickness loss Eburnation
Results Present (6) M Grade 3 in patellofemoral joint; grade 2 in M Cartilage thickness loss in patellofemoral 7 blocks in 10 cm
medial tibiofemoral joint joint is about 60% diameter
M Grade 1 in lateral tibiofemoral joint M Cartilage thickness loss in medial
tibiofemoral joint is about 40%
M Grade 3 = approx. 20-30% of the entire M Cartilage thickness loss in lateral
bone area tibiofemoral joint is about 10%
B Grade 2 = approx. 10-20% of the entire
bone area
M Grade 1 < 10% of the entire bone area
Knee OA grade Grade 3
ResNet50 model assessment
Parameters Osteophytes BML Cartilage thickness loss Eburnation
Results Presence (4) 79.143% 82.879% 8 blocks in 10 cm diameter
Knee OA grade Grade 3
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which represents a significant progression in the area, as
opposed to previous research that mostly examined histology
images and scan output from other methods, such as X-ray
and CT analysis.’® The study aims to use DL models to assess
the severity and extent of knee OA by considering important
indications of knee OA progression, such as the presence of
osteophytes, automated grading of BML, thickening of carti-
lage, and the formation of eburnation. An important advan-
tage of this technique is its capacity to mitigate bias and
reduce disputes that can occasionally arise during manual
grading procedures. The study resolved concerns regarding
human subjectivity and variability in interpretation by imple-
menting automated grading. This automation not only
increases the effectiveness of grading but also promotes
reliability and uniformity of the findings, which are crucial for
precise diagnosis and prognosis of knee OA.

Expanding on the histology-based approach of Nagarajan
et al.,>® which utilizes the Modified Mankin scoring system for
detecting knee OA, we propose an innovative methodology
leveraging MRI-based deep learning techniques to automate
knee OA grading. Our study seeks to address the limitations
associated with the cost and accessibility of histological
methods by developing an MRI-based model capable of accu-
rately diagnosing and grading knee OA. This model promises a
time-efficient and cost-effective alternative to manual diagno-
sis, incorporating factors such as osteophyte presence, carti-
lage thickness, and BML generation based on the MOAKS
scoring system. Additionally, we are pioneering a scoring
system for eburnation, an early sign of knee OA. Although his-
tology offers precise knee OA assessment, it is prohibitively
expensive, not universally accessible, and time-consuming.
Therefore, our approach aims to create an accessible, cost-
effective solution while maintaining the high accuracy and pre-
cision associated with histology. Unlike histological evalu-
ation, which requires invasive tissue sampling and prepa-
ration, MRI is a non-invasive imaging technique that does not
involve tissue extraction or cause any discomfort to the
patient. This non-invasive nature makes MRI-based grading
more feasible and less burdensome, allowing for precise moni-
toring of disease progression through repeated assessments.
Although the primary focus of our study was on eburnation as
an indicator of knee osteoarthritis, we also evaluated osteo-
phyte identification due to its clinical relevance in knee OA
diagnosis and progression. Osteophytes are widely recognized
as a key feature of knee OA, and their detection provides valu-
able information for assessing disease severity.

Eburnation was chosen as the key classification feature
based on expert validation from Indraprastha Apollo Hospital,
which identified it as the earliest detectable marker of knee
OA. Unlike osteophytes, which appear at a slightly later stage,
eburnation reflects minute initial structural changes, making
it a precise, innovative, and clinically important indicator in
the Al-based knee OA grading system we have developed. So,
by evaluating both eburnation and osteophytes, we aimed to
provide a more comprehensive analysis of the model’s capa-
bilities in detecting multiple knee OA features. This dual

This journal is © The Royal Society of Chemistry 2025
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approach allowed us to assess the model’s accuracy in identify-
ing early signs of knee OA (through eburnation) and more
advanced signs (such as detecting osteophytes), ensuring the
robustness of the model across the spectrum of disease sever-
ity. Another study shows that while Kijowski et al. highlight
the success of DL in OA lesion detection and segmentation,
they also note the absence of models that integrate multiple
joint features critical to disease progression. Their review
noted that most DL models have been focused narrowly on
cartilage or bone surface changes, and overlook early patho-
logical markers such as subchondral remodelling. In contrast,
our study incorporates eburnation—a key indicator of sub-
chondral bone adaptation—alongside osteophytes, BMLs,
and cartilage thinning within a radiologist-validated DL
framework."®

Furthermore, in comparison with knee OA detection and
severity classification using X-ray scans conducted by
Mohammed et al.,*® our MRI-based study offers several dis-
tinct advantages. First, MRI provides superior differentiation
of soft tissues compared to X-rays, enabling improved visual-
ization of structures such as cartilage, ligaments, and BMLs.
This capability is crucial for diagnosing knee OA, as changes
in cartilage thickness and BMLs are significant indicators of
disease progression. Furthermore, MRI is free of radiation,
enhancing patient safety, and its multi-planar imaging capa-
bility allows for a comprehensive evaluation of the knee joint,
offering a detailed analysis of parameters not achievable with
X-rays. By integrating artificial intelligence and machine learn-
ing technologies with MRI, our study aims to streamline the
diagnostic process, minimize errors, and optimize treatment
strategies, thus significantly advancing the field of knee OA
diagnosis. This integration ensures that the diagnostic process
is not only more accurate but also more efficient, ultimately
benefiting both patients and healthcare providers. The find-
ings of our study constitute a significant step forward in the
field of artificial intelligence-driven healthcare, namely in the
domain of diagnosing knee OA. Our model exhibits a high
level of precision, with an accuracy rate of roughly 86%, even
though there are still areas that need to be developed through
further study. We utilized four different deep learning models
for our project. Specifically, we tested ResNet50, DenseNet121,
and VGG16. We also compared ResNet50 with a more complex
model, ResNet101, to evaluate and check their overall perform-
ance (Fig. 9A, B, C, D and E). While both models gave more or
less similar results, ResNet50 consistently performed better,
especially in detecting bone marrow lesions (BMLs), with 81%
accuracy compared to ResNetl01's 76% as stated in the
Results section. This performance gap highlights the limit-
ations of using deeper models like ResNet101 when working
with relatively small or limited datasets. Due to its greater
number of layers and parameters, ResNet101 is more suscep-
tible to overfitting—performing well on the training data but
failing to generalize effectively to new, unseen data. In con-
trast, ResNet50, with its simpler architecture, was able to gen-
eralize better and produced more stable and reliable results
across all evaluated features, making it a more suitable model
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for our study. After thorough evaluation, ResNet50 demon-
strated the greatest accuracy at 86%, outperforming
ResNet101, which achieved 85%, DenseNet121, which achieved
83%, and VGG16, which achieved 76%. Following collabor-
ation with radiologists from Indraprastha Apollo Hospital,
Delhi, India and the incorporation of their expertise into the
development of our model, we have prepared our approach to
precisely meet the requirements of clinical practice. In order
to identify OA by taking into consideration parameters such as
eburnation, cartilage thickness, osteophyte presence, and BML
formation, our model, which has been trained using MRI
scans and fine-tuned to identify knee OA, has significant
potential for altering the diagnosis of knee OA. This was
shown in Fig. 4, which highlighted the clinical relevance and
robustness of our deep learning pipeline using the
ResNet50 model. The process starts with radiologist-provided
MRI images, including both full views and zoomed-in sections
that focus on regions commonly affected by knee osteoar-
thritis, such as cartilage interfaces, joint spaces, and bone sur-
faces. This targeted image selection ensures that the model is
trained on high-quality, relevant anatomical features without
requiring manual annotation or segmentation. Once fed into
the system, the ResNet50 model effectively extracts and learns
disease-specific patterns such as cartilage thinning, eburna-
tion, and osteophyte development through its deep convolu-
tional layers. We have incorporated the block formation, which
gives an easy understanding when there is a formation of ebur-
nation. Following that, we incorporated a method of Image
Segmentation, which trained the model accurately for a better
result survey of the MRI scans. Also, our algorithm followed a
pattern recognition process based upon the MOAKS scoring
system for accurately determining the grading. The more radi-
ologists utilize our model, the more accurate and effective it
becomes, benefitting more users in turn. When compared to
manual grading systems, our automated DL classification
approach has the potential to eliminate bias and inconsis-
tency, both of which are present in such processes. Within the
domain of knee OA, this system presents an opportunity to
potentially enhance both research and clinical practice.

5. Conclusion

This study demonstrates a significant advancement in the
diagnosis of knee OA, utilizing DL methods to automatically
assess the severity of the condition using MRI scans. This
research successfully addresses the subjectivity and variability
that are present in traditional evaluation procedures by transi-
tioning from manual to automated grading methods. The
created deep learning model demonstrates robustness and
dependability in assessing the severity of knee OA directly
from MRI scans, eliminating the necessity for manual inter-
vention. The model’s performance and adaptability are
improved by using a variety of datasets that include healthy
and knee OA-affected cartilage from different MRI scans. The
efficiency of the standard DL-based automated grading system

5492 | Bjomater. Sci., 2025, 13, 5475-5494
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was validated using evaluation criteria such as accuracy curves,
ROC curves, and scatter plots. This establishes the system as a
standardized method for grading knee OA. This transform-
ation offers the potential for enhanced efficiency, accuracy,
and impartiality in the identification and diagnosis of knee
OA. We found that incorporating deep learning-based auto-
mated grading systems into clinical practice has great potential
to improve the management of knee OA. This technology revo-
lutionizes patient care and treatment strategies by offering
clinicians concise, unbiased, and reproducible estimates of
disease severity using MRI imaging.
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