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Introduction

In recent years, afterglow materials have attracted great atten-
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e-Polylysine organic ultra-long room-temperature
phosphorescent materials based on
phosphorescent molecule dopingf

Jiaying Cui,? Syed Husnain Ali, Zhuoyao Shen,® Wensheng Xu,? Jiayi Liu,®
Pengxiang Li,? Yang Li, © ** Ligong Chen @ 2> and Bowei Wang & *2°¢

Achieving long-lived room-temperature phosphorescence from pure organic amorphous polymers is
attractive, and afterglow materials with colour-tunable and multiple-stimuli-responsive afterglow are
particularly important, but only few materials with these characteristics have been reported so far.
Herein, a facile and general method is reported to construct a series of g-polylysine (e-PL)-based
afterglow materials with tunable colour (from blue to red) and long life. By doping guest molecules into
e-PL to obtain composite materials, the polymer matrix provides a rigid environment for luminescent
groups, resulting in amorphous polymers with different RTPs. In this system, the materials even have
impressive humidity-stimulated responses, and the phosphorescence emission exhibits excitation-
dependent and time-dependent properties. The humidity-responsive afterglow is caused by the
destruction of hydrogen bonds and quenching of triplet excitons. The time-dependent afterglow should
stem from the formation of diversified RTP emissive species with comparable but different lifetimes.
9,10-diaminophene has Ex-De properties in the film doping state. With the change of excitation
wavelength (254 nm to 365 nm), the emission wavelength shifts from 461 nm to 530 nm, accompanied
by the change of emission colour from blue to green. In addition, the phosphorescence life of the film is
the longest, up to 2504.7 ms, and the afterglow lasts up to 15 s, which is conducive to its applications in
anti-counterfeiting and information encryption.

radiative transitions and slow down the quenching of triplet
excitons.>® Many strategies spanning from -7 stacking inter-
actions'®" to host-guest approaches,">** crystallization**** and
cocrystallization,'®"” carbon dots (CDs),’*?' heavy atoms

tion because of their unique properties."” Currently, a large
number of inorganic afterglow materials have been developed;
however, rare earth materials used in the preparation of inor-
ganic afterglow materials are expensive and synthesis processes
are complicated, limiting their further development. Compared
to inorganic counterparts, organic room-temperature phos-
phorescent (RTP) materials have the advantages of low cost, rich
sources, easy synthesis and adjustable structures.®* They have
attractive application prospects in many high-tech fields, such
as bioimaging, optical recording, information storage, encryp-
tion and anti-counterfeiting systems.*® In general, the promo-
tion of organic RTP follows two principles: one is to promote
intersystem crossing (ISC) and the other is to inhibit non-

“School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350,
P. R. China. E-mail: bwwang@tju.edu.cn; liyang777 @tju.edu.cn

*Zhejiang Institute of Tianjin University, Shaoxing, 312300, P.R. China

‘Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350,
P.R. China

T Electronic ~ supplementary  information  (ESI)
https://doi.org/10.1039/d35c06271f

available. See DOL

© 2024 The Author(s). Published by the Royal Society of Chemistry

effect>®* and doping in a polymer matrix>*>® have been devel-
oped to realize the RTP of organic materials. Among them,
polymer-based phosphorescent materials have been receiving
increasing attention because they not only possess fantastic
properties, such as good flexibility, high transparency, and high
thermal stability but also serve as rigid matrices to suppress the
nonradiative decay process, further promoting phosphores-
cence emission at room temperature.”’** For example, Wu
et al* successfully prepared a series of polymer-based RTP
films, showing good film-forming, elasticity, flexibility and RTP
properties.

Nevertheless, achieving a wide-range and colour-adjustable
afterglow emission remains a tough challenge.*” Lei et al*
developed a series of novel host-guest organic phosphors
allowing dynamic colour tuning from cyan to orange red.
However, the narrow emission wavelength coverage (502-608
nm) and limited tunable colours greatly limit their application.
Therefore, further development of a versatile platform to realize
RTP emissions from blue to red is highly desired.? In addition,
most materials reported so far do not achieve multiple stimulus
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responses,* and only a few materials show time-dependent*
and excitation-dependent® emissions. For example, Su et al.*®
developed a suitable strategy to achieve excitation-dependent
phosphorescence emission under ambient conditions using
metal-free amorphous organic materials to increase ISC path-
ways by the formation of controlled aggregation. Although some
RTP materials with specific properties have been successfully
reported, current organic RTP materials present short phos-
phorescence lifetimes of only hundreds of milliseconds and
poor stability; work on long-lifetime phosphorescence emission
with afterglow time > 15 s under environmental conditions is
rarely reported. This cannot be ignored, as it greatly limits their
potential applications.'**”° In this context, amorphous organic
polymers with long-lived RTP are more competitive in materials
science. Non-covalent interactions between polymers and guest
molecules play a vital role in limiting the movement of the guest
molecules and reducing the loss of non-radiative transitions.
They also shield the quenching of triplet excitons by water and
oxygen, which is conducive to the realization of ultralong and
bright RTP emissions.

Therefore, developing a colour-tunable, long-lived polymer-
based RTP material with multiple responses to external
stimuli remains highly challenging. Herein, we reported an &-
polylysine (e-PL)-based RTP material with excellent RTP prop-
erties by the simple doping of phosphorescent guest molecules
into it (Fig. 1a). By doping a reasonably selected heterocyclic
polynuclear aromatic compound as a guest molecule into the e-
PL matrix, full-spectrum afterglow emission from blue to red
was achieved (Fig. 1b). On the one hand, electrostatic interac-
tions and abundant hydrogen bonds between &-PL and the guest
molecules could provide a rigid environment, inhibit non-
radiative transitions, and promote phosphorescence emission.
On the other hand, doped guest molecules containing N, O and
S elements can promote an n—-m transition,* increasing spin-
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Fig. 1 (a) Schematic diagram of matrix-doped guest molecules. (b)
Chemical structure of e-polylysine and five guest phosphorescent
molecules. (c) Schematic diagram of an excitation-dependent RTP
system. (d) Schematic diagram of a time-dependent RTP system.
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orbit coupling (SOC) and promoting intersystem crossing (ISC).
Gratifyingly, Daphe@e-PL films exhibited excitation-dependent
properties with phosphorescence lifetime of up to 2504.7 ms
(Fig. 1c), while ANS@e-PL films exhibited time-dependent
afterglow (Fig. 1d). Based on their excellent film-forming capa-
bilities, these polymers are promising for advanced technical
applications like anti-counterfeiting and information.

Results and discussion

A series of heterocyclic aromatic compounds were selected and
doped into the &-PL matrix at a mass ratio of 1:100 at 50 °C. The
SEM images of the obtained five kinds of &-PL-based RTP films
(Daphe@e-PL, NDA@e-PL, ANA@s-PL, ANS@e-PL, and Apyr@e-
PL) indicated that they were successfully doped with the guest
molecules (ESI Fig. S1t). Under ultraviolet light illumination,
these materials exhibit blue or cyan photoluminescent emission
(Fig. 2a). After the UV light was turned off, a blue to red afterglow
lasting up to 15 seconds was observed (Fig. 2a; ESI S2 and Videos
S1-S57). To study their photophysical properties in detail, their
excitation spectra (ESI Fig. S31), photoluminescence spectra (ESI
Fig. $4t) and delayed phosphorescence spectra (ESI Fig. S5T) were
tested (Fig. 2b). Compared to steady-state phosphorescence
spectra, the peaks of their delayed phosphorescence spectra were
generally redshifted (Fig. 2b), which matched their S; and T,
energy levels. These results fully manifested that their delayed PL
spectra exhibit phosphorescence emission. It can be clearly seen
from the spectral diagram that the phosphorescence wavelength
of the five e-PL-based RTP films ranges from 508 nm to 693 nm
under the excitation of the 365 nm UV light, and multi-colour
afterglow can be observed. The Commission Internationale de
I'Eclairage (CIE) coordinates of the afterglows are shown in Fig. 2c,
and the coordinates of the Daphe, NDA, ANA, ANS, Apyr-doped e-
PL systems are located at (0.27, 0.35), (0.33, 0.47), (0.43, 0.51),
(0.51, 0.46), and (0.42, 0.34), respectively. These coordinates
correspond to a colour change from blue to red, which was
consistent with the colour change observed by the naked eye.
Encouragingly, the quantum yields of these e-PL-based RTP films
were as high as 18.84% (ESI, Table S17). Surprisingly, the longest
phosphorescence lifetime was up to 2505 ms (Fig. 2d and ESI S67).
To further exclude the polymer matrix as the phosphorescence
source, the spectrum of &-PL was collected. It was found that &-PL
presented phosphorescence emission at 430 nm and 516 nm (ESI
Fig. S7t), which was quite close to the used phosphorescent
guests, but its lifetime was only a few milliseconds (ESI Fig. S87),
which was insignificant compared with the phosphorescence
lifetimes of the doped guest molecules and would not affect the
RTP performance of the films. Therefore, the doped guest mole-
cules remained the main sources of phosphorescence. Further-
more, the phosphorescence spectra of the five guest molecules
were collected at 77 K (ESI Fig. S9T). Compared with the spectra of
the five e-PL-based RTP films, it could be concluded that the
afterglows of different colours came from the guest molecules.
To explore the effect of guest molecule doping dose on the
phosphorescence lifetime of the RTP films, Daphe@e-PL films
with doping content ranging from 0.1% to 1.5% (in mass ratio)
were prepared. As shown in Fig. 2e (and ESI Fig. S1071), with the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Photographs of Daphe@e-PL, NDA@e-PL, ANA@e-PL, ANS@e-PL, and Apyr@e-PL taken under 365 nm UV light or after ceasing the

irradiation. (b) Steady-state and delayed (ty = 0.1 ms) PL spectra of the five e-PL-based RTP films. (c) The CIE coordinate diagram of the colours of
the phosphorescence emitted by the five e-PL-based RTP films. (d) Time-resolved emission decay curves of the five g-PL-based RTP films at
different wavelengths. (e) Time-resolved emission decay curves of Daphe@e-PL films with different doping contents.

increase of the doping amount, the phosphorescence lifetimes
increased first and then decreased. The phosphorescence life-
time at 471 nm reached a maximum of 2505 ms when the
doping content was 1.0%. Therefore, the optimal guest mole-
cule doping content in the e-PL-based RTP films was deter-
mined to be 1.0%. Subsequently, the optimal content of other
guest molecules was also determined to be 1.0%.

Notably, the phosphorescence of Daphe@e-PL showed
obvious excitation dependence (Fig. 3a). To further explore the
mechanism of phosphorescence Ex-De properties, the delayed
phosphorescence spectra (Fig. 3b), the photoluminescence
spectra (Fig. 3e) and lifetime decay curves (Fig. 3d) of Daphe@se-
PL under different UV excitation wavelengths were collected.
The wavelength of the emission peak greatly varied under

Wavelength ()

Fig.3 (a) Photographs of Daphe@e-PL films taken under 254, 310, and
365 nm UV light or after ceasing the irradiation. (b) Delayed emission
spectra. (c) CIE coordinate diagrams of Daphe@e-PL with different Aexs
corresponding to delayed emission spectra. (d) Time-resolved emis-
sion attenuation curves of Daphe@e-PL films at different wavelengths
taken under different UV light. (e) Photoluminescence spectra. (f) CIE
coordinate diagrams corresponding to photoluminescence spectra.

© 2024 The Author(s). Published by the Royal Society of Chemistry

different excitation wavelengths. Under the excitation of 254 nm
UV light, the strongest emission peak in the delayed phospho-
rescence spectrum was located at 461 nm, the CIE chromaticity
coordinate (Fig. 3c) was (0.23, 0.30), and the colour was blue,
consistent with the observed colour. Upon the excitation of
310 nm UV light, the peak at 500 nm was significantly
enhanced, and the CIE coordinate was (0.27, 0.35). At the same
time, under the irradiation of this excitation light, the longest
life of the RTP films reached 2505 ms (Fig. 3d and ESI Table
S21). When the excitation wavelength was increased to 365 nm,
the emission spectrum redshifted to 530 nm, and the corre-
sponding CIE coordinate became (0.31, 0.42). With the increase
of the excitation wavelength, the intensity of the long wave-
length peaks increased, while that of short wavelength peaks
decreased. Such alteration of the excitation wavelength (from
254 to 365 nm) resulted in a significant difference in the spectra
and a dramatic decrease in the lifetime, indicating that
Daphe@e-PL is excitation-dependent. Because Daphe has
a large m-conjugated structure, it is very easy to form aggregates
through m-m packing, and the formation of aggregates would
cause exciton orbitals to overlap, resulting in energy level
splitting. Coupled splitting of energy levels will produce more
ISC channels and increase ki, thus promoting phosphores-
cence emission. To deeply understand the mechanism of the
excitation-dependent luminescent behavior of Daphe@e-PL
films, we controlled the doping contents of Daphe and
measured the corresponding emission spectra (ESI, Fig. S117).
Taking Daphe@e-PL films excited at 310 nm UV light as an
example, with the increase of Daphe doping content, the fluo-
rescence peaks basically remained the same. The phosphores-
cence of Daphe@e-PL films showed three peaks at 461, 500 and

Chem. Sci., 2024, 15, 4171-4178 | 4173
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530 nm. As the doping content of Daphe increased, the intensity
of peaks at 530 nm significantly increased, whereas peaks at
461 nm gradually decreased, suggesting that more and more
excitation energy is flowing into the low-energy emission
pathway.** In addition, owing to the charge transfer caused by
7-1 packing interaction, the energy level of the aggregate
decreased, hence the delayed phosphorescence spectrum of
Daphe@e-PL showed a redshift. The phosphorescence spec-
trum of Daphe@s-PL was excitation-dependent because the
relative intensity of phosphorescence changes under the exci-
tation of different wavelength UV light at different luminous
centers. Meanwhile, this phenomenon can also be observed in
concentrated solutions with distinct m-m stackings (ESI
Fig. S127).

It was also noted that ANS@e-PL films exhibited time-
dependent phosphorescence (ESI Fig. S131). The colour of the
afterglow changed from orange to yellow and finally to green. To
study the photophysical properties of the time-dependent
afterglow in detail, delayed phosphorescence spectra (Fig. 4a)
and time-resolved decay curves (Fig. 4c) were characterized. As
shown in Fig. 4a, as the delay time extended, the peak wave-
length of its spectrum also presented a blueshift, resulting in
the change of the afterglow colours and indicating the presence
of multiple emission centers, which was attributed to the
presence of monomers and aggregates of ANS.*” The corre-
sponding lifetimes of ANS at 534 nm, 556 nm and 590 nm were
301 ms, 264 ms and 215 ms, respectively, which were consistent
with the colour change observed by the naked eye. In addition,
corresponding CIE coordinate diagrams were also consistent
with the colour of the photos (Fig. 4b), which further proved the
time-dependent afterglow characteristics. Therefore, ANS@e-PL
can be used as an ideal candidate for advanced anti-
counterfeiting and encryption.

These interesting results encouraged us to continue to
explore the luminous mechanism of RTP. After the guest
molecules were doped into &-PL, the successful emission of
phosphorescence and afterglow was attributed to the rigid
environment provided by &-PL, which effectively protected the
guest phosphor molecules from the quenching of oxygen and
water. The large number of amino and amide groups in &-PL
facilitates the formation of rigid hydrogen-bond networks
within the polymer and between the guest molecules. In addi-
tion, the guest molecules are heterocyclic polynuclear aromatic
compounds containing N, O, and S heteroatoms, which can
trigger n-7v transitions to produce a large number of triple

Normalizeditensity (1.0)

Fig. 4 (a) Delayed emission spectra. (b) CIE coordinate diagrams of
ANS@e-PL with different times corresponding to delayed emission
spectra. The inset photos in (b) show the ANS@e-PL afterglows at
different times. (c) Time-resolved emission attenuation curves of
ANS@e-PL films at different wavelengths taken under 365 nm UV light.
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excitations.*™*® Within the relatively rigid environment
composed of the e-PL matrix, the triplet excitons of heterocyclic
chromophores can be effectively stabilized to generate the RTP
emission by suppressing non-radiative decay through abundant
hydrogen-bond interactions (Fig. 5a). Moreover, the presence of
dipole-dipole interactions and electrostatic interactions in the
RTP films (ESI Fig. S147) further inhibits non-radiative transi-
tion and promotes phosphorescence emission. Specifically, the
XRD diffraction peaks of the e-PL-based RTP films were rather
weak and very wide (Fig. 5b), indicating the amorphous char-
acteristics of these materials, which were conducive to their
processing and application. Differential scanning calorimetry
(DSC) (Fig. 5¢) showed that the RTP materials doped with the
guest molecules had good stability, T, was in the range of 90-
103 °C (ESI Fig. S157), and they were not easy to decompose and
deteriorate at room temperature. Thermogravimetric analysis
(TGA) (Fig. 5d and e) showed that the decomposition tempera-
ture of the &-PL films doped with the guest molecules was above
250 °C, which proved that the RTP materials had good thermal
stability. Subsequently, to further study the mechanism of RTP,
the &-PL systems were theoretically calculated based on density
functional theory (DFT). In the case of Apyr@s-PL, there were
four channels (AEgy < 0.37 €V) from singlet S; to triplet states to
complete the intersystem crossover (ISC), including S; — T,, S;
— T3, S, — T, and S; — Ts (ESI, Table S71). More channels
were conducive to the generation of triplet excitons, which led
to the emission of phosphorescence. In addition, natural tran-
sition orbitals (NTOs) analysis showed that the RTP of Apyr@e-
PL stemmed from the transitions of *LE and 'LE states (ESI
Fig. S207).
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Non radiative
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@
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Fig. 5 (a) Jablonski diagram energy level diagram of RTP materials. FL,
fluorescence; PL, phosphorescence; ISC, intersystem crossing; and IC,
internal conversion. (b) Powder XRD patterns of the five e-PL-based
RTP films. (c) DSC curves of the g-PL-based RTP films. (d) TGA curves
of the e-PL-based RTP films. (e) DTG curves of the e-PL-based RTP
films.
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To study the humidity response behavior of the &-PL-based
RTP films, a steam fumigation/heating drying experiment was
carried out. Taking NDA as an example, the prepared NDA@e-
PL still retained its room-temperature phosphorescence and
emitted green phosphorescence under the excitation of 365 nm
UV light. Then, this dry film was sprayed with water, and the
mass of the film was taken as an equivalent. When the mass
fraction of added water increased from 0 to 100%, a sharp
decline in the intensity and lifetime of the afterglow could be
observed (Fig. 6a), and the reciprocal of the afterglow time was
positively correlated with the mass fraction of water (Fig. 6c),
indicating that the afterglow materials were humidity-
responsive. Based on this, the material could be applied in
a sensor to realize the rapid detection of water content. In
addition, the reversibility and fatigue resistance of the material
to water stimulation were also investigated. After repeating the
water stimulation/drying cycle four times, the duration and
intensity of the phosphorescence emission were not signifi-
cantly reduced (Fig. 6b). To further explore the mechanism of
phosphorescence in response to humidity stimulation, the
Fourier transform infrared spectra (FTIR) of e-PL-based RTP
films were obtained (Fig. 6d-h). After water stimulation, the
peak of the material at 3000-3500 cm™ ' became wider and
stronger, and the peak at 3300 cm™ " was caused by the hydroxyl
group in water and amino groups in the &-PL chain, and the
wider peak indicated the greater water content. The added water
destroyed the original rigid hydrogen-bond network and formed
a new loose hydrogen-bond network with &-PL, resulting in the
increase of the non-radiative transition; in addition, it could
quench the triplet excitons, making the afterglow weaken or
even disappear. When the films were heated to remove water,
the original hydrogen-bond network and afterglow were
restored.

To further verify the superiority of the e-PL matrix, PMMA was
selected as a matrix for comparison. First, because PMMA does
not contain functional groups such as amino and carboxyl groups,
it could be well proved that amino and carboxyl groups in &-PL can
form abundant hydrogen bonds with the guest molecules.

uvor/s UV on LV off

10 20 30 40 S50 60
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Second, although PMMA is soluble in dichloromethane and &-PL
dissolves in water, both RTP materials were obtained after drying
to remove the solvent, resulting in no serious effect on the final
conclusion. After changing the substrate, the lifetime of the
phosphor was found to be significantly reduced by 5 orders of
magnitude compared to the lifetime of the e-PL matrix (ESI,
Fig. S217), proving that the &-PL matrix plays an important role in
inhibiting non-radiative transition and preventing phosphores-
cence quenching. In addition to the matrix, the functional groups
contained in the guest molecules also play a vital role in the
afterglow emissions. This is because these functional groups not
only form hydrogen bonds with the matrix to inhibit non-radiative
transition, but also the lone pair electrons carried by the hetero-
atoms in the functional groups to enhance the spin-orbit
coupling (SOC). To verify the important role of functional groups,
some guest molecules without amino and carboxyl groups were
selected for doping. When phenanthrene (phe), naphthalene
(Naph), 2-naphthalic acid (NA), 2-naphthalene sulfonic acid (NS)
and pyrene (pyr) were doped into &-PL, their lifetimes were found
to be reduced to the millisecond or even nanosecond level (ESI
Fig. S22t), which fully proved the important role of these func-
tional groups in the afterglow emissions.

Applications

Based on the adjustable colour and multiple stimulus response
properties of the prepared amorphous &-PL-based RTP films,
they display great prospects for application in data encryption
and anti-counterfeiting. The prepared material can be made
into encryption ink in solution state. As shown in Fig. 7a, five
letters OURTP, abbreviation for organic ultralong room
temperature phosphorescence, were written on the filter paper
with five types of &-PL suspension with 1% mass fraction using
this ink. After drying, they were almost invisible at room
temperature, but under the excitation of 365 nm UV light, the
blue fluorescence began to appear. When the excitation light
source was removed, the letters immediately changed to
a bright multi-colour pattern. The RTP materials could also be

Afterglow time/s

h

Wavenumber (em”)

Fig. 6

(a) Schematic diagram of the change in the NDA@e-PL afterglow with different water contents taken under 365 nm UV light. (b)

Photographs of the steam fumigation/heating drying of NDA@e-PL. (c) Line chart of NDA@e-PL afterglow time with different water contents. The
inset photos in (c) show the afterglows with different water contents. (d—h) FTIR spectra of the g-PL-based RTP films under the stimuli of steam

fumigation/heating drying.
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(a) Demonstration of encryption by combining five different materials. (b) Diagram of multiple encryption composed of ANA@e-PL and
Apyr@e-PL. (c) Photographs of anti-counterfeiting label printed with ANS@e-PL material. (d) Schematic of five materials processed into arbitrary
shapes.

Fig. 7

used for anti-counterfeiting on valuable documents, such as
letters. Fig. 7c shows a poem by Tagore, which looked nothing
special on the surface, but when irradiated with 365 nm UV
light, it would show blue fluorescence, and the afterglow was
time-dependent. This provides a simple method for anti-
counterfeiting and combatting piracy. Since the phosphores-
cence lifetime of each material is different, the corresponding
afterglow duration was also different; thus, the materials could
also provide various coding procedures for data encryption. The
characters of ALLOVER were drawn on paper (Fig. 7b), where
letters “A”, “L” and “R” were written using a suspension of
Apyr@e-PL, and the letters of “LOVE” were written using
a suspension of ANA@e-PL. In sunlight, the letters were faintly
visible when wet, while the contents were hidden when dried.
When illuminated by 365 nm UV light, the letters showed blue
fluorescence, and after removing the excitation light source, the
letters appeared in different colours. A second later, “ALR”
disappeared, leaving only the characters of “LOVE”, thus
creating the effect of multiple encryption. Furthermore, the
performance of the materials did not change significantly after
repeated water treatment; hence, the materials have good
reversibility and can be reused. The identifiable RTP properties
and film-forming capabilities enriched the coding range of
these flexible organic materials (Fig. 7d). Remarkably, the long-
life RTP materials with colour-tunable, excitation-dependent
and time-dependent properties provide a very high level of
security for protecting significant information.

Conclusions

In summary, a series of colour-adjustable RTP materials with
multiple stimulus responses have been prepared by doping
guest phosphor molecules into the &-PL matrix. On the one

4176 | Chem. Sci, 2024, 15, 4171-4178

hand, the heteroatoms in the functional groups such as amino
and carboxyl groups promoted spin-orbit coupling and ISC
processes. On the other hand, a rigid hydrogen-bond network
was formed within &-PL and the guest molecules to inhibit non-
radiative relaxation, promoted triplet emission, and finally
provided RTP with an afterglow duration of up to 15 s under
environmental conditions. The RTP emitted by these amor-
phous materials has significant tunability from blue (464 nm) to
red (693 nm), with quantum yields and phosphorescence life-
times as high as 18.84% and 2504.7 ms, respectively. Interest-
ingly, Daphe@e-PL films had Ex-De properties owing to their
different emission centers. As the excitation wavelength
increased from 254 nm to 365 nm, the emission wavelength
redshifted from 461 nm to 530 nm, while ANS@e-PL films
showed time-dependent afterglows. As the delay time extended,
the peak wavelength of its spectrum also presented a blueshift.
In addition, e-PL-based RTP materials had good reversibility
and fatigue resistance to water stimulus, so they can be applied
in sensors to achieve rapid detection of water content. More-
over, RTP characteristics, excellent water solubility and film-
forming ability give these materials broad application pros-
pects, such as in multiple encryption and anti-counterfeiting.
These findings will further promote the development of
polymer-based phosphor materials.
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